
Fast Nearest Neighbor Search on Road Networks�

Haibo Hu1, Dik Lun Lee1, and Jianliang Xu2

1 Hong Kong Univ. of Science & Technology
{haibo, dlee}@cs.ust.hk

2 Hong Kong Baptist University
xujl@comp.hkbu.edu.hk

Abstract. Nearest neighbor (NN) queries have been extended from
Euclidean spaces to road networks. Existing approaches are either
based on Dijkstra-like network expansion or NN/distance precomputa-
tion. The former may cause an explosive number of node accesses for
sparse datasets because all nodes closer than the NN to the query must
be visited. The latter, e.g., the Voronoi Network Nearest Neighbor (V N3)
approach, can handle sparse datasets but is inappropriate for medium
and dense datasets due to its high precomputation and storage over-
head. In this paper, we propose a new approach that indexes the network
topology based on a novel network reduction technique. It simplifies the
network by replacing the graph topology with a set of interconnected
tree-based structures called SPIE’s. An nd index is developed for each
SPIE and our new (k)NN search algorithms on an SPIE follow a prede-
termined tree path to avoid costly network expansion. By mathematical
analysis and experimental results, our new approach is shown to be effi-
cient and robust for various network topologies and data distributions.

1 Introduction

Nearest neighbor (NN) search has received intensive attention in spatial data-
base community in the past decade, especially in high-dimensional Euclidean
spaces [10, 1, 13, 15]. Recently, the research focus is brought to spatial network
databases (SNDB) where objects are restricted to move on predefined roads
[11, 6, 9, 8]. In SNDB, a road network is modeled as a graph G (< V, E >),
where a vertex (node) denotes a road junction and an edge denotes the road
between two junctions; and the weight of the edge denotes the network distance.
A nearest neighbor query on the road network is, given a query node q and a
dataset (e.g., restaurants, gas stations) distributed on the nodes V , to find a
data object that is the closest to q in terms of network distance.

Existing research falls into two categories. In the first category, NN search
expands from the query node to adjacent nodes until a data object is found and
further expansion cannot retrieve closer objects [6, 9]. Such network expansion
originates from Dijkstra’s algorithm that finds single-source shortest paths. The
� This work is supported by the Research Grants Council, Hong Kong SAR under

grant HKUST6277/04E.

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 186–203, 2006.
� Springer-Verlag Berlin Heidelberg 2006

Fast Nearest Neighbor Search on Road Networks 187

advantage of this approach is that the network distance, the key to NN search,
is automatically obtained during the expansion. However, the disadvantage is
that the “unguided graph traversal” during network expansion may cause an
explosive number of node accesses, especially for sparse datasets. In the sec-
ond category, solution-based indexes are built on the datasets. Kolahdouzan et
al. proposed V N3 to partition the network into cells by the Network Voronoi
Diagram (NVD) [8]. Each cell contains one data object that is the closest ob-
ject to all the nodes in this cell. These cells are indexed by an R-tree in the
Euclidean space, and thus finding the first NN is reduced to a point location
problem. To answer k-nearest-neighbor (kNN) queries, they showed that the kth
NN must be adjacent to some ith NN (i < k) in the NVD. To speed up distance
computation, they also precompute the distances between border points of adja-
cent cells. However, their approach is advantageous only for sparse datasets and
small/medium k. Furthermore, if more than one dataset exists, NVD indexes
and precomputed distances must be built and maintained separately for each
dataset.

In this paper, we take a new approach by indexing the network topology,
because compared with the datasets the topology is unique and less likely to
change. To reduce index complexity and hence avoid unnecessary network ex-
pansion, we propose a novel technique called network reduction on road networks.
This is achieved by replacing the network topology with a set of interconnected
tree-based structures (called SPIE’s) while preserving all the network distances.
By building a lightweight nd index on each SPIE, the (k)NN search on these
structures simply follows a predetermined path, i.e., the tree path, and network
expansion only occurs when the search crosses SPIE boundaries. By analyti-
cal and empirical results, this approach is shown to be efficient and robust for
road networks with various topologies, datasets with various densities, and kNN
queries with various k. Our contributions are summarized as follows:

– We propose a topology-based index scheme for kNN search on road networks.
To reduce the index complexity, a network reduction technique is developed
to simplify the graph topology by tree-based structures, called SPIE’s.

– We propose a lightweight nd index for the SPIE so that the (k)NN search in
SPIE follows a predetermined tree path. With this index, the whole (k)NN
search can avoid most of the costly network expansions.

– We develop cost models for the network reduction, NN and kNN search
by our nd-based algorithms. These cost models, together with experimental
results, show the efficiency of our approach and the performance impact of
various parameters.

The rest of this paper is organized as follows. Section 2 reviews existing work
of (k)NN search on SNDB. Section 3 presents the network reduction technique.
Section 4 introduces the nd index on the SPIE and NN search algorithms on
the reduced network. The algorithms are extended to kNN search in Section 5.
Section 6 develops the cost models, followed by the performance evaluation in
Section 7. Finally, Section 8 concludes the paper.

188 H. Hu, D.L. Lee, and J. Xu

2 Related Work

Nearest neighbor (NN) search on road networks is an emerging research topic
in recent years [11, 6, 9, 8]. It is closely related to the single-source shortest path
problem, which has been studied since Dijkstra [4]. He proposed to use a priority
queue to store those nodes whose adjacent nodes are to be explored. Besides
the Dijkstra algorithm, A∗ algorithm with various expansion heuristics was also
adapted to solve this problem [5].

Among database researchers, Jensen et al. brought out the notion of NN
search on road networks [6]. They proposed a general spatio-temporal framework
for NN queries with both graph representation and detailed search algorithms.
To compute network distances, they adapted the Dijkstra’s algorithm to online
evaluate the shortest path. Papadias et al. incorporated the Euclidean space
into the road network and applied traditional spatial access methods to the
NN search [9]. Assuming that Euclidean distance is the lower bound of network
distance, they proposed incremental Euclidean restriction (IER) to search for
NNs in the Euclidean space as candidates and then to compute their network
distances to the query node for the actual NNs. However, IER cannot be applied
to road networks where that distance bound does not hold, e.g., the network
of transportation time cost. Although they proposed an alternative approach
incremental network expansion (INE), it is essentially a graph traversal from the
query point and thus performs poorly for sparse datasets.

Inspired by the Voronoi Diagram in vector spaces, Kolahdouzan et al.
proposed a solution-based approach for kNN queries in SNDB, called Voronoi
Network Nearest Neighbor (V N3) [8]. They precompute the Network Voronoi Di-
agram (NVD) and approximate each Voronoi cell by a polygon called Network
Voronoi Polygon (NVP). By indexing all NVP’s with an R-tree, searching the
first nearest neighbor is reduced to a point location problem. To answer kNN
queries, they prove that the kth NN must be adjacent to some ith (i < k)
NN in NVD, which limits the search area. To compute network distances for
an NN candidate, they precompute and store the distances between border nodes
of adjacent NVP’s, and even the distances between border nodes and inner nodes
in each NVP. By these indexes and distances, they showed that V N3 outper-
forms INE, by up to an order of magnitude. However, V N3 heavily depends
on the density and distribution of the dataset: as the dataset gets denser, both
the number of NV P ’s and the number of border points increase, causing higher
precomputation overhead and worse search performance. Given that NN search
by network expansion on dense datasets is efficient, V N3 is only useful for sparse
datasets.

Shahabi et al. applied graph embedding techniques to kNN search on road
networks [11]. They transformed a road network to a high-dimensional Euclidean
space where traditional NN search algorithms can be applied. They showed that
KNN in the embedding space is a good approximation of the KNN in the road
network. However, this technique involves high-dimensional (40-256) spatial in-
dexes, which leads to poor performance. Further, the query result is approximate
and the precision heavily depends on the data density and distribution.

Fast Nearest Neighbor Search on Road Networks 189

Continuous nearest neighbor (CNN) query is also studied recently. Besides
an efficient solution for NN query, CNN query on road network also requires
to efficiently determine the network positions where the NN(s) change. Various
approaches such as UBA [7], UNICONS [2] are proposed to solve this problem.

3 Reduction on Road Networks

The objectives for network reduction are: (1) to reduce the number of edges while
preserving all network distances, and (2) to replace the complex graph topology
with simpler structures such as trees. To achieve the objectives, we propose to
use the shortest path trees (SPT). The basic idea is to start from a node (called
root) in the road network G and then to grow a shortest path tree from it by
the Dijkstra’s algorithm. During the execution, when a new node n is added to
the tree, we additionally check if its distances in G to all the other tree nodes
are preserved by the tree. This is completed by checking if there is any edge
adjacent to n in G that connects n to a tree node closer than the tree path. Such
an edge is called a shortcut. If n has no shortcuts, it is inserted to the tree as
in Dijkstra’s algorithm; otherwise n becomes a new root and a new SPT starts
to grow from it. The new SPT connects with some existing SPT’s through the
shortcuts of n. The whole process continues until the SPT’s cover all nodes in
network G. These SPT’s form a graph— called an SPT graph— whose edges are
the shortcuts from the root of an SPT to some node in another SPT. Figure 1
illustrates an SPT graph. Obviously the SPT graph is much simpler than the
graph of road network. It is noteworthy that the reduction from a graph to a set

root node
tree node

tree edge
shortcut

reduced edge

SPT

Fig. 1. An Example of Shortest Path Tree Graph

of interconnected trees is not generally beneficial. Nonetheless, road networks
exhibit the following two properties that justify this approach: (1) the degree
of a junction in the road network is normally equal to or greater than 3, some
junctions serving as “hubs” of the network may have even higher degrees; (2) the
girth of the network, i.e., the length of the shortest circuit in the network, is long,
because small circuit means redundant paths between close-by nodes, which is
normally avoided in network design. We show in the cost model (in Section 6.2)
that these two properties lead to effective reduction on road networks.

190 H. Hu, D.L. Lee, and J. Xu

In order to further reduce the shortcuts and thus the number of SPT’s, we
augment the SPT’s to allow sibling-to-sibling edges. These edges are called hori-
zontal edges and the SPT’s that support such edges are called shortest path tree
with horizontal edges (SPH). With horizontal edges, SPH’s can store shortcuts
between siblings and thus no new SPH needs to be created in such cases. Later
in Section 4.2 we will prove that SPH still forms a hierarchy and the shortest
path between any two nodes is still easy to allocate.

Algorithm 1. Network Reduction by SPH
Input: a network G and a starting root r
Output: an SPH graph Γ
Procedure:
1: starting node = r;
2: while there is node in G that is not covered in any SPH of Γ do
3: build a blank SPH T and insert T as a vertex into Γ ;
4: insert all the non-sibling shortcuts of starting node as edges to Γ ;
5: build a blank priority queue H and insert < starting node, 0 > to H ;
6: while H is not empty do
7: node n = H .pop();
8: if n has no shortcuts to non-sibling tree nodes then
9: insert n into T ;

10: else
11: break;
12: relax the distances in H according to Dijkstra’s algorithm;

Algorithm 1 shows the procedure of network reduction. The inner while loop
is modified from the Dijkstra’s algorithm to build an individual SPH. Different
from Dijkstra’s algorithm, the inner loop stops whenever there are shortcuts to
non-sibling tree nodes and then a new SPH starts to grow from this node. These
shortcuts are stored as the edges in the SPH graph Γ .

4 Nearest Neighbor Search on SPH Graph

In this section, we present our solution to NN search on the reduced network,
i.e., the SPH graph. The search starts from the SPH where the query node
is located. By building a local index nd on each SPH, this search is efficient.
Searching into the adjacent SPH’s in the graph continues until the distance to
the SPH’s already exceeds the distance to the candidate NN. In what follows,
we first show the nd-based NN search on a tree. Then we extend it to the SPH
and the SPH graph. Finally we present the index construction and maintenance
algorithms. The extension to kNN search is shown in the next section.

4.1 NN Search on Tree

We begin with the NN search on a tree. To avoid network expansion that recur-
sively explores the parent and child nodes from the current searching node, we

Fast Nearest Neighbor Search on Road Networks 191

t1

t2

t3
q

s

r

<t1,8>

<t2,5>

<t3,1>

3 1

2 3

2
1

7

p

Searching process:
(1), p = q: nearest_dist = 8,
 nearest_neighbor = t1
(2), p = s: nearest_dist = 2+5 = 7,
 nearest_neighbor = t2
(3), p = r: nearest_dist = 5+1 = 6,
 nearest_neighbor = t3

(1)

(3)

(2)

data nodes

p pointer

<t1,8> node's nd

other nodes

Fig. 2. Nearest Neighbor Search on Tree

store, for each node v, the nearest data object in its descendants (nearest de-
scendant or nd for short). The object is denoted by v.nd.object and its distance
to v is denoted by v.nd.dist. For example, in Figure 2, s.nd is set to < t2, 5 >,
as the nd of s is t2 which is 5 units away. If a node have no data object in its
descendants, its nd is set to <null,∞>.

The pointer to the current searching node, p, starts from the query node q.
Based on the nd index, if p.nd is closer to q than the current NN, p.nd becomes
the new NN and the current nearest distance, nearest dist, is updated. Then p
proceeds to q’s parent, grandparent, · · · , etc., until the distance between p and
q exceeds nearest dist or p reaches the root. Figure 2 shows an example where
p starts at q and then moves to s and r, until it finds the NN. With the nd
index, the search path is at most as long as the tree path to the root. Therefore
the number of node accesses is bounded by the height of the tree. In the next
subsections, we extend the nd index to the SPT and SPT graph.

4.2 SPIE: SPH with Triangular Inequality

An SPH is more complicated than a tree because there are multiple paths from
the source to the destination. In this subsection, our objective is to modify
the SPH obtained from Section 3 so that the weight of each edge (tree edge
or horizontal edge) represents the shortest distance between the two adjacent
nodes. In other words, we modify the SPH to satisfy the triangular inequality,
that is, ∀ three edges ab, bc, ac ∈ SPH.E, w(ac) ≤ w(ab) + w(bc). The modified
SPH is called an SPH with triangular inequality edges (SPIE).

The conversion from an SPH into an SPIE is a local operation. For each node
u, we obtain its child nodes; the set of tree edges and horizontal edges between
these nodes forms a weighted graph. We perform the Floyd-Warshall algorithm
[3] to find all-pairs shortest paths in this graph. The distances of these shortest
paths form the weights of tree edges and horizontal edges in the SPIE. The
following theorem proves that SPIE guarantees that the shortest path of any
two nodes u and v comprises one and only one horizontal edge which connects
one of u’s ancestors and one of v’s ancestors.

192 H. Hu, D.L. Lee, and J. Xu

Theorem 1. For two nodes u and v in SPIE that are not descendant/ancestor
of each other, their shortest path consists of the following nodes sequentially,
u0, u1, u2, · · · , us, vt, · · · , v2, v1, v0, where u0 = u, v0 = v, and ui (vi) is the
parent of ui−1 (vi−1); us and vt are the child nodes of lcau,v, the lowest common
ancestor of u and v.

Proof. In order to prove the theorem, we first introduce Lemma 1.

Lemma 1. Any path from node u to its descendant v in an SPIE must include
all the tree edges from u to v. In other words, v’s parent, grandparent, · · · , till
u, must exist in any path from u to v.

Proof. Let level(i) denote the depth of node i (level(root) = 0), and n denote
level(v) − level(u) − 1. By mathematical induction,

1. For n = 1, v’s parent node must be included in the path because otherwise
there are more than one parent for node v, which is prohibited in an SPIE;

2. Assume the lemma holds for n = k. Thus for n = k+1, we only need to prove
t, u’s child and v’s ancestor, is included in the path. By the assumption, all
ancestors of v that are below t are already in the path, especially s, t’s child
and v’s ancestor. Since s is in the path, by the same reasoning as in 1, t must
be in the path.

Hereby, 1 and 2 complete the proof.

We now prove the theorem. Let p denote lcau,v for simplicity.

1. First, we prove that if all sibling edges among p’s children are removed, p
must exist in path(u, v). Consider the two subtrees that are rooted at p’s
two children and contain u and v respectively. Since the only edges linking
them with the rest of the SPIE are the two tree edges adjacent to p, p must
exist in any path between the two subtrees. Thus, p must exist in path(u, v).

2. From Lemma 1, u1, u2, · · · , us must exist in path(u, v). We only need to
prove that they are the only nodes in the path.1 By contradiction, if there
were one node x between ui and ui+1, x must be a sibling node of ui. How-
ever, since all edge weights satisfy triangular inequality, i.e., w(ui, ui+1) ≤
w(ui, x)+w(x, ui+1), removing node x results in an even shorter path, which
contradicts the shortest path condition. Therefore, u1, u2, · · · , us are the only
nodes in the path.

3. Finally we prove that when adding back the sibling edges removed in 1, the
path is the same except that p is removed from path(u, v). On the one hand,
due to triangular inequality, w(us, vt) ≤ w(us, p) + w(p, vt), so p should be
removed from the shortest path. On the other hand, since all added edges
are sibling edges, if any new node is to be added to the path, only sibling
nodes are possible choices; but from 2, adding sibling nodes only increases
the path distance. Therefore, no nodes should be added.

Hereby, 1, 2 and 3 complete the proof. �
1 By symmetry, the proof is the same for the v1, v2, · · · , vt, and hence omitted.

Fast Nearest Neighbor Search on Road Networks 193

4.3 NN Search on SPIE and SPIE Graph

By Theorem 1, a shortest path in an SPIE is the same as that in a tree except
that a horizontal edge replaces two tree edges adjacent to the lowest common
ancestor. Therefore, NN search in SPIE still starts from the query node q and
moves upward to its ancestors. The only difference is that, instead of p’s nd,
the nd’s of p’s child nodes (except for the node pointed by the last p), are
examined during the search. This is because if p is the lowest common ancestor
of q and some possible NN, according to Theorem 1, one of p’s children, instead
of p, appears in the path. Figure 3 illustrates the NN search on an SPIE. In
this example, when p = s, the nd of u, instead of s, is examined. Regarding

t1

t2

t3
q

s

r

<t1,8>

3 1

2 3

21

7

p

Searching process:
Step (1), p = q: nearest_dist = 1+7 = 8,
 nearest_neighbor = t1
Step (2), p = s: nearest_dist = 4+2 = 6,
 nearest_neighbor = t2
Step (3), p = r: nearest_dist = 2+3+0 = 5,
 nearest_neighbor = t3

(2)

(1)
<t3,0>

<t2,2>

4

3

4 u

(3)
data nodes

p pointer

<t1,8> node's nd

other nodes

Fig. 3. NN search on SPIE

NN search on the SPIE graph, once the search is completed on the current
SPIE, its shortcuts need to be considered. More specifically, the search should
be propagated to those nodes that are adjacent to the shortcuts and are closer to
q than the current NN. With these nodes being query points, new NN searches
on the SPIE’s are started. These searches are processed similarly except that
the distance is accumulated from q. Algorithm 2 shows the pseudo-code of the
NN search on one SPIE. For NN search on the SPIE graph, this algorithm is
invoked with the SPIE that contains q.

4.4 nd Index Construction

The nd index is independently constructed on each SPIE. As aforementioned,
the nd data structure of each node n stores both the nearest descendant and its
shortest distance to n. In addition, based on the fact that the nearest descendant
of n is also the nearest descendant of all nodes along the path from n.nd to n,
n.nd also stores the child node of n in this path to record the path to the nearest
descendant. To build the nd index, a bottom-up fashion is applied: the nd’s of
n’s children are built and then the nearest nd among them is elected as the nd
for n. Algorithm 3 shows the pseudo-code of the bottom-up nd construction.

194 H. Hu, D.L. Lee, and J. Xu

Algorithm 2. NN Search on an SPIE
Input: an SPIE Γ , a query point q, accumulated distance D from the global query
point
Global: the candidate NN r, also the output when the entire search terminates
Procedure: NN search on SPIE(Γ ,q,D)
1: p = q;
2: while distp,q < distr,q do
3: find the best NN object u in p’s child nodes’s nd;
4: if u is better than r then
5: update r;
6: p = p.parent;
7: for each shortcut s, t (s ∈ Γ, t ∈ Φ) do
8: if D + distq,t < distr,q then
9: NN search on SPIE(Φ,t,D + distq,t);

Algorithm 3. Build nd index on an SPIE
Input: an SPIE Γ , a node p
Operation: Build p’s nd recursively
Procedure: build nd(Γ, p)
1: if p is a data object then
2: set p.nd = p;
3: else if p is a leaf node then
4: set p.nd = null;
5: else
6: for each p’s child v do
7: build nd(Γ, v);
8: find the nearest descendant v∗ among p’s child nodes’ nd;
9: set p.nd = v∗;

Regarding disk paging, the nd index is paged in a top-down manner [14]:
starting from the root, the SPIE is traversed in a breadth-first order, where
nd structure is greedily stored in a disk page until it is full. The breadth-first
traversal guarantees that topologically close nodes are physically close on disk.

4.5 Handling Updates

This subsection copes with updates on both network topology and data objects.

Updates on Network Topology. Network updates include the insertion/dele-
tion of nodes, insertion/deletion of edges, and change of edge weights.

– node insertion: the node is inserted to the SPIE that contains the adjacent
node.

– node deletion: only the SPIE that contains this node needs to be rebuilt
by Dijkstra’s algorithm2.

2 If the SPHIE is no longer connected, the SPIE is split.

Fast Nearest Neighbor Search on Road Networks 195

– edge insertion: if the edge is an intra-SPIE edge and provides a shorter
distance between the two adjacent nodes, only this SPIE is rebuilt by Dijk-
stra’s algorithm; otherwise if the edge is a shortcut, it is added to the SPIE
graph, otherwise no operation is needed.

– edge deletion: if the edge is an intra-SPIE edge, this SPIE is rebuilt; oth-
erwise if it is a shortcut, it is removed from the SPIE graph; otherwise no
operation is needed.

– increase edge weight: same as edge deletion.
– decrease edge weight: same as edge insertion.

Updates on Data Objects. Updates on data objects include object inser-
tion/deletion. These changes affect the nd index only; the SPIE graph is not
affected. Therefore, data objects updates are less costly than network updates.
Moreover, the inserted/deleted object only affects the nd index of this node and
its ancestors in the SPIE. So the index update starts from the node where the
object insertion/deletion occurs, and repeatedly propagates to the parent until
the nd no longer changes.

5 K-Nearest-Neighbor Search

To generalize NN search to KNN search, every time p points at a new node, we
not only examine the nd of p (or more precisely the nd’s of p’s children), but also
search downwards to examine the nd of p’s descendants for candidate NN farther
than p.nd. The downward search terminates when all (or k, whichever is smaller)
data objects in p’s descendants are found, or when the accumulated distance from
q exceeds the kth NN candidate distance from q. During the downward search,
a priority queue L is used to store the nodes to be examined, sorted by their
accumulated distances from q.

Figure 4 shows an example of a 2NN search on the same SPIE as in Figure 3.
r denotes the current set of 2NN candidates, where < t1, 8 > means a candidate
t1 is 8 units from the query node q. In priority queue L, < x, 1 > means that
the nd of node x that is 1 unit from q is to be examined. Every time p moves
upwards to a new node (e.g., s), the priority queue L is initialized with nd of p’s
children (e.g., u). Then we repeatedly pop up the first node from L, examine its
nd, and push its children to L until L is empty, or two objects have been found,
or the accumulated distance exceeds the second NN distance to q. Afterwards
p moves upwards to its parent and the same procedure is repeated. The entire
NN search terminates, as in Algorithm 2, when the distance from p to q already
exceeds that from the k-th NN candidate to q.

6 Cost Models

In this section, we analyze the effectiveness of our proposed network reduction
and nd-based nearest neighbor search algorithms. We develop cost models for
the number of edges removed during the reduction and nodes accesses (NA)

196 H. Hu, D.L. Lee, and J. Xu

t1

t2

q

s

r

<t1,8>

<t4,3>

<t3,1>

3 1

2 3

21

7

p

Step (2), p = s:

(2)

(1)

<t2,2>

4

3
4 u

x

L r

<m,5> <n,6> <t2,6> <t1,8>

<n,6> <t2,6> <t1,8>

Step (3), p = r:

L r

<y,5> <t3,5> <t2,6>

t3<t3,0>

Step (1), p = q:
L r

<x,1> <v,2> <t1,8>

<v,2> <w,3> <t1,8>

<w,3> <t1,8>

v

2

w

2

m n
1 2

y

(3)

Fig. 4. KNN search on SPIE

during the NN and kNN search. We then compare the latter with the number of
nodes accesses by the naive Dijkstra-like network expansion algorithm. Before
we start the analysis, we first introduce some assumptions and notations.

6.1 Analytical Assumptions and Notations

To simplify the analytical model, we make the following assumptions on the
network topology:

– The degree of each node is equal to f ;
– The weight of each edge is equal to 1;
– There are N nodes in the network and M data objects are uniformly dis-

tributed in the network. Let p = M
N .

Table 1 summarizes all the notations, including those defined in the sequel.

Table 1. Notations for Cost Models

Notation Definition
f degree of each node
N number of nodes
M number of data objects
p probability of a node is an object, p = M

N

g average length of the circuits in the network
r radius of the network
NA number of nodes accesses in the search
D average distance between a node and its NN
Dk average distance between a node and its kth NN
nd cardinality of the d-th layer
Cd sum of cardinality of all layers within the d-th layer
Pi probability that the NN is i units away

Fast Nearest Neighbor Search on Road Networks 197

6.2 Cost Model for Network Reduction

We first estimate the number of edges remained after the network reduction. Let
g denote the average length of the circuits in the network. During the reduction
process, each circuit leads to a new shortest path tree with two shortcuts (ref.
Figure 5). Since there are f · N/2 edges, the number of circuits is fN

2g . So the

tree edges

shortcuts

shortest path trees

search route

Fig. 5. A Circuit Leads to A New SPT with Two Shortcuts

number of tree edges and the number of shortcuts after reduction are N − fN
2g ,

and 2fN
2g , respectively. Therefore, the ratio of the number of edges in the SPIE

graph to the road network R is:

R =
(N − fN

2g) + 2fN
2g

fN/2
=

2
f

+
1
g

(1)

An immediate observation from Equation 1 is that increasing f and g reduces
the ratio and hence enlarges the performance gain of the network reduction.
Nonetheless, the reduction is beneficial even when f and g are small. For exam-
ple, in a network of 2D uniform grid, f equals to 4 and g equals to 4, R = 3/4 < 1.

It is also noteworthy that, although SPIE does not further reduce the edges
from SPT, it helps convert a shortcut to a tree edge, which reduces the NN
search cost since the nd index is built on tree edges.

6.3 Cost Model for NN Search

To derive the number of node accesses in an NN search, we first derive the
average distance (D) between a node and its NN. Let us define the d-th layer
of node q as the set of nodes that are d units away from q. Let nd denote the
cardinality of the d-th layer, and Cd denote the sum of cardinality of all layers
within the d-th layer, i.e., Cd =

∑d
i=1 ni. Then we have:

Cd =
d∑

i=1

ni = 1 + f + f(f − 1) + f(f − 1)2 + ... + f(f − 1)d−1 ≈ (f − 1)d

f − 2
(2)

Let Pi denote the probability that the NN is i units away, and r denote the
radius of the network. Then we have:

D =
r∑

i=0

i × Pi (3)

198 H. Hu, D.L. Lee, and J. Xu

Since the data objects are uniformly distributed, we have:

Pi = (1 − p)Ci−1(1 − (1 − p)Ci−Ci−1) (4)

Replacing Pi in (3) with (4) and Ci with (2), we get:

D ≈
r−1∑

i=0

(1 − p)Ci ≈
r−1∑

i=0

(1 − p)
(f−1)i

f−2 (5)

Now we estimate the number of node accesses in the NN search. The naive
algorithm searches all nodes within the �D�-th layer. Therefore, NAnaive is given
by:

NAnaive = C�D� ≈ (f − 1)�D�

f − 2
(6)

Recall that in our nd-based algorithm, the pointer p starts from q, examines
the nd’s of p’s children (except for the child that p previously points at), and
moves upward (and possibly to other SPIE’s through the shortcuts) until the
distance from p to q exceeds �D�. Therefore,

NAnd =
�D�∑

i=0

(f − 1) = (f − 1)(�D� + 1) (7)

By comparing (6) and (7), NAnaive is exponential to the average NN distance
D while NAnd is linear to D.

6.4 Cost Model for KNN Search

Similar to the derivation of NN search, we start by estimating Dk, the average
distance of the kth NN to q. Let Pi denote the probability that the kth NN is i
units away. Then,

Pi =
(

Ci

k

)

pk(1 − p)Ci−k ≈ Ck
i pk(1 − p)Ci

k!(1 − p)k
(8)

Different from the NN search, we use the maximum likelihood (ML) estimation
to derive Dk, i.e., Dk = argmaxiPi. To get the maximum value of Pi in 8, it is
equivalent to solve the following equation on the derivatives.

∂ Ck
i (1 − p)Ci

∂i
= 0 =⇒ ∂ Ck

i (1 − Cip)
∂i

= 0 (9)

The above derivation requires an additional assumption that p << 1. Solving (9)
and replacing Ci by (2), we obtain,

Dk = argmaxi Pi =
log k(f − 2) − log p(k + 1)

log(f − 1)
(10)

Fast Nearest Neighbor Search on Road Networks 199

Now we estimate the number of node accesses in the KNN search. For the
naive algorithm, similar to (6), we have:

NAnaive = C�Dk� ≈ (f − 1)�Dk�

f − 2
(11)

Recall that in our nd-based algorithm, the pointer p starts from q, examines
the nd’s of p’s children (except for the child that p previously points at), searches
downwards, and moves upward (and possibly to other SPIE’s through the short-
cuts) until the distance from p to q exceeds �D�. For each downward search, the
number of node accesses, NAdown, is equivalent to the total length of the paths
from the k nearest descendants to p. Let β denote the distance from the kth
nearest descendant to p. We have the following two equations,

β∑

i=1

(f − 1)ip = k

β∑

i=1

(f − 1)ip · i = NAdown

Solving these two equations, we have

NAdown ≈ f · β · k
p

≈ f · k(log k(f − 2) − log p)
p log(f − 1)

(12)

Therefore,

NAnd =
�Dk�∑

i=0

NAdown ≈ f · k(�Dk� + 1)(log k(f − 2) − log p)
p log(f − 1)

(13)

By comparing (11) and (13), we come to a similar conclusion as in Section 6.3
that NAnd << NAnaive.

7 Performance Evaluation

In this section, we present the experimental results on network reduction, nd in-
dex construction and (k)NN search. We used two road networks in the simulation.
The first is synthetic for controlled experiments, which was created by generating
183,231 planar points and connecting them through edges with random weights
between 1 and 10. The degree of nodes follows an exponential distribution with
its mean denoted as f . f is tuned to evaluate its effect on network reduction. The
second is a real road network obtained from Digital Chart of the World (DCW). It
contains 594,103 railroads and roads in US, Canada,Mexico. Among these line seg-
ments, we identified 430,274 unique nodes, and thus the average degree of nodes,
f , is about 2.7. Similar to [9], we used the connectivity-clustered access method
(CCAM) [12] to sort and store the nodes and their adjacent lists. The page size
was set to 4K bytes. The testbed was implemented in C++ on a Win32 platform
with 2.4 GHz Pentium 4 CPU, 512 MB RAM.

200 H. Hu, D.L. Lee, and J. Xu

We compare our nd-based NN search algorithm with two competitors. The first
is the Dijkstra-based naive network expansion algorithm which uses a priority
queue to store the nodes to be searched and increasingly expands to their adjacent
nodes on the network. The second is the Voronoi-based Network Nearest Neigh-
bor (NV 3) algorithm [8] which computes the Network Voronoi Diagram for each
dataset. So far, it is known to be the best algorithm for NN search in roadnetworks.

Regarding the performance metrics, we measured the CPU time, the number
of disk page accesses and the number of node accesses. The first two show the
search cost while the last metric indicates the pruning capability of the network
reduction and nd index.

7.1 Network Reduction

We evaluated the performance of the network reduction by measuring the number
of edges before and after the reduction. In Figure 6, the result from the synthetic
networks shows the same trend as Equation 1: when f increases from 2 to 10, the
reduced edges increases from 5% to 60% of the total edges. However, when f gets
even larger, the average length g of a circuit decreases, which partially cancels out
the effect of f . Therefore, we expect the proportion of reduced edges to stabilize
when f > 10. For the real road network, the average node degree f is reduced from
2.7 to 2.05, which is very close to a tree structure. In fact, only 1571 shortest path
trees were created out of the 430,274 nodes. These results confirm the feasibility
and effectiveness of network reduction on large road networks.

0

400,000

800,000

1,200,000

synthetic
(f = 2)

synthetic
(f = 3)

synthetic
(f = 4)

synthetic
(f = 10)

 real
(f = 2.7)

of

 e
dg

es

before reduction

after reduction

Fig. 6. Effect of Network Reduction

7.2 nd Index Construction

We created three randomly distributed datasets with their cardinality set to
0.001, 0.01, 0.1 (denoted as p) to the total number of nodes on the real road
network. We then built both V N3 index (including the NV P R-tree, NV D’s,
Bor−Bor distances, and OPC distances) and nd index on these datasets. Table 2
shows the index sizes and the clock time for index construction. Note that for
the nd index, we do not count the size and construction time for the SPIE graph,
which is 7.5 MB and 303 seconds respectively, because this one-time cost is shared
by all datasets. The result shows that our nd index has a constant size and almost
constant construction time. It is more efficient to build than V N3 index.

Fast Nearest Neighbor Search on Road Networks 201

Table 2. Comparison on Index Construction

Size (MB) p = 0.001 p = 0.01 p = 0.1 Time (s) p = 0.001 p = 0.01 p = 0.1
V N3 347 92 67 V N3 2748 765 512
nd 5.16 5.16 5.16 nd 12 12 14

7.3 NN Search Result

We conducted experiments of NN search on the real road network for the three
datasets and measured the CPU time, page accesses and node accesses3. All
statistics were obtained from an average of 2,000 trials. In Figure 7(a), we observe
that the number of page accesses for both the naive and nd algorithms decreases
as the density of the dataset p increases, whereas the number of page accesses for
V N3 is almost constant. This is because the first two algorithms are based on
graph traversal while V N3 is based on point location on the NVP R-tree. Even
though V N3 precomputes the Network Voronoi Diagram and is thus efficient
in finding the first nearest neighbor, our nd-based algorithm still outperforms
it when p > 0.01, because more queries can be answered by visiting the nd
of a few nodes on a single SPIE. In this sense, nd is more robust than V N3

for datasets with various densities. Figure 7(b) confirms this argument: the nd-
based algorithm reduces the node accesses of the naive algorithm by 2 orders of
magnitude when p = 0.001 but it still reduces the nodes accesses by half when
p = 0.1.

1

10

100

1000

p=0.001 p=0.01 p=0.1

pa
ge

 a
cc

es
s

Naïve VN3 nd

(a) Page Access

1

10

100

1000

10000

p=0.001 p=0.01 p=0.1

no
de

 a
cc

es
s

Naïve nd

(b) Node Access

Fig. 7. Performance Comparison for NN Search

7.4 KNN Search Result

We conducted the kNN search for the p = 0.01 dataset on the real road network,
where k ranges from 1 to 50. We measured the page accesses and CPU time and
plotted the results in Figures 8(a) and 8(b). The results show that when k = 1,
V N3 requires the fewest page accesses and the least CPU time, because V N3

3 Since CPU time was found neglectable in 1NN search, we omit it in this subsection.

202 H. Hu, D.L. Lee, and J. Xu

optimizes the 1NN search by only requiring the search to locate the NVP that
contains the query node. However, as k increases, V N3 still needs to traverse
the NVD graph to search for candidate NNs; a major factor that contributes
to the high cost of a kNN search by V N3 is that the distance computation
between each candidate and the query node is carried out separately and from
scratch, while for network-expansion-based algorithms such as the naive and nd-
based algorithms, the distance is computed accumulatively. This argument is
supported by Figures 8(a) and 8(b) where the gap between V N3 and the naive
algorithm decreases as k increases. On the other hand, the nd-based algorithm
performs consistently well for a wide range of k. The reasons are four-folded.
Firstly, recall that after network reduction, each SPIE contains hundreds of
nodes on average, which means that for small k it is likely that the search ends
in one or two SPIE’s. This explains why nd outperforms V N3 even for small k.
Secondly, although kNN search on nd index requires searching for the nd of p’s
descendants, these nd’s are likely stored in the same disk page that p resides.
Thirdly, since there are only 1571 SPIE’s in the SPIE graph, looking for adjacent
SPIE’s to search is efficient. Last but not the least, thanks to the nd index that
avoids naive expansion within one SPIE, the nd algorithm is the least affected
by the increase of k. In Figures 8(a) and 8(b), both page accesses and CPU time
of the nd algorithm are sublinear to k.

1

10

100

1000

k=1 5 10 20 50

pa
ge

 a
cc

es
s

Naïve VN3 nd

(a) Page Access

0.01

0.1

1

10

1 5 10 20 50

C
P

U
 ti

m
e

(s
)

Naïve VN3 nd

(b) CPU time (sec)

Fig. 8. Performance Comparison for KNN Search: p = 0.01 Dataset

To summarize the results, the network reduction and nd-based (k)NN search
algorithms exhibit the following advantages: (1) the network topology is signifi-
cantly simplified and the reduction is a one-time cost for multiple datasets; (2)
the nd index is lightweight in terms of storage and construction time; (3) the
(k)NN search algorithm performs well for a wide range of datasets with different
densities; (4) the kNN search algorithm performs well for a wide range of k.

8 Conclusion and Future Work

In this paper, we proposed a new kNN search technique for road networks. It
simplifies the network by replacing the graph topology with a set of intercon-
nected tree-based structures called SPIE’s. An nd index was devised on the SPIE

Fast Nearest Neighbor Search on Road Networks 203

so that our proposed kNN search on the SPIE follows a predetermined tree path.
Both cost models and experimental results showed that our approach outper-
forms the existing network-expansion-based and solution-based kNN algorithms
for most of the network topologies and data distributions.

In future work, we plan to devise structures other than SPIE to reduce the
network topology. By striking a balance between the topological complexity of
the structure and the kNN searching complexity on it, we can further improve
the performance of our approach.

References

1. Stefan Berchtold, Daniel A. Keim, Hans-Peter Kriegel, and Thomas Seidl. Indexing
the solution space: A new technique for nearest neighbor search in high-dimensional
space. TKDE, 12(1):45–57, 2000.

2. Hyung-Ju Cho and Chin-Wan Chung. An efficient and scalable approach to cnn
queries in a road network. In VLDB, 2005.

3. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms, 2nd Edition. McGraw Hill/MIT Press, 2001.

4. E. W. Dijkstra. A note on two problems in connection with graphs. Numeriche
Mathematik, 1:269–271, 1959.

5. Eric Hanson, Yannis Ioannidis, Timos Sellis, Leonard Shapiro, and Michael Stone-
braker. Heuristic search in data base systems. Expert Database Systems, 1986.

6. Christian S. Jensen, Jan Kolarvr, Torben Bach Pedersen, and Igor Timko. Nearest
neighbor queries in road networks. In 11th ACM International Symposium on
Advances in Geographic Information Systems (GIS’03), pages 1–8, 2003.

7. M. Kolahdouzan and C. Shahabi. Continuous k-nearest neighbor queries in spatial
network databases. In STDBM, 2004.

8. Mohammad Kolahdouzan and Cyrus Shahabi. Voronoi-based k nearest neighbor
search for spatial network databases. In VLDB Conference, pages 840–851, 2004.

9. D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in spatial
network databases. In VLDB Conference, pages 802–813, 2003.

10. Nick Roussopoulos, Stephen Kelley, and Frdric Vincent. Nearest neighbor queries.
In SIGMOD Conference, San Jose, California, pages 71–79, 1995.

11. C. K. Shahabi, M. R. Kolahdouzan, and M. Sharifzadeh. A road network embed-
ding technique for knearest neighbor search in moving object databases. In 10th
ACM International Symposium on Advances in Geographic Information Systems
(GIS’02), 2002.

12. S. Shekhar and D.R. Liu. Ccam: A connectivity-clustered access method for net-
works and network computations. IEEE Transactions on Knowledge and Data
Engineering, 1(9):102–119, 1997.

13. Roger Weber, Hans-Jorg Schek, and Stephen Blott. A quantitative analysis and
performance study for similarity-search methods in high-dimensional spaces. In
Proceedings of the 24rd International Conference on Very Large Data Bases, pages
194–205, 1998.

14. J. Xu, X. Tang, and D. L. Lee. Performance analysis of location-dependent cache
invalidation schemes for mobile environments. IEEE Transactions on Knowledge
and Data Engineering, 15(2):474–488, 2003.

15. Cui Yu, Beng Chin Ooi, Kian-Lee Tan, and H. V. Jagadish. Indexing the distance:
An efficient method to knn processing. In VLDB Conference, Roma, pages 421–430,
2001.

	Introduction
	Related Work
	Reduction on Road Networks
	Nearest Neighbor Search on SPH Graph
	NN Search on Tree
	SPIE: SPH with Triangular Inequality
	NN Search on SPIE and SPIE Graph
	nd Index Construction
	Handling Updates

	K-Nearest-Neighbor Search
	Cost Models
	Analytical Assumptions and Notations
	Cost Model for Network Reduction
	Cost Model for NN Search
	Cost Model for KNN Search

	Performance Evaluation
	Network Reduction
	nd Index Construction
	NN Search Result
	KNN Search Result

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

