
Distance Indexing on Road Networks

Haibo Hu Dik Lun Lee
Dept. of Computer Science and Engineering
Hong Kong Univ. of Science and Technology

Clear Water Bay, Hong Kong SAR, China

{haibo,dlee}@cse.ust.hk

Victor C. S. Lee
Department of Computer Science

City University of Hong Kong
Kowloon Tong, Hong Kong SAR, China

csvlee@cityu.edu.hk

ABSTRACT
The processing of kNN and continuous kNN queries on spa-
t ial n etwork d at ab ases (S N D B) h as b een int en sively st u d ied
recently. However, there is a lack of systematic study on the
computation of network distances, which is the most funda-
mental difference between a road network and a Euclidean
space. Since the online Dijkstra’s algorithm has been shown
to be efficient only for short distances, we propose an effi-
cient index, called distance signature, for distance computa-
tion and query processing over long distances. Distance sig-
nature discretizes the distances between objects and network
nodes into categories and then encodes these categories. To
minimize the storage and search costs, we present the opti-
mal category partition, and the encoding and compression
algorithms for the signatures, based on a simplified net-
work topology. By mathematical analysis and experimen-
tal study, we showed that the signature index is efficient
and robust for various data distributions, query workloads,
parameter settings and network updates.

1. INTRODUCTION
Spatial database has been intensively studied in the past
decade, spanning various fields such as indexing, query op-
timization, and approximation. Recently, the research fo-
cus has been extended to spatial network databases (SNDB)
where objects are restricted to move on predefined roads [11,
6, 10, 8]. I n S N D B, road s are u su ally mo d eled as a simp le
u n d irect ed grap h G (< V , E >) , wh ere a vert ex (nod e) of
G denotes a road junction, an edge denotes a road segment,
and the edge weight denotes the distance along the road.
The dataset in an SNDB is a set of objects (e.g., hospitals,
restaurants) distributed on the road network. Although in
reality the objects may lie on the edges (i.e, the roads) or on
the nodes (i.e., the road junctions), we consider in this pa-
per only the case where objects are distributed on the nodes.
This is because the distance to a point on a road segment
is simply the distance to one of the nodes adjacent to the
segment plus the road distance from the node to the point.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

A s su ch , t h e two cases make lit t le d iff eren ce for d ist an ce
measurement.

Although query processing (in particular the kNN and con-
tinuous kNN queries) on SNDB has been intensively inves-
tigated [11, 6, 10, 8, 5], no existing work has systemati-
cally studied the problem of network distance computation,
which is the most fundamental problem that differentiates
a road network from a Euclidean space. Whereas the dis-
tance in a Euclidean space depends solely on the relative
positions of the two points, the distance on the road net-
work depends not only on the relative positions but on the
road segments between the two points. When the exact net-
work distance is needed, many works rely on the Dijkstra’s
algorithm [3], which has been shown to be efficient only for
short distances. Although specially-designed precomputed
data structures for speeding up query processing have been
proposed (e.g., the Network Voronoi Diagram (NV D) [8]
and the precomputed NN list of condensed nodes [1] for
k N N q u eries) , t h ey d o n ot su p p ort d ist an ce comp u t at ion or
q u ery ty p es ot h er t h an wh at t h ey are b u ilt for. A s an ex -
treme example, since the NN list does not store the path to
t h e N N ob ject s, it d o es n ot even su p p ort k N N q u eries wit h
path information returned. Furthermore, since the cost of
the Dijkstra’s algorithm depends on the distance, not on the
number of input objects whose distances are to be computed,
object pruning during query processing is not helpful at all
if it fails to reduce the distance to be computed by the Di-
jkstra’s algorithm in the refinement step. For example, sup-
pose that a range query needs to return all objects within
1 kilometer and 10 objects are about this distance. Even
if some specialized index manages to prune (confirm) 9 of
them as non-results (results), to compute the exact distance
for the last object in the refinement step costs as much as it
does to compute the exact distances of all the 10 objects.

To remove the limitation on the application of these data
structures to only specific query types, this paper aims to
develop a general-purpose index to support a broader set of
queries, which may be considered a counterpart of R-tree
in SNDB. More specifically, we expect the index to have
the following advantages: (1) it supports efficient distance
computation between nodes and objects; (2) it accelerates
the processing of common types of queries; (3) it incurs rea-
sonable storage overhead; (4) the index construction and
maintenance are efficient; and (5) it works with other query
optimization techniques. It is noteworthy that this general-
purpose index is targeted at non-dense datasets. As for

894

dense datasets, since most spatial queries are interested in
local areas, the Dijkstra’s algorithm is efficient enough for
distance computation and the queries.

Based on these criteria, we have devised the distance sig-
nature, which is the road network equivalence of a coordi-
nate in the Euclidean space. On each node, the signature
stores the distance information of all objects. More specif-
ically, the distance spectrum is partitioned into a sequence
of uneven categories with distant categories spanning wider
ranges. For example, the ranges of the categories may in-
crease exponentially, i.e., a category spans a range that is
some c times wider than the range of the category that is
prior to it in the sequence. Thus, the distance information
is a categorical value. In this way, the signature stores much
coarser distance information for remote objects than close
objects, so that the processing of spatial queries can be ac-
celerated because most of them are interested in local areas.
With additional backtracking links, the signature can sup-
port both exact and approximate distance computation at
low cost. As for query processing, the signature is efficient
in pruning objects during the search or retrieval of the ini-
tial results. Furthermore, it is also useful in the refinement
step where exact distance retrieval or comparison must be
performed. To address the storage and construction costs,
which may appear to be high at first glance, we propose op-
timal algorithms for both category encoding and signature
compression so that the cost of signature index is no more
than the existing specialized index structures. As for the
update cost, since distant objects are coarsely represented,
changes on local edges or nodes have little impacts on them.
In other words, the impact of updates on the index is limited
to a small scope. As for index transparency, we designed the
index schema and separated it from the adjacency list of the
road network. This way, the index not only is transparent to
other query optimization techniques but can work together
with them to further boost the search performance.

The rest of the paper is organized as follows. Section 2
reviews existing work on road networks, especially in the
field of query processing and indexing. Section 3 introduces
the signature index, storage schema, and the basic opera-
tions such as distance retrieval and comparison. Section 4
presents and generalizes the query processing algorithms for
common types of spatial queries. Section 5 proposes the
encoding, compression, and update algorithms, and in par-
ticular, it shows the optimal signature for a simplified grid
topology. The experimental results are shown and analyzed
in Section 6, followed by the conclusion.

2. RELATED WORK
Processing spatial queries on road network is an emerging re-
search topic in recent years [11, 6, 10, 8, 7, 1, 5, 9]. The mod-
eling of a spatial road network is the fundamental problem
in SNDB. Besides the conventional approach which models
the network as a directed or undirected weighted graph, Pa-
padias et al. incorporated the Euclidean space into the road
network and applied traditional spatial access methods to
speed up query processing [10]. Assuming that Euclidean
distance is the lower bound of network distance, they pro-
posed incremental Euclidean restriction (IER) to first pro-
cess a query in the Euclidean space and obtain the results
as candidates, and then compute network distances of these

candidates for the actual results. However, IER cannot be
applied to road networks where the lower bound assumption
does not hold, e.g., the network whose edge weights are the
time cost for transportation. So they proposed an alterna-
tive approach incremental network expansion (INE), which
essentially expands the network from the query point.

The network expansion is a common search paradigm, which
gradually expands the search from the query point through
the edges and reports the accessed object during the ex-
pansion. In order to avoid re-expanding the same node,
this approach usually employs a single-source shortest path
(SSSP) algorithm. The most well known SSSP algorithm
is the Dijkstra’s algorithm [3]. In the Dijkstra’s algorithm,
a priority queue stores the current shortest paths (SPs) of
all the nodes whose SPs are yet to be finalized. The algo-
rithm repeatedly chooses the node with the shortest SP in
the queue, finalizes it, and updates any SP in the queue that
is affected by this SP. Obviously, if the network expansion
always chooses the same node as the the Dijkstra’s algo-
rithm does to expand, no re-expansion will occur. Besides
the Dijkstra algorithm, A∗ algorithm with various expansion
heuristics [4] was also employed to choose the next appropri-
ate node to expand. The network expansion paradigm has
been employed by many research projects for query pro-
cessing on SNDB. For example, Jensen et al. proposed a
general spatio-temporal framework for NN queries on road
networks with both graph representation and detailed search
algorithms [6]. To compute network distances, they adapted
the Dijkstra’s algorithm for online evaluation of the shortest
path.

Another commonly-used search paradigm is solution-
indexing, which precomputes and stores the solutions to the
queries. Kolahdouzan et al. proposed a solution-based ap-
proach for kNN queries in SNDB. As they were inspired by
the Voronoi Diagram in vector spaces, they called it Voronoi
Network Nearest Neighbor (V N3) [8]. The Network Voronoi
Diagram (NVD) is computed and each Voronoi cell is ap-
proximated by a polygon called network Voronoi polygon
(NVP). By indexing all NVP’s with an R-tree, searching
for the first nearest neighbor is reduced to a point location
problem. To answer kNN queries, they proved that the kth
NN must be adjacent to some ith (i < k) NN in NVD, which
limits the search area. For distance computation, the dis-
tances between border nodes of adjacent NVP’s, and even
the distances between border nodes and inner nodes in each
NVP, are computed and stored. Using these indexes and
distances, they showed that V N3 outperforms INE during
the search by up to an order of magnitude. However, the
performance of V N3 depends on the density and distribu-
tion of the dataset: as the dataset gets sparser, the size
of each NVP’s gets larger, which dramatically increases the
size of border-to-border and border-to-inner distances. As
such, sparse datasets cause high precomputation overhead
and poor search performance. Given that kNN search by
network expansion on dense datasets is efficient, V N3 is
only suitable for a small range of datasets.

There are other kNN search algorithms that aim to trans-
form a road network into simpler forms. Shahabi et al. ap-
plied graph embedding techniques and turned a road net-
work to a high-dimensional Euclidean space so that tradi-

895

tional kNN search algorithms can be applied [11]. They
showed that KNN in the embedding space is a good ap-
proximation of the KNN in the road network. However,
this technique involves high-dimensional (40-256) spatial in-
dexes. Furthermore, the query result is approximate and the
precision depends on the data density and distribution. We
also proposed a network reduction approach that reduces a
road network to a set of interconnected trees (or more ex-
actly, trees with edges between siblings) [5]. An nd index
is built on each tree to speed up its own kNN search. This
approach was shown to outperform V N3 for medium and
dense datasets.

Continuous nearest neighbor (CNN) query was also studied
recently. It returns both the kNNs and the valid scopes of
the results along a path. In other words, CNN query re-
quires the determination of the positions where the kNNs
change. A naive solution is to evaluate a kNN query on
each node of the path. Kolahdouzan and Shahabi proposed
the Upper Bound Algorithm (UBA) to reduce the number
of kNN evaluations by allowing a kNN result to be valid
for a distance range [7]. Cho and Chung further proposed
a unique continuous search algorithm (UNICONS) to im-
prove the search performance [1]. UNICONS first divides
the path into sub-paths by the intersection nodes. For each
sub-path, it evaluates two kNN queries at the starting and
ending nodes, respectively. The kNNs for this sub-path are
thus the union of two kNN sets and the objects along this
sub-path. An online algorithm is then used to find the split
points on this sub-path where the kNNs change. To speed up
conventional kNN evaluation, they also proposed a solution-
based index called NN lists which precomputes and stores
the kNNs for some condensed nodes, i.e., nodes with large
degrees.

3. DISTANCE SIGNATURE
Existing solution-based indexes suffer from poor generality
and insufficient support for distance computation. In this
section, we propose distance signature as an efficient alterna-
tive for distance computation and query processing on road
networks. The basic idea is to maintain the approximate
network distances between the nodes and the objects. As
in other database approaches, these approximate values can
be used to prune unqualified objects during query execu-
tion. Furthermore, in order to facilitate the refinement step
of query processing, the signatures also provide efficient ac-
cess to the exact distance values. The rest of this section
introduces the distance signature, its storage schema, and
basic operations on the signatures.

3.1 Distance Signature and Storage Schema
At each node n, the distance signature stores the approxi-
mate distance information of each data object. The infor-
mation is in the form of a categorical value based on the
exact distance. For example, if the whole distance spectrum
is partitioned into four categories: 0–100 meters, 100–400
meters, 400–900 meters, and beyond 900 meters, and object
a and b, respectively, are 75 and 475 meters away from n,
then a is assigned to category 0, and b is assigned to category
2. Obviously, the number of categories used to partition the
spectrum and the partition method greatly affect the perfor-
mance of object searching and storage cost. We will derive
the optimal category partitioning scheme in Section 5.1.

33

5

6

8
1264

0 0 2
1 2

0
1

2

0 104 16

n1

n2

n3
n4

n5 n6

n7

s(n2)

n3 n6

6

1 0 1
0 0 2

adjacency list

s(n) n1 6 n3 4 n5 5 null

s(n) n3 5 n5 15 n6 8 null

distance category

s(n2).link

n2

5

s(n4)
s(n4).link

3

node object

Figure 3.1: An Example of Distance Signature. Distances
are partitioned into 4 categories. Each signature is com-
posed of s[n2], s[n3], s[n6], in this order.

The whole set of categorical values for a single node forms a
sequence, which is called a distance signature, and is denoted
by s(n). Each categorical value of an object is called a
component of s(n), and is denoted by s(n)[i] (or s[i] if node
n is clear in the context). A signature is comparable to
a coordinate in the multi-dimensional Euclidean space in
that both can be used for locating the nodes’ positions and
computing distances.

In addition, to provide efficient access to the exact distance
from node n to object i, the component of s[i] also keeps a
link to designate the next node from n along the shortest
path to i. The link is denoted by the next node’s position
index in n’s adjacency list, and is called the backtracking
link of s[i] (denoted by s[i].link). Figure 3.1 illustrates an
example of distance signature on a small road network with
7 nodes and 3 objects.

Let |s[i]| denote the size of the categorical value, |s[i].link|
denote the size of the link, and let D denote the cardinality
of the dataset. Then the storage requirement for distance
signature of each node is

∑D

i=1
|s[i]| + |s[i].link|. At first

sight, the storage is no less than that of the existing solution-
based indexes. However, it is in general lower because of the
following two reasons.

• Since the dataset is not dense, D is moderate. In ad-
dition, a fine partition of distance categories does not
require a large |s[i]| — 5 bits is enough for 32 cate-
gories. Likewise, |s[i].link| is also small, because the
degrees of the nodes on a road network are normally
small (e.g., a intersection of two roads has a degree of
4).

• Spatial queries, whether in Euclidean spaces or on road
networks, are mostly interested in the neighboring ar-
eas around the queries. The farther the object is from
the query, the less likely that it concerns the query.
As such, we can further reduce the size of the sig-
natures by applying variable-length encoding scheme
to the categories and compression scheme to the sig-
natures. As shown in Section 5.3, these optimizations

896

effectively reduce the storage overhead while maintain-
ing the effectiveness of the signatures.

As for storage schema, the distance signature can either
be merged with the adjacency list, or stored separately as
shown in Figure 3.1. As we will see in Section 3.2, since the
signature is usually accessed together with the adjacency
list, it is preferable to merge the signature with the adja-
cency list. However, if the adjacency list alone is accessed
more frequently (i.e., the queries are not as many as other
road network operations), a separate storage is preferred.
In this case, we apply the same greedy approach as in [5]
to group the signatures for paging. Moreover, in order for
the signature to be randomly accessible, a link physically
pointing to the signature is added to the adjacency list (see
Figure 3.1).

3.2 Basic Operations on Signature
Based on the signature, we define the following operations
on the distances: retrieval, comparison, and sorting. De-
pending on whether only the signature of the node is used,
these operations can be either approximate or exact opera-
tions.

3.2.1 Distance retrieval
Distance retrieval is to obtain the distance from a node n
to an object a, denoted by d(n, a). Thanks to the distance
signature, the exact value of d(n, a) can be gradually ap-
proached and finally retrieved by recursively following the
backtracking link (s[a].link) until it reaches a. Approximate
distance retrieval, on the other hand, returns the distance
in the form of a range. Denoted by d̃(n, a, ∆) (where ∆ is
an input distance range), this operation returns a distance
range which comprises d(n, a) and does not partially inter-
sect with ∆ (however, it may be fully contained in ∆). The
algorithm for approximate retrieval is the same as exact re-
trieval, except that it terminates once the distance range
does not partially intersect with ∆. The approximate dis-
tance retrieval is useful when we need to get an unambigu-
ous comparison result on two distances (see Section 3.2.2).
Algorithm 1 lists the pseudo-code of this operation.

Algorithm 1 Exact and Approximate Distance Retrieval

Input: node n, object a, and approximate distance ∆ (op-
tional)

Output: result c as d(n, a) or d̃(n, a, ∆)
Procedure:

1: set c to node n’s signature component of object a, s(n)[a]
2: pointer p = s(n)[a].link
3: while p has not reached a do
4: c = distance category of s(p)[a] + d(n,p)
5: if ∆ exists and c does not partially intersect ∆ then
6: return c
7: p = s(p)[a].link

3.2.2 Distance comparison
Distance comparison is to compare the distances from a node
n to two objects a and b. This is the atomic operation
for distance sorting (see Section 3.2.3) and kNN search (see
Section 4.2).

The exact comparison is based on distance retrieval in Sec-
tion 3.2.1. Let d̃(a) and d̃(b) denote the current approx-

11

114

n2

n3
possible position for n4

n6

p1

p2

Figure 3.2: An Example of Approximate Distance Compare.
n4 is the node, n2, n6 are the objects, and n3 is the observer.

imate distances and initially let d̃(a) = s[a] and d̃(b) =
s[b]. Then the comparison algorithm recursively retrieves

a finer approximate distance for d̃(a) or d̃(b) until there is
no ambiguity between them. More specifically, it retrieves
d̃(a) = d̃(n, a, d̃(b)), then d̃(b) = d̃(n, b, d̃(a)), and then all
over again. In essence, this algorithm backtracks the short-
est path from n to a and b alternately. However, it does not
switch a, b at each step of the backtracking, because both the
signatures and the adjacency lists are stored in pages, and it
is I/O efficient to backtrack a or b in a batch. Algorithm 2
shows the pseudo-code for this operation.

Algorithm 2 Exact Distance Comparison

Input: node n, object a, and b
Output: comparison result “>”, “<”, or “=”
Procedure:

1: if s[a] <> s[b] then
2: compare s[a] and s[b] and return

3: set d̃(a) = s[a], d̃(b) = s[b]

4: while d̃(a) and d̃(b) are ambiguous do

5: let d̃(a) = d̃(n, a, d̃(b)) or alternately

6: compare d̃(a) and d̃(b) and return

In order to reduce accesses to adjacency lists and distance
signatures, we also devise an approximate comparison algo-
rithm, which is based on signature s(n) only. Since only
an approximate result is needed and only s(n) is available,
we embed the nodes a, b, and n in a 2D Euclidean space.
Figure 3.2 shows an example of approximate comparison for
the road network in Figure 3.1, where d(n4, n2) is compared
with d(n4, n6). Our idea behind the approximate compar-
ison is to let another object c (n3 in this example), called
the observer, “search for” node n (n4 in this example) in the
embedded space. More specifically, the observer makes a de-
cision on which side of the perpendicular bisector of n2n6

(p1p2 in this example) n is located at.

In order to make a quick decision, the approximate com-
parison is based on a simple heuristic, i.e., “if n4 is located
exactly on the perpendicular bisector (and thus d(n4, n2) =
d(n4, n6)), is it still possible for n3 to find n4 within the
distance range s(n4)[n3]?” More specifically, if all possible
locations for n4 on p1p2 make d(n4, n3) smaller than the
lower bound of s(n4)[n3], then according to Figure 3.2, n4

can never be located on p1p2 and the search should move to-

897

wards n2, i.e., d(n4, n2) < d(n4, n6); likewise, if all possible
locations on p1p2 for n4 makes d(n4, n3) greater than the up-
per bound of s(n4)[n3], then the search for n4 should move
towards n6, i.e., d(n4, n2) > d(n4, n6); otherwise, n3 cannot
make a decision. The possible locations of n4 on p1p2 are the
segment(s) where distance ranges s(n4)[n2] and s(n4)[n6]
still hold in the embedded space; since s(n4)[n2] = s(n4)[n6],
the possible locations are two symmetric line segments mir-
rored by n2n6. In Figure 3.2, since two segments share a
single end, they are merged as p1p2. Since d(n4, n3) in-
creases/decreases monotonously on the line segments, to
check all possible locations on p1p2 is equivalent to checking
the end points only, and there are four end points at most.

A single observer may fail to make a decision. As such,
the algorithm chooses several observers and each of them
votes for the final decision. To choose the observers, we
select those objects that are closer to n than a and b in the
signature. This is based on the fact that a closer object has a
more accurate distance range and less distortion during the
embedding. The final comparison result is then the simple
majority of the votes. Algorithm 3 lists the pseudo-code of
this algorithm.

Algorithm 3 Approximate Distance Comparison

Input: node n, object a, and b
Output: comparison result “>”, “<”, or “=”
Procedure:

1: if s[a] <> s[b] then
2: compare s[a] and s[b] and return
3: for each object i that s[i] < s[a] do
4: vote for a or b
5: count votes and return

Approximate distance comparison can be used for getting
the initial result of distance sorting. It is also noteworthy
that the algorithm requires the distances between two ob-
jects during the embedding. However, this additional stor-
age is not costly, since the cardinality of the dataset is not
large and those distances that fall in the last distance cate-
gory do not need to be stored (since these objects are never
used as the observer for one another). In addition, to elim-
inate the I/O cost for these frequently accessed distances,
they are stored in memory as a table.

3.2.3 Distance Sorting
Distance sorting is to impose an ordering on a set of objects
O = {o1, o2, · · · , om} based on their distances to a node n.
It is the basic operation for kNN search.

Distance sorting consists of two steps, initial sorting and
refinement. The initial sorting quickly obtains an approx-
imate order based on the approximate distance compari-
son in Section 3.2.2. To apply the approximate comparison,
we can use any existing comparison-based sorting algorithm
such as fast sort. The refinement step confirms the initial
order by exactly comparing any two consecutive distances,
starting from the beginning of the order. If by comparison,
d(n, oi) > d(n, oi+1), i.e., the exact comparison result con-
tradicts the initial approximate result, oi and oi+1 will be
switched. Like the bubble sort algorithm, the newly switched
upfront object (i.e., oi+1) must compare with the object im-
mediately in front of it (i.e., oi−1) to see if the switch should

be further propagated upfront. Algorithm 4 lists the pseudo-
code for the sorting algorithm.

Algorithm 4 Distance Sorting

Input: node n, object set O = {o1, o2, · · · , om}
Operator: sort(n, O)
Output: the sorted object set O
Procedure:

1: fast sort O by approximate distance comparison
2: for each i from 1 to m − 1 do
3: if d(n, oi) > d(n, oi+1) then
4: switch oi and oi+1

5: i = i − 1

4. QUERY PROCESSING ON DISTANCE
SIGNATURES

Distance signature is superior to the existing indexes in
terms of the diversity of the kinds of queries supported.
Since it indexes the underlying distances, rather than the
solution for a particular type of queries, it can be applied
to virtually any queries relating to distances. In this sec-
tion, we present the algorithms to process common spatial
queries based on the distance signatures. We discuss range
and kNN queries, and generalize the processing paradigm to
other query types such as aggregation queries and network
joins.

4.1 Range Query Processing
To process a range query on node n with distance threshold
ǫ, the signature of n is first accessed. For each object o
in the signature, if the upper bound of distance category
s(n)[o] (denoted by s(n)[o].ub) is smaller than ǫ, the object
clearly belongs to the result. Likewise, if the lower bound of
s(n)[o] (denoted by s(n)[o].lb) exceeds ǫ, the object clearly
does not belong to the result. However, if s(n)[o] covers ǫ,
a more accurate approximate distance is needed. As such,
the approximate distance retrieval is invoked with parameter
∆ set to [ǫ, ǫ]. Algorithm 5 shows the pseudo-code of this
procedure.

Algorithm 5 Range Query Processing Algorithm

Input: query node n and distance threshold ǫ
Output: the result set C
Procedure:

1: for each object o do
2: if ǫ > s(n)[o].ub then
3: insert o into C
4: else if ǫ < s(n)[o].lb then
5: continue;
6: else
7: d̃ = d̃(n, o, [ǫ, ǫ])

8: if ǫ > d̃.ub then
9: insert o into C

The range query processing on distance signatures is more
efficient than the network expansion method since: (1) the
expansion is unguided, whereas the backtracking in approx-
imate distance retrieval is guided; (2) the search terminates
as soon as there is no ambiguity on the results.

4.2 K Nearest Neighbor Query
In this paper, we differentiate three types of kNN queries
with regard to whether the distance information of the re-
sults needs to be returned.

898

• Type 1: the exact distance of every kNN to the query
node n must be returned.

• Type 2: the order of the distances of kNN objects
must be reserved.

• Type 3: no distance or ordering information needs to
be returned.

Our general kNN algorithm first solves a kNN query as a
type 3 query, and then refines the results for type 2 and
type 1. At first, the algorithm reads the signature of node
n, which gives a rough kNN ordering. Let Bi be the set of
objects in category i, and all objects in B1, B2, · · · , and
Bm−1 can be confirmed as results, where

∑m−1

i=1
|Bi| ≤ k <

∑m

i=1
|Bi|. Then the algorithm sorts the objects in Bm and

chooses the top k −
∑m−1

i=1
|Bi| objects as results. Now that

the query is completed as a type 3 query, if the query is
type 2, the algorithm continues to sort the objects in each
category Bi (1 ≤ i < m). If the query is type 1, the algo-
rithm first retrieves the exact distances of the results and
then sorts them. Algorithm 6 lists the pseudo-code of kNN
algorithm.

Algorithm 6 kNN Query Processing Algorithm

Input: query node n and k
Output: the result set C
Procedure:

1: divide objects into Bi by s(n)

2: m = minj

∑j

i=0
|Bi| > k

3: sort(n, Bm)

4: insert the first k −
∑m−1

i=1
|Bi| objects in Bm into C

5: discard the rest objects in Bm and all Bi (i > m)
6: if type 2 then
7: for each 1 ≤ i < m do
8: sort(n, Bi)
9: if type 1 then

10: for each 1 ≤ i < m do
11: for each o ∈ Bi do
12: get d(n, o)
13: sort Bi based on d(n, o)
14: C = ∪m

i=1Bi

4.3 Generalization to Other Queries
As shown in the algorithms above, the advantage of distance
signature is that the search algorithm can control the accu-
racy of distance retrieval as it needs. As such, the paradigm
to process a general query on road network is: (1) to read
the signature and find all results and candidates; and (2)
for each candidate, to gradually retrieve a more accurate
distance until the candidate is confirmed to be or not to be
a result. This paradigm can be directly applied to queries
such as aggregation queries which return the aggregate val-
ues, instead of individual objects for range queries. The
same paradigm can also be extended to network joins which
return pairs of objects from two datasets that satisfy cer-
tain spatial relations at a given node. For example, ǫ-join
returns pairs of objects whose network distances are within
ǫ. This query can be processed by joining the two signatures
of the two datasets and gradually retrieving more accurate
distances for candidate pairs until they are confirmed as re-
sults or non-results.

5. SIGNATURE CONSTRUCTION AND
MAINTENANCE

In this section, we propose the construction and mainte-
nance algorithms for distance signatures. More specifically,
we discuss: (1) how the distance spectrum is partitioned into
categories, (2) how the categories are encoded, (3) how the
signatures are compressed, and (4) how they are updated.

5.1 Distance Spectrum Partition
A good partition of distance spectrum must consider the
following factors:

• Dataset distribution. The distribution, especially
the density of the dataset, determines the object dis-
tribution in the distance spectrum. Obviously, a dense
dataset requires more categories than a sparse dataset
does.

• Query load. For example, the distance threshold ǫ
of a range query and the k of a kNN query affect how
precisely the distance spectrum should be partitioned.
In order to quantify the query load, we define “spread-
ing” (denoted by sp) as the distance threshold of those
objects that are interesting to the query. For range
queries, sp = ǫ, and for type 3 kNN queries, sp is the
distance of the k+1th nearest neighbor. Obviously, the
distribution of sp should affect the partition of distance
spectrum so that the signatures can achieve maximum
performance.

• Storage availability. Accurate partition requires more
storage to encode the categories than coarse partition.
As such, the availability of disk storage is also a con-
cern.

In what follows, we derive the optimal categories analytically
under some simplifications:

• The road network is a uniform grid. More specifically,
each node connects to 4 nodes and all edge weights
are 1. As for the dataset, the objects are uniformly
distributed with density p.

• The spreadings (sp) of the queries are uniformly dis-
tributed over distance range [0, SP].

• Disk storage is unlimited.

Since most queries are interested in local areas only, we pro-
pose to partition the distance spectrum exponentially, i.e.,
at distance T , cT , c2T , · · · , where c, T are both constants.
We will show later that exponential partitioning has some
additional benefits in category encoding and compression.
Nonetheless, we are yet to determine the exponent c and
the distance T of the first partition. The objective is to re-
duce Cost (in terms of number of bits), i.e., the average I/O
accesses to the signatures during query processing1.

Let cost(i) denote the I/O accesses for queries whose sp = i.
Then,

Cost = (SP)−1

SP
∑

i=0

cost(i) (1)

1Since we assume that the road network is a uniform grid,
the size of the adjacency list is far smaller than the signature
and hence it is omitted.

899

n

O(2)

Figure 5.3: Oi (i = 2) in Uniform Grid. It comprises both
n and all solid dots.

Let Bi denote the category that i belongs to, and ub, lb de-
note the upper and lower bound of the distance category.

Then, Bi.ub = c⌈logciT−1⌉T , Bi.lb = c⌊logciT−1⌋T . Accord-
ing to the query processing algorithm, objects in Bi are the
objects and the only objects whose distances need to be com-
pared with i. More specifically, for each object in Bi whose
actual distance to n is j, we need to visit j−Bi.ub number of
nodes for their signatures, whose sizes are |D|loglogcSP ·T−1

(excluding the bits for backtracking links). As such,

cost(i) = |D|loglogcSP · T−1·

Bi.ub
∑

j=Bi.lb+1

(j − Bi.lb)(O(j) − O(j − 1)), (2)

where O(i) denote the number of objects within i distance
away from n. As can be observed from Equation 2, for any
i1, i2, if Bi1 = Bi2 , then cost(i1) = cost(i2). As such, we
can rewrite Equation 1 into

Cost =

logcSP ·T−1

∑

k=0

|D|ckT (c − 1)loglogcSP · T−1·

ckT
∑

j=ck−1T

(j − ck−1T)(O(j) − O(j − 1)) (3)

To solve Equation 3, we need to obtain O(i). As the objects
are uniformly distributed with probability p, the problem is
reduced to the number of nodes within radius i, which is
2i2 + i from Figure 5.3. Replacing O(i) with p(2i2 + i), we
rewrite Equation 3 as

Cost ≈ c4logcSP ·T−1

cpT 5loglogcSP · T−1

= KcT loglogcSP · T−1, (4)

where K is a constant. To minimize Cost, we get the partial
derivative of c and T , and let them be zero. As such, we ob-

tain the optimal c = e (the Euler number) and T =
√

SP
e

.

An interesting observation from the result is that, the opti-
mal c and T are independent of p, the density of the dataset
(c is even a constant). Although the result is derived un-
der the grid and uniform distribution assumptions, these
optimal values can serve as guiding values for general road
networks.

5.2 Signature Construction and Encoding
To construct the signature for a node n, the distance from n
to any object must be obtained. However, instead of build-
ing the shortest path spanning tree from n, which addition-
ally computes the distance from n to any node, we build
the shortest path spanning tree for every object o by the
Dijkstra’s algorithm, so that all the distances computed are
necessary for the signatures.

The algorithm is initialized by allocating (logM + logR) · |D|
bits for each node’s signature, where M is the number of
categories and R is the maximum degree of a node. When
the spanning tree of o extends to node n by the Dijkstra’s
algorithm, d(n, o) is computed and categorized to fill s(n)[o]
in the signature.

The original signature is quite large, since it uses fixed-
length encoding on the category id. However, as is observed
from Section 5.1, the number of objects in each category
vary greatly: according to the grid and uniform distribution
assumption, at each distance i, there are (4i−1)p number of
objects. With exponential partition, far more objects are in
the latter categories which have larger distance ranges. As
such, we devise a variable-length encoding scheme, called re-
verse zero padding, for the categories. The scheme is based
on Huffman coding[2], where the last category is encoded
as bit “1”, and the second last category is encoded as “01”,
and in general category Bi is encoded by padding a “0” on
category Bi+1. The following theorem proves that, if c > 3

2
,

this scheme is optimal in terms of the average code length.

Theorem 5.1. Under exponential partition (c > 3/2) and
uniform dataset distribution assumptions, reverse zero en-
coding has the minimal average code length.

Proof. From the scheme, reverse zero padding follows
Huffman coding’s paradigm and recursively merges the first
two categories. Since Huffman coding has been proven to be
optimal in terms of the average code length, we only need
to prove that all merges satisfy the criterion in Huffman
coding, that is, the two merged categories have the lowest
access probabilities (i.e., the fewest objects). This is equiv-
alent to proving that the number of objects in a category
is larger than the sum of all categories prior to it. In other
words, for any category Bk, |Bk| >

∑k−1

j=0
|Bj |, or equiva-

lently, O(Bk.ub) > 2O(Bk.lb). Replace |Bk| with ckT and
O(i) with p(2i2 + i), the inequation is

2c2k−2T 2(c2 − 2) > ck−1T (2 − c) ⇒

2ck−1T (c2 − 2) > 2 − c (5)

900

As c > 1, the left hand side of the inequation increases
monotonously with k. Therefore, we only need to assure
that the inequation holds for k = 1. And since T ≥ 1,
the inequation is reduced to 2(c2 − 2) > 2 − c. Solve this
inequation and we get c > 3

2
.

We now estimate the average code length of the reverse zero
padding scheme. The total code length of all objects is,

M−1
∑

k=0

(O(Bk.ub) − O(Bk.lb))(M − k)

≈

M−1
∑

k=0

2pc2kT (M − k) ≈
2pc2MT 2

c2 − 1
(6)

Therefore, the average code length is,

2pc2MT 2

(c2 − 1)O(BM−1.lb)
≈

c2

c2 − 1
(7)

. It can be observed that the average code length is very
close to 1, especially when c is large. As for the optimal
case when c = e, the average code length is about 1.2.

5.3 Signature Compression
Another approach for reducing the size of the signature is
called compression. It is motivated by the observation that
in the signature of node n, many objects share the same
backtracking link; furthermore, once the signature of a single
object u is determined, the signature of another object v
which shares the same link may be obtained by adding up
the signatures of s(n)[u] and s(u)[v]. This is especially true
when u is much closer to n than v. Therefore, we can replace
s(n)[v] with a 1-bit flag to designate that s(n)[v] should be
computed by adding up s(n)[u] and s(u)[v]. This is a typical
method of “exchanging time for space”, and we apply it to
compress the signatures because:

• The node in a road network usually has few adjacent
nodes, so many objects share the same backtracking
link.

• The distance categories are exponentially partitioned,
so the signatures of many remote objects can be rep-
resented by adding up two signatures.

• Queries normally focus on local areas only, so distant
objects are not frequently accessed. As such, the de-
compression (i.e., retrieving s(n)[v] by adding up two
signatures) also occurs infrequently and incurs little
CPU overhead.

It is noteworthy that, as the signature index already stores
the distance of any two objects and caches it in memory for
approximate distance comparison (see Section 3.2.2), the
compression and decompression require no additional mem-
ory storage. Nonetheless, there are two tasks remaining,
namely, the selection of object u and the definition of the
“add-up” operation. For the former task, we choose to se-
lect the closest object (in terms of the distance categories),
resolving ties by their positions in the sequence of s(n). For
the latter task, since categories are partitioned exponen-
tially, the normal integer summation does not appropriately

represent the actual summation of distances. Therefore, we
define the summation of signatures as follows. If two signa-
tures are not equal, the summation is defined as the larger
of the two, because it is the dominant distance in the sum-
mation; if the two signatures are equal, the summation is
defined as their signatures incremented by 1. This is based
on the reasoning that, under the grid and uniform distri-
bution assumptions, the average distance of an object in a
category is larger than the medium of its upper and lower
bound, because the number of objects at distance i is pro-
portional to i. Based on this reasoning, the summation of
two objects in the same category is likely to exceed its upper
bound. The summation operation is summarized as follows:

Definition 5.1. For any objects u, v and node n, s(n)[u]+
s(u)[v] =

{

max(s(n)[u], s(u)[v]) if s(n)[u] 6= s(u)[v]
s(n)[u] + 1 if s(n)[u] = s(u)[v]

Algorithm 7 shows the pseudo-code for the compression al-
gorithm. It reads an incoming signature and finds out the
closest object for every backtracking link. Then it sequen-
tially reads the whole signature again and tests if the signa-
ture of any object can be compressed.

Algorithm 7 Signature Compression Algorithm

Input: the signature of node n, s(n)
Output: the compressed signature s′(n)
Procedure:

1: read s(n) to find the closest object for each backtracking
link

2: for each object v do
3: u is the closest object such that s[u].link = s[v].link
4: if s(n)[u] + s(u)[v] = s(n)[v] then
5: flag s(n)[v] as compressed

5.4 Signature Update
Distance signature is efficient in update, that is, a change
on the nodes or edges only causes a limited number of sig-
natures to be updated because: (1) distance categories are
exponentially partitioned, so a local change on the nodes or
edges is not likely to make a distant object change its cat-
egory, (2) the backtracking link only indexes the next node
in the shortest path, which is also less likely to be remotely
affected.

As node insertion/deletion can be reduced to edge(s) in-
sertion/deletion, we consider edge update only. The main
idea is to maintain the shortest path spanning trees of all
objects (the intermediate results during signature construc-
tion). Besides these spanning trees, we also need a reverse
index for each edge on the objects whose spanning trees
comprise this edge. This index is used to identify the span-
ning trees that are affected by edge removal or edge weight
increase.

5.4.1 Adding Edge/Decreasing Edge Weight
For the spanning tree from object o, let nodes a, b denote the
two nodes adjacent to this edge and d(o, a) > d(o, b). Then
b is tested to see if d(o, a) + w(a, b) > d(o, b) (w(a, b) is the

901

weight of this edge). If it is true, d(o, b) is updated and all
nodes i adjacent to b with d(o, i) > d(o, b) are tested if their
distances should also be updated, i.e., if d(o, b) + w(b, i) >
d(o, i). The update is thus propagated until there are no
more updates.

5.4.2 Removing Edge/Increasing Edge Weight
First of all, the reverse index of this edge is checked to get
the spanning trees that are affected. For any affected span-
ning tree from object o, let nodes a, b denote the two nodes
adjacent to this edge and d(o, a) > d(o, b). Then d(o, b) is re-
computed by considering all of its adjacent nodes (including
a). The update on d(o, b) is then propagated to the subtree
rooted from b in the spanning tree until there are no more
updates.

The aforementioned update algorithm is only on the span-
ning trees and reverse index. To update the signature of
each node n, the updates on n are aggregated and only the
changes on distance category or backtracking link are up-
dated in the signature.

6. PERFORMANCE EVALUATION
In this section, we present the experimental results on the
signature index. We used two road networks in the simula-
tion. The first one is synthetic for controlled experiments.
It was created by generating 183,231 planar points and con-
necting neighboring points by edges with random weights
between 1 and 10. The degrees of the nodes follow an expo-
nential distribution with mean set to 4 (i.e., the degree for
a two-road intersection). The second one is a real road net-
work obtained from Digital Chart of the World (DCW). It
contains 594,103 railroads or roads, and 430,274 junctions in
US, Canada, and Mexico. Similar to [10], we employed the
connectivity-clustered access method (CCAM) [12] to sort
and store the nodes, their adjacency lists, and the signa-
tures. The page size was set to 4K bytes. The testbed was
implemented in C++ on a Win32 platform with 2.4 GHz
Pentium 4 CPU and 512 MB RAM.

Since there is no existing work on a general-purpose index on
road networks, we compare the signature index and the as-
sociated query processing algorithms with two closest com-
petitors. The first is full indexing, which stores the exact
distances of all objects for each node. The second is the
Network Voronoi Diagram (NVD) used in the Voronoi-based
Network Nearest Neighbor (NV 3) algorithm [8], which is
known to be an efficient kNN algorithm for road networks.
Since NVD does not support range query [8], we design a
reasonable algorithm for it as follows: the network Voronoi
polygon (NVP) of query node n is obtained and the cor-
responding object is checked for its distance to n, which is
already stored in NVD. If it is a result, the search is then ex-
panded to all the adjacent NV P s until the distance exceeds
the threshold. Regarding the performance metrics for query
processing, we measured the CPU time and the number of
disk page accesses.

6.1 Index Construction and Maintenance
For each road network, we created four uniformly distributed
datasets with density p (the ratio of the number of the
objects to the number of the nodes) set to 0.0005, 0.001,

0.01, and 0.05, respectively, and one non-uniform dataset
that is composed of 100 clusters and p = 0.01 (denoted by
0.01(nu)). For the full indexing, the shortest path trees of
all objects were built and their distances to node n were
stored together in dedicated pages. For signature index, we
set c = e and T = 10, and the raw signatures were first
obtained when the shortest path trees were built, followed
by the encoding and compression processes. For NVD in-
dexing, we built the NVP R-tree, NVD’s, border-to-border
(Bor − Bor) distances, and object-to-border (OPC) dis-
tances. Figure 6.4 shows the index sizes and the clock time
for index construction on the synthetic road network with
various datasets2. In Figure 6.5(a), the size of signature in-
dex is almost the smallest except for p = 0.05. In particular,
the signature index is about 1/6 ∼ 1/7 the size of the full
index. Given that 4 bytes (an integer) are used for each ob-
ject in the full index and 3 bits are used for the backtracking
link in the signature index, we can infer that the signature
index only uses a little more than 1 bit on each distance cat-
egory. We also observe that the sizes of both full index and
signature index are proportional to the object density p. As
for the NVD index, the index size increases as p decreases,
because Bor −Bor and OPC distances, which increase sig-
nificantly as the Network Voronoi Polygon (NVP) expands,
account for most of the NVD index storage. As an extreme
example, the size of NVD index becomes forbiddingly high
for sparse datasets (p < 0.001). Another observation is that
while the full and signature indexes are not affected by the
dataset distribution, NVD index is sensitive to it. This is
because non-uniform datasets create more large NVPs which
dominate the index size. In Figure 6.5(b), the construction
time leads to similar observations, except that the signature
index costs a bit more time than the full index, as it needs
to encode the categories and compress the signatures be-
sides the construction of shortest path trees. Nonetheless,
it is still less costly than the NV D index for most of the
datasets. As such, we can conclude that the signature index
is efficient for medium or sparse datasets and robust with
various distributions.

To examine the effectiveness of the encoding and compres-
sion algorithms for signature index, we also measured the in-
termediate results before and after encoding. Table 1 shows
the results for all 5 datasets. It is observed that, in all these
datasets, the proportion of size reduced by the encoding al-
gorithm is almost a constant 0.74, which is equivalent to
reducing a category id from 3 bits to 1.4 bits. This result is
consistent with our analysis in Section 5.1 that optimal code
length is as short as 1.2 bits. Meanwhile, the effectiveness
of compression algorithm increases as density p increases,
because more objects in distant categories can now be rep-
resented by closer objects and hence compressed. From the
table, the average reduction ratio is 80%, which means that
70% of the objects are compressed, i.e., their category ids
are replaced by the 1-bit compressed flag.

6.2 Query Search Result
We created workloads of range queries and type 3 kNN
queries to compare the performance of the three indexes.
For each workload, we randomly created 500 ∼ 1000 queries

2Since the results on the real road network show a similar
trend as in the synthetic network, they are omitted for the
interest of space.

902

1

10

100

1000

10000

0.0005 0.001 0.01 0.01(nu) 0.05

In
de

x
S

iz
e

(M
B

)

Full NVD Signature

(a) Index Size

100

1000

10000

0.0005 0.001 0.01 0.01(nu) 0.05

C
lo

ck
 T

im
e

(s
ec

)

Full NVD Signature

(b) Construction Time

Figure 6.4: Comparison on Index Construction Cost

0.005 0.001 0.01 0.01(nu) 0.05
Raw 12.6 26.5 247 252 1259
Encoded 9.3 19.6 176 188 965
Ratio 74% 74% 71% 74% 76%
Compressed 8.4 15.8 141 141 728
Ratio 90% 80% 80% 75% 75%

Table 1: Encoding and Compression on Signatures

1

10

100

1000

1 2 3 4 1 2 3 4
logR (p=0.001) logR (p=0.001nu)

P
ag

e
A

cc
es

s

Full NVD Signature

(a) Page Accesses

0.01

0.1

1

10

100

1 2 3 4 1 2 3 4
logR (p=0.001) logR (p=0.001nu)

C
lo

ck
 T

im
e

(s
ec

)

Full NVD Signature

(b) Clock Time

Figure 6.5: Comparison on Range Search

(depending on the query processing time) and measured the
average performance.

The first set of experiments was based on the range query
workload. We set the range threshold R to 10, 100, 1000,
and 10000, and plotted the number of page accesses and
clock time. Since the five datasets show similar trend, Fig-
ure 6.5 only depicts the results for 0.01 and 0.01(nu). From
the figure, we can observe that: (1) as expected, the full in-
dex always achieves the best performance except for R = 10;
(2) both NVD and signature index are as efficient as the full
index for R = 10, 100, in particular, the signature index
outperforms full index for R = 10, because within short dis-
tances, the signatures of few nodes need to be accessed; (3)
NVD has a sharp increase when R increases from 100 to
1000 because this is the distance range when the NVP of
the query node is no longer sufficient to answer the query,
and the phenomenon is more prominent in the non-uniform
dataset; (4) the signature index has a similar trend as NVD,
but instead of increasing linearly as R increases, the perfor-
mance of signature index (especially the clock time) is sub-
linear to R and is still satisfactory (about 1 second) even
when R = 10000, thanks to the CPU-efficient guided back-
tracking.

The second set of experiments was based on the kNN query
workload, where k ranges from 1 to 50. We measured the
page accesses and clock time and plotted the results for
p = 0.01 dataset in Figure 6.6. We observe that: (1) sim-
ilar to the range query, the full index always achieves the

903

1

10

100

1 5 10 20 50K

P
ag

e
A

cc
es

s

Full NVD Signature

(a) Page Accesses

0.01

0.1

1

10

1 5 10 20 50K

C
lo

ck
 T

im
e

(s
ec

)

Full NVD Signature

(b) Clock Time

Figure 6.6: Comparison on kNN Search

best performance except for k = 1, and in addition, both
page accesses and clock time are not dependent on k3; (2)
NVD outperforms the other two indexes for k = 1, as the
NVP’s are indexed directly by the NVP R-tree; however,
as k increases, the performance degrades sharply because
the number of NVP’s needed to be searched increases dra-
matically; (3) compared with NVD index, signature index
achieves a moderate performance: both page accesses and
clock time increase for about 8 times when k increases from
1 to 50, compared to 50 and 170 times, respectively, for the
NVD index. The reason why the signature index can handle
large k is three-folded. First, distance categories can return
the top objects immediately, which account for a large por-
tion of the results. Second, guided backtracking eliminates
unnecessary network expansions. Third, the initial sorting
of the kNN algorithm helps to reduce the number of ex-
act distance comparison and hence the number of signature
accesses. Nonetheless, the CPU cost of the initial sorting
should not be neglected: as observed from Figure 6.6(b),
when k = 50 the clock time gap between the signature index
and NVD is not as prominent as the gap for page accesses.
Another source of CPU consumption is the decompression
of the signature. It is also noteworthy that the additional
memory cost for object distances (which is required for the
approximate distance comparison) is only 4.3MB, which is
about 5% that of the signature index and hence negligible.

6.3 Impacts of Parameters on Signature Index

3Actually, the clock time increases a bit as k increases from
1 to 50, since it takes CPU time to sort the objects.

5 10 15 20 25
2
3
4
5

200

300

400

C
lo

ck
 T

im
e(

m
s)

T

c

2 3 4 5

Figure 6.7: Impact of c, T on kNN Search

We also conducted experiments to measure the impacts of
the upper bound of the first category T and the exponent
c on the signature index. We set T = {5, 10, 15, 20, 25} and
c = {2, 3, 4, 5, 6}, and the p = 0.01 dataset was used to
build totally 25 signature indexes. These indexes were used
to process 5NN queries and the clock time was measured
and plotted in Figure 6.7. We observe that the performance
differences of all 25 indexes are not significant: all results are
between 200ms and 400ms. This shows that the signature
index is robust even if the two parameters are not prop-
erly chosen. The small difference gap is also due to the en-
coding and compression algorithms, which compensate over-
accurate partitions. The second observation is that, for any
T , the best result always appears at c = 3, which is consis-
tent with our analysis in Section 5.1 that the optimal c is
a constant (e) for uniform datasets and regular grids. The
third observation, on the contrary, is that for any c, the best
result does not appear at a fixed T : as c increases, the best
T decreases. This can also be interpreted by our analysis in
Section 5.1 that the best T occurs at

√

SP/c.

To summarize the results, the signature index exhibits the
following advantages: (1) it can handle common spatial
queries efficiently; (2) the performance is robust for a wide
range of query input, e.g., the threshold for range query and
the k for kNN query; (3) the construction time and storage
cost are reasonable for sparse and medium datasets; (4) the
performance is not heavily dependent on carefully chosen
parameters.

7. CONCLUSION AND FUTURE WORK
In this paper, we proposed an efficient index for distance
computation and query processing on spatial network data-
bases (SNDB). By discretizing the distances between ob-
jects and nodes into uneven categories, the signature index
keeps fine distance information for local objects and coarse
information for remote objects. To minimize the storage
and search cost, we studied the optimal category partition,
and encoding and compression algorithms for the signature
index, based on the uniform distribution and grid topology.
As the experimental results showed, the index is shown to
be efficient and robust for various data distributions, query
workloads, parameter settings, and network updates.

904

In future work, we plan to elaborate the signature compres-
sion algorithm to allow cross-node compression. Since the
signatures of nearby nodes are expected to be similar, the
compression can further reduce the storage and search over-
head, but possibly at the cost of a higher update overhead.
In addition, we also plan to remove the restrictions on uni-
form distribution and grid topology during the mathemati-
cal derivation, so that the optimal signature can be applied
to more realistic applications.

8. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers
for their insightful comments and helpful suggestions for our
preparation of this manuscript. This work is supported by
the Research Grants Council, Hong Kong SAR under grants
CITYU1204/03E and 616005.

9. REFERENCES
[1] Hyung-Ju Cho and Chin-Wan Chung. An efficient and

scalable approach to cnn queries in a road network. In
VLDB, 2005.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, 2nd Edition.
McGraw Hill/MIT Press, 2001.

[3] E. W. Dijkstra. A note on two problems in connection
with graphs. Numeriche Mathematik, 1:269–271, 1959.

[4] Eric Hanson, Yannis Ioannidis, Timos Sellis, Leonard
Shapiro, and Michael Stonebraker. Heuristic search in
data base systems. Expert Database Systems, 1986.

[5] H. Hu, D. Lee, and J. Xu. Fast nearest neighbor
search on road networks. In Proceedings of the 10th
International Conference on Extending Database
Technology (EDBT), pages 186–203, 2006.

[6] Christian S. Jensen, Jan Kolarvr, Torben Bach
Pedersen, and Igor Timko. Nearest neighbor queries in
road networks. In 11th ACM International Symposium
on Advances in Geographic Information Systems
(GIS’03), pages 1–8, 2003.

[7] M. Kolahdouzan and C. Shahabi. Continuous
k-nearest neighbor queries in spatial network
databases. In STDBM, 2004.

[8] Mohammad Kolahdouzan and Cyrus Shahabi.
Voronoi-based k nearest neighbor search for spatial
network databases. In VLDB Conference, pages
840–851, 2004.

[9] Anand Meka and Ambuj K. Singh. Distributed spatial
clustering in sensor networks. In Proceedings of the
10th International Conference on Extending Database
Technology (EDBT), page to appear, 2006.

[10] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao.
Query processing in spatial network databases. In
VLDB Conference, pages 802–813, 2003.

[11] C. K. Shahabi, M. R. Kolahdouzan, and
M. Sharifzadeh. A road network embedding technique
for knearest neighbor search in moving object
databases. In 10th ACM International Symposium on
Advances in Geographic Information Systems
(GIS’02), 2002.

[12] S. Shekhar and D.R. Liu. Ccam: A connectivity-
clustered access method for networks and network
computations. IEEE Transactions on Knowledge and
Data Engineering, 1(9):102–119, 1997.

905

