Complsl

Order of
Construction & Destruction

“*Has™ relationship

 When an object A has an object B as a data member, we
say that “A has-a B”.

classB{... };

class A
{
B my_D;
public:
// some public members or functions

J

e |tis easy to see which objects have other objects. All you
need to do is to look at the class definition.

Example: Order of Constructions

#include <iostream>
using namespace std,;

class Clock {

public:
Clock() { cout << "Constructor Clock" << endl; }
~Clock() { cout << "Destructor Clock" << endl; }

|8

class Postoffice {
Clock clock;

public:
Postoffice() { cout << "Constructor Postoffice" << endl; }
~Postoffice() { cout << "Destructor Postoffice" << endl; }

3

int main()

{
cout << "Beginning of main" << endl;
Postoffice x;
cout << "End of main" << endl;
return O;

}

Here's the output:

Beginning of main
Constructor Clock
Constructor Postoffice
End of main
Destructor Postoffice
Destructor Clock

Order of Constructions: Remarks

 When an object is constructed, all its data members are constructed
first.

 The order of destruction is the exact opposite of the order of
construction: the Clock constructor is called before the

Postoffice constructor; but the Clock destructor is called after
the Postoffice destructor.

» As always, construction of data member objects is done by calling
the appropriate constructors.
— If you do not do this explicitly, then the compiler will assume the default

constructors should be used. Make sure they exist! That is,
Postoffice::Postoffice() {}

IS equivalent to
Postoffice::Postoffice() : clock({}

— Or, you may control construction of data member objects by calling their
appropriate constructors using the member initialization list syntax.

Order of Constructions with Owned Objects

class Clock { Here is the output:
public:
Clock() { cout << "Constructor Clock" << endl; } Beginning of main
~Clock() { cout << "Destructor Clock" << endl; } Constructor Clock
: Constructor Postoffice
End of main

class Postoffice { Destructor Postoffice

Clock* clock;
public:
Postoffice() {
clock = new Clock;
cout << "Constructor Postoffice" << endl;
}

~Postoffice() {
cout << "Destructor Postoffice" << endl;

}
J

Order of Construction with Owned Objects: Remarks

What happened...?

 Now the Postoffice owns the Clock (since it creates it
dynamically)

« The Clock object is constructed in the Postoffice constructor,
but it is never destructed, since we have not explicitly called delete.

« Remember that objects on the heap are never destructed
automatically, so we have just created a memory leak!

 The lesson: When object A owns object B, A must be responsible
for B's destruction.

Order of Constructions with Owned Objects: Fix

class Clock { Here is the new output:
public:
Clock() { cout << "Constructor Clock" << endl; } Beginning of main
~Clock() { cout << "Destructor Clock" << endl; } Constructor Clock
: Constructor Postoffice
End of main

Destructor Postoffice

class Postoffice { Destructor Clock

Clock* clock;
public:
Postoffice() {
clock = new Clock;
cout << "Constructor Postoffice" << endl;
}

~Postoffice() {
cout << "Destructor Postoffice" << endl;

delete clock;

}
3

Order of Constructions w/ Multiple Objects

class Clock {

int HHMM;
public: Here is the output:
Clock() : HHMM(O) { cout << "Constructor Clock" << endl; }
Clock(int hhmm) : HHMM(hhmm) { Beginning of main
cout<<"Constructor Clock at "<< HHMM << endl; Constructor Clock
} Constructor Room

~Clock() { cout << "Destructor Clock at " << HHMM << endl; } Constructor Postoffice

b End of main
Destructor Postoffice
Destructor Room
Destructor Clock at O

class Room {

public:
Room() { cout << "Constructor Room" << endl; }
~Room() { cout << "Destructor Room" << endl; }

¥
 Note that the 2 data
class Postoffice { members, Clock and Room,
Clock clock; are constructed first, in the
Room room; order in which they appear in
public: the Postoffice class.

Postoffice() { cout << "Constructor Postoffice" << endl; }
~Postoffice() { cout << "Destructor Postoffice" << endl; }

%

Order of Construction w/ Nested Objects

e Let's move the clock to the room.

class Clock {

public:
Clock() { cout << "Constructor Clock" << endl; }
~Clock() { cout << "Destructor Clock" << endl; }

3

class Room {
Clock clock;

public:
Room() { cout << "Constructor Room" << endl; }
~Room() { cout << "Destructor Room" << endl; }

%

class Postoffice {
Room room,;

public:
Postoffice() {cout << "Constructor Postoffice" << endl; }
~Postoffice() {cout << "Destructor Postoffice" << endl; }

3

Here is the output:

Beginning of main
Constructor Clock
Constructor Room
Constructor Postoffice
End of main
Destructor Postoffice
Destructor Room
Destructor Clock

Order of Constructions with Temporary Objects

#include <iostream>
using namespace std,;
Here's the output:

class Clock {

int HHMM,; Beginning of main
public: Constructor Clock
Clock() : HHMM(O0) { cout << "Constructor Clock" << endl; } Constructor Clock at 1800
Clock(int hhmm) : HHMM(hhmm) { Destructor Clock
cout << "Constructor Clock at" << HHMM << endl; Constructor Postoffice
} End of main
~Clock() { cout << "Destructor Clock" << endl; } Destructor Postoffice
h Destructor Clock

class Postoffice {

Clock clock;
public:
Postoffice() {
clock = Clock(1800); /] creates and destroys a temporary object
cout << "Constructor Postoffice" << endl;
}
~Postoffice() { cout << "Destructor Postoffice" << endl; }

3
 Here a temporary clock object is created by Clock(1800).

» Like a ghost, it is created and destroyed behind the scenes.

Summary

When an object is constructed, its data members are
constructed first.

When the object is destructed, the data members are
destructed after the destructor for the object has been
executed.

When object A owns other objects (via pointers),
remember to explicitly destruct them in A's destructor.

By default, the default constructor is used for the data
members.

	Comp151
	“Has”' relationship
	Example: Order of Constructions
	Order of Constructions: Remarks
	Order of Constructions with Owned Objects
	Order of Construction with Owned Objects: Remarks
	Order of Constructions with Owned Objects: Fix
	Order of Constructions w/ Multiple Objects
	Order of Construction w/ Nested Objects
	Order of Constructions with Temporary Objects
	Summary

