
Comp 151

Exception Handling

Terminology

• Exceptions are run-time anomalies that a program may
detect
– division by 0,
– access to an array outside of its bounds,
– exhaustion of the heap memory.

• An exception is an unusual event, and may require
special processing

• The special processing required after detection of an
exception is called exception handling

• The exception handling code unit is called an exception
handler

Introduction to Exception Handling

• Traditional approaches in case of exception:
– Terminate the program: exit(), abort()
– Return special values to indicate errors in a function
– Set global error bits and return normally (leaving the

system in an illegal state)
• Error detection and handling code is tedious to write; it

clutters the program and is error-prone
• The C++ language provides built-in features to raise and

handle exceptions:
– Separate error-handling code from ordinary code
– Exception propagation allows a high level of reuse of

exception handling code
– Release local resources automatically

An Example

#include <iostream>
using namespace std;

int main () {
try {

throw 20; // throw an exception
} catch (int e) {
cout << "Exception No. " << e << endl;

}
return 0;

}

General Form
try {
-- code that is expected to raise an
exception

}
// Each catches one type of exception
catch (type1 var1) { // var is optional
-- handler code

}
...
catch (type2 var2) {
-- handler code

}

try

• Put statements and function calls that may generate
exceptions in a try block

• Each try block is associated with a sequence of handlers
that follow immediately

• try blocks can be nested

try {
try {
f(); // f() may throw an exception

} catch (int e) {
cout << "Exception No. " << e << endl;

}
} catch(double) { cout << "Caught double." << endl; }

throw

• An exception is raised using a throw expression,
composed of throw followed by an object whose type is
that of the exception thrown

• Any object (built-in or user-defined) can be thrown

class to_be_thrown {};
...
throw to_be_thrown; // error, not an object
throw to_be_thrown(); // correct
throw 2.5; // correct, double

catch: The Handler
• catch is the name of all handlers

– must immediately follow the try block

– the formal parameter of each handler must be unique
– no automatic type conversion

• The formal parameter does not have to be a
variable
– Can be simply a type name to distinguish its handler

from others

– A variable transfers information to the handler

catch: The Handler

• The formal parameter can be an ellipsis, in which case it
handles all exceptions not yet handled

• After a handler completes, control flows to the first
statement after the last handler in the sequence

• When no exception occurs, all handlers are neglected
(no performance loss)

catch (...) { // catches everything
-- handler code

}

Propagation/Stack Unwinding
• Exceptions CANNOT be ignored
• If not caught by handlers right after try block, exception moves to

next-higher level and may be caught there:
– The next level of try block (if nested)
– Try block surrounding the function call in which exception occurs
– If no handler at any level catches the exception, terminate() will be

called and program will terminate

• Passing an exception while searching for a handler can cause abnormal
exit from a function while in middle of executing it (i.e., without any
return value)
– The stack frame corresponding to the exited function’s scope is

popped – this is called stack unwinding

– So the lifetime of local objects in the exited functions ends
– C++ still guarantees correct destructors are called

An Example

void f() {
Person p;
throw 20;

}
void g() {Person g; f();}
void main(){
try {
g();

} catch(int) {
cout<<"error"<<endl;

}
}

Local var of f()

Local var of g()

Local var of main()

Static data

Snapshot of
Memory Stack

call
function

Unwind

Release Your Own Resource

• Stack unwinding does not automatically delete pointers
or close file handles. These should be handled locally.

void func() {
resource res; res.lock();
try {

// use resource
// some action throws an exception

} catch (...) {
res.release();
throw; // re-throw the exception

}
res.release(); // skipped if exception thrown

}

Standard Exceptions

• All standard exception classes derive ultimately from the
class exception, defined in the header <exception>.

• logic_error and runtime_error are derived from
exception and are defined in <stdexcept>

• A handler for base class objects can also catch derived
class objects

• Define your own error from standard exception classes

class DivideByZeroError : public runtime_error {
public:

DivideByZeroError(const string& msg = "")
: runtime_error(msg) {}

};

An Example
#include <stdexcept>
#include <iostream>
#include "myerror.hpp"
using namespace std;

int divide_int(int numer, int denom) {
if (denom == 0) throw DivideByZeroError("divide_int");
return numer/denom;

}
int main() {

try {
cout << divide_int(1, 0) << endl;

} catch (runtime_error &e) { // pass by ref
cout << "Error caught in “ << e.what() << endl;

}
return 0;

}

Catch bad_alloc

#include <stdexcept>
#include <iostream>
using namespace std;

int main() {
int* p[9999];
try {
for (int i = 0; i < 9999; i++) {

p[i] = new int[99999999];
}

} catch(bad_alloc) { // don’t bother with the thrown object
cout << "Problem in getting memory" << endl;

}
return 0;

}

Exception Specification

When declaring functions…

• void some_function() throw ();
– Promises that the function will not throw any exception

• void some_function() throw(DivideByZero,
OtherException);

– Promises that the function may only throw the exceptions
DivideByZero and OtherException

• void some_function();
– No promises – any type of exception might be thrown from this

function

	Comp 151
	Terminology
	Introduction to Exception Handling
	An Example
	General Form
	try
	throw
	catch: The Handler
	catch: The Handler
	Propagation/Stack Unwinding
	An Example
	Release Your Own Resource
	Standard Exceptions
	An Example
	Catch bad_alloc
	Exception Specification

