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Abstract. The combination of broadcast and on-demand data delivery services is an economic way to build a highly scalable wireless
information system with limited bandwidth. The use of data broadcasting should be adaptive so that the system response time can always
be minimized. A traditional approach requires the development of a system response time equation in order to find the optimal solution.
However, obtaining such an equation is not always possible. We observe that by maintaining a certain level of on-demand request arrival
rate, a close approximation to the optimal solution can be obtained. Using this approach, a real-time adaptive data delivery algorithm is
developed. Our algorithm does not require the access information of the data items to be known exactly, which is needed normally for this
kind of optimization problems. A simple and low overhead bit vector mechanism is able to capture the relative popularities of the data items.
With this information, our algorithm can give a performance comparable to the ideal case in which the access information for each data item
is known exactly.
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1. Introduction

In a mobile computing environment, scarce wireless band-
width, asymmetric communication, limited battery power and
mobility of the mobile clients are the major challenges to the
design of a mobile system [12]. The main focus of this pa-
per is on the effective use of limited bandwidth in a wireless
communication environment. One of the major research prob-
lems in this area is to design a wireless information system to
provide mobile clients with wireless access to a central data-
base. A similar access pattern is assumed to be shared among
clients. With limited wireless bandwith, the system should
be able to provide wireless data access to as many clients as
possible. At the same time, the system response time should
always be minimized under different system workloads.

A promising approach to building such a system is
to use both on-demand and broadcast data delivery ser-
vices that complement each other [3,6,10,11,13,16,20]. On-
demand data delivery is a traditional client-server data deliv-
ery model [2,13]. Whenever a data item is requested by a
client, the client issues a data request to the server and the
server replies the client with the requested data item. On the
other hand, data broadcasting is a listen only data delivery
service [2,13]. Unlike on-demand data delivery, clients are
not required to compete for resources to send data requests to
the server. Instead, they just keep listening to the broadcast
channel and wait for the data items they required. Since si-
multaneous data access is possible for an arbitrary number of
clients, data broadcasting can scale up with unlimited number
of clients. Therefore, it is a bandwidth efficient data delivery
techniques for a large client population with common access
to data. With a proper balance between the use of these two
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types of data delivery services, a highly scalable and efficient
wireless information system can be built.

To minimize the response time of the system, usage be-
tween on-demand and broadcast data delivery services must
be balanced. This can be done by providing a certain
number of frequently accessed data items on the broadcast
channel according to the workload, while the rest are ser-
viced by the on-demand channels. Traditionally, this re-
quires the development of an explicit system response time
equation [13,16,20]. Based on this, together with the ex-
act [13,16] or estimated [20] request arrival rates of the data
items, the optimal number of broadcast data items can be ap-
proximated [13,16,20]. However, developing such an equa-
tion is not always possible. Besides, only the best achieved
system response time under different system workloads has
been previously considered [13,16,20]. None of them have
considered the real-time adaptiveness of the system in reac-
tion to changes in system workload.

In this paper, we consider the situation when the develop-
ment of an explicit system response time equation is impos-
sible, and, the system workload is assumed to be changing
dynamically in a real-time fashion. Without knowing the ex-
act request arrival rates but only the relative popularities of
the data items, we want to approximate the optimal system
response time under different system workloads with a real-
time adaptive data delivery algorithm.

The rest of this paper is organized as follows. Section 2
gives an overview of the related works in the literature. Sec-
tion 3 shows our wireless data delivery model. Section 4 gives
a detailed description of our adaptive data delivery algorithm.
Section 5 describes our simulation model and discusses the
experimental results. Finally, section 6 concludes the paper
and suggests possible future research directions.
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2. Related work

A number of data delivery models making use of both broad-
cast and on-demand data delivery services have been pro-
posed in the literature [3,6,10,11,13,16,20]. The basic idea
behind these models is to use the broadcast data delivery ser-
vice to alleviate the use of on-demand data delivery service.
However, none of them have considered the real-time adap-
tiveness of the system in reaction to the changes in system
workload or client access pattern. Some of them even do not
make use of the broadcast service adaptively.

In [3], a single shared uplink channel and a broadcast
channel are used. The whole database is broadcast on the
broadcast channel. The broadcast data are organized as
broadcast disks [1] according to a static client access pat-
tern. They are interleaved together with the on-demand re-
quest responses on the broadcast channel. There are no up-
dates for the data items. Caching is used on the client side.
For each data request, if the desired item cannot be found in
the caches, the client monitors the broadcast channel for a
fixed Threshold number of frames. If the desired data item
cannot be found, an on-demand request will be sent to the
server through the shared uplink channel. After that, the client
keeps monitoring the broadcast channel until the desired data
item arrives. This model is not adaptive to the system work-
load or the client access pattern.

A single broadcast channel and a shared uplink channel
architecture is adopted in [10]. Broadcast disks are used but
only a fraction of the database items are used to construct
them. There are no updates for the data items. Caching is
used on the client side and the Threshold data access mecha-
nism is used by the clients. A major feature of this model is
that a mechanism to collect client access information called
MFA1 vector mechanism is proposed, such that the content of
the broadcast disks are adjusted according to the client access
pattern. However, this model is not adaptive to the system
workload.

A set of point-to-point on-demand channels is used instead
of a single shared uplink channel for the pull-base data re-
quests in [11]. With a single broadcast channel, broadcast
disks are used. Only a fraction of the database items are used
to construct the broadcast disks. There are no updates for the
data items. Caching is used on the client side. MFA vector
mechanism is used, so that the broadcast content is adaptive
to the client access pattern. In addition, the use of different in-
dexing strategies to improve the Threshold data access mech-
anism are evaluated. Again, this model is not adaptive to the
system workload.

In [6], a broadcast channel and a shared uplink channel
architecture is used. The broadcast content are constructed
based on the received uplink requests with a flat2 broad-
cast structure. (1,m) indexing is used to facilitate data ac-
cess, which will broadcast a complete indexm times during a
broadcast cycle. A major concern for this model is to mini-

1 MFA stands for “Most Frequently Accessed”.
2 “Flat” means all objects are of equal importance and disseminated once in

a broadcast cycle.

mize the power consumption on data access. Thus a number
of power efficient data access protocols are proposed. This
model is adaptive to the client access pattern but it is not adap-
tive to the system workload.

In [13], the architecture consists of a broadcast channel, an
on-demand downlink channel and a shared on-demand uplink
channel. A flat broadcast is used in this model. If a data item
cannot be found on the broadcast channel within a specific
period of time, an uplink request is then sent to the server.
After that, the client keeps listening to the on-demand down-
link channel until the requested data item appears. An algo-
rithm based on the use of a system response time equation
is developed to ensure the mean data access time of the sys-
tem does not exceed a predefined value. Different ways to
collect the client access information are suggested, but there
are no experimental results presented. The model is adap-
tive to the system workload, but it assumes that the request
arrival rates of the data items are known completely by the
server.

A cellular model is assumed in [16]. Each cell has a
fixed number of channels. These channels can be used to
provide broadcast or pull-based data delivery services. A
flat broadcast is used in this model. Depending on the sys-
tem workload, the number of broadcast data items and the
bandwidth allocated for broadcast and pull-based data deliv-
ery services are adjusted dynamically to minimize data ac-
cess time. Normally, for each data request, the client has to
send the request to the server. The server then replies ei-
ther with the requested data item or the broadcast channel
access information for the client to retrieve the data item on
a specific broadcast channel. System response time equa-
tions are developed to find the optimal solution. A static
client access pattern is assumed and the request arrival rates
of the data items are assumed to be known completely by the
server.

The model in [20] is adaptive to both the system workload
and client access pattern. It consists of a broadcast channel,
an on-demand downlink channel and a shared on-demand up-
link channel. Flat broadcast is used. The number of data
items on the broadcast channel is dynamically adjusted ac-
cording to the system workload. The algorithm is based on a
system response time equation. A temperature value (request
rate) is associate with each data item. When the tempera-
ture of a data item gets hot enough, it will be promoted to the
broadcast channel. A cool down mechanism is used to control
the leaving of the broadcast data from the broadcast channel.
Therefore, explicit broadcast data access information is not
required. Indexing is used to improve the data access mech-
anism. To facilitate the development of the system response
time equation, the authors assumed that a copy of the index
is broadcast with every data item. However, this increases the
the overhead of using indexing significantly, so the system
performance worsens.
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3. Wireless data delivery model

3.1. System architecture

The architecture of the system adopted in our model is the
same as the one in [11]. A single broadcast channel and a set
of on-demand point-to-point channels are used in a single cell
environment. A server (Mobile Support Station) provides mo-
bile clients with wireless access to a central database through
the broadcast and on-demand channels. All data items in the
database are of the same size. One data item can be stored
in a single frame on the broadcast channel. The data items
are read-only and will not be updated by the clients or server.
Unlike the model in [11], there is no queueing buffer for the
on-demand channels.

A flat broadcast is used for the broadcast data [1]. The
use of a broadcast channel is to avoid overloading the on-
demand channels. As the workload of the on-demand chan-
nels changes, the number of data items on the broadcast chan-
nel k will be increased or decreased. The value k is embedded
in every frame sent on the broadcast channel. It is used by the
clients to determine how many frames on the broadcast chan-
nel they should listen to before issuing an on-demand request
to the server.

3.2. Data access mechanism

It is assumed that each client can have only one single re-
quest at a time, so a client will not issue a new request unless
the previous request is completed. Besides, each request ad-
dresses a single data item only. For each data request, the
client first reads a frame from the broadcast channel. If it is
not the desired data item, then the client continues to examine
up to k − 1 succeeding frames on the broadcast channel. If
the desired data item is not encountered, the client turns to the
on-demand channel and issues an on-demand request to the
server. Since there is no queueing buffer for the on-demand
channels, once all the on-demand channels are occupied, the
client will need to wait for a short random period of time
and check the availabilities of the on-demand channels again.
This is repeated until an on-demand channel is available and
the request is sent to the server. Once the request is received
by the server, the requested data item will be sent to the client
through the same on-demand channel. Obviously, when too
many clients are competing for the on-demand channels, re-
sponse time of the system will be unbounded.

3.3. Collecting data access information

To make the necessary adaptive adjustments of the broadcast
data items, data access information has to be collected contin-
uously. Access information of the data requests made through
the on-demand channels can be obtained by the server with-
out extra cost. However, the server does not know which
data items of the broadcast channel have been accessed by the
clients. In view of this, the MFA vector mechanism proposed
in [10] is adopted.

This mechanism requires each client to maintain a MFA
vector and a broadcast version number. A MFA vector is ba-
sically a bit vector in which each bit represents a data item
on the broadcast channel. Whenever a request is answered by
a broadcast data item, the bit corresponding to the accessed
data item is set. The broadcast version number is used by the
server to ensure the validity of the relationship between the
bit positions and the data items. It is incremented whenever
the set of broadcast data items is changed.

Whenever an on-demand request is sent to the server, the
MFA vector and the broadcast version number will also be
piggybacked to the server at the same time. The server keeps
a request received record for each data item. Whenever an
explicit on-demand request for a data item is received or a
corresponding bit is set for a data item in a valid MFA vector3

received, the corresponding request received record of that
particular data item is incremented by one.

Even with these information, the exact request arrival rate
for each broadcast data item still cannot be known. There are
two reasons. First of all, not all the MFA vectors are sent to
the server. For instance, if the requests of a client can all be
answered by the broadcast data, the MFA vector will not be
sent to the server. Second, even a MFA vector is received by
the server, if it is not of the same broadcast version currently
used by the server, it will be discarded. Therefore, the MFA
vector mechanism is unable to collect the exact access fre-
quencies of the broadcast data items, so that the exact request
arrival rates for the broadcast data items cannot be known ex-
actly. Nevertheless, the relative popularities of data items can
still be estimated with this mechanism.

4. Real-time adaptive data delivery

4.1. Optimal system response time

The use of data broadcasting should be adaptive such that sys-
tem response time can always be minimised under different
system workloads. A traditional approach would require the
development of a system response time equation, based on
which, the optimal solution for assigning data to the broad-
cast channel that lead to an optimal system response time can
be found. However, obtaining such an equation is not always
possible.

For instance, we assumed that there are no queueing
buffers for the on-demand channels, so an M/M/c queueing
model [15] cannot be used. Also, we assumed that requests
are not lost even when all the on-demand channels are occu-
pied, so an M/M/c/c queueing model [15] cannot be used
either. Therefore, it is impossible to obtain a system response
time equation for our system without making some simplify-
ing assumptions.

To approximate the optimal system response time, we have
made the following observations. Since on-demand channels
can provide instant access to data items, they should be fully

3 A valid MFA vector is defined as a MFA vector with the same broadcast
version number as the current broadcast version number used by the server.
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utilized, but must not be overloaded. Otherwise, the system
response time will be unbounded. Thus, the idea of utilizing
the on-demand channels as much as possible while not over-
loading them requires a certain level of on-demand request
arrival rate to be maintained.

4.2. Difficulty in maintaining on-demand request arrival rate

Assuming that there are n data items in the server database
and λd is the set containing the request arrival rate for each of
the data items such that λdi is the request arrival rate for data
item i. The workload of the system is characterized by the
aggregate request arrival rate of the data items in the server
database. It is given in the following equation [16]:

λ =
n∑
i=1

λdi . (1)

Suppose, an on-demand request arrival rate λ′o is to be
maintained. When λ > λ′o, the k most popular data items have
to be identified and put onto the broadcast channel, while the
rest of the data items are serviced by the on-demand channels
so that:

k = Min

{
j

∣∣∣ j∑
i=1

γi � λ− λ′o
}

(2)

where γi ∈ λd and γ1 � γ2 � · · · � γn. The objective is
to control the amount of data on the broadcast channel k so
that the on-demand request arrival rate is less than or equal
to λ′o.

When λ � λ′o, the system workload is so low that all
requests can be served by the on-demand channels. In this
case, a frame containing one of the most frequently accessed
data items will still be broadcast. It is because according to
the data access mechanism, each client is required to read a
frame from the broadcast channel first. Broadcasting the most
frequently accessed data item is better than broadcasting a
dummy frame, even though the performance gain is not sig-
nificant. The algorithm for the selection of broadcast data is
shown in algorithm 1.

Algorithm 1. Algorithm for broadcast data selection
Select-Broadcast-Data(λd, λ′o)
λ← j ← k← 0
List-Clear(List-Of-Broadcast-Data)
for i ← 1 to n do

λ← λ+ λdi
γ [] ← Sort-In-Descending-Order(λd)
if λ � λ′o then

List-Insert(List-Of-Broadcast-Data, γ [1].data-id)
else

while j < λ− λ′o do
k← k + 1
j ← j + γ [k].value
List-Insert(List-Of-Broadcast-Data, γ [k].data-id)

return List-Of-Broadcast-Data

Figure 1. On-demand channel response time vs. on-demand request arrival
rate.

This technique requires the request arrival rates, and hence,
access frequencies of data items, to be known exactly by the
server. However, the exact access information cannot be ob-
tained by using the MFA vector mechanism. Therefore, the
algorithm cannot be used directly to maintain the on-demand
request arrival rate in our model.

4.3. Techniques to maintain on-demand request arrival rate

4.3.1. Basic idea
Figure 1 shows the relationship between the on-demand chan-
nel response time and the on-demand request arrival rate. Ac-
cording to the on-demand request arrival rate, four on-demand
channel states are defined: TOO LOW, SUB-OPTIMAL, TOO
HIGH and UNSTABLE. The Sub-Optimal Point is the on-
demand request arrival rate that we want to maintain. It
is assumed that when either one of the previous state or
current state of the on-demand channels or both are within
the range between the Sub-Optimal Upper Bound and Sub-
Optimal Lower Bound, the on-demand request arrival rate at
the Sub-Optimal Point is regarded as successfully maintained.

The basic idea of our real-time adaptive data delivery al-
gorithm is that, whenever the on-demand request arrival rate
cannot be maintained at the Sub-Optimal Point, the amount of
data on the broadcast channel will be increased or decreased
according to the on-demand channel states. To decide which
data item is to be put on or removed from the broadcast chan-
nel next, relative popularities of data items are used.

If real-time system performance is taken into considera-
tion, increasing or decreasing the number of data items on the
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broadcast channel one at a time until the on-demand chan-
nels reach the SUB-OPTIMAL state will be unacceptable. In
fact, whenever the on-demand request arrival rate cannot be
maintained at the desired level, the adaptive algorithm should
be able to bring the on-demand channels back to the SUB-
OPTIMAL state as soon as possible. Therefore, the number
of broadcast data items to increase or decrease should be de-
termined by the algorithm effectively and efficiently such that
a stable system performance can always be maintained while
the system can still be highly reactive to the changes in system
workload or client access pattern.

4.3.2. Controlling the number of broadcast data items
To control the increase or decrease of the number of broadcast
data items, the broadcast data selection algorithm shown in al-
gorithm 1 is used indirectly by maintaining a virtual request
arrival rate called Virtual Point. The name virtual is used be-
cause the Virtual Point is used to assist the system to maintain
the on-demand request arrival rate at the Sub-Optimal Point,
rather than at the Virtual Point itself.

Request arrival rates of the data items are needed by the
broadcast data selection algorithm. They are computed based
on the incomplete access information collected by the MFA
vector mechanism. Although the computed request arrival
rates may not represent the actual values, they can still pre-
serve the information about the relative popularities of the
data items with certain accuracy. Since the computed request
arrival rates for the broadcast data items are normally under-
estimated, if on-demand request arrival rate is maintained at
the Sub-Optimal Point explicitly using the broadcast data se-
lection algorithm, the resulted on-demand request arrival rate
would very likely exceed the Sub-Optimal Point.

Suppose the current on-demand request arrival rate is too
high, then the Virtual Point will be decreased until the on-
demand request arrival rate can be maintained at the Sub-
Optimal Point. In fact, decreasing the Virtual Point has the
effect of increasing the number of broadcast data items. Once
enough data items are broadcast, the desired on-demand re-
quest arrival rate can be maintained. Similarly, when the cur-
rent on-demand request arrival rate is too low, then the Virtual
Point will be increased until the on-demand request arrival
rate can be maintained at the Sub-Optimal Point.

Obviously, even when the exact access frequencies of the
broadcast data items cannot be obtained, if the accuracy of
the captured popularities of the data items is high, a highly
comparable performance to the ideal case in which the access
information is known exactly can still be achieved. The re-
maining problem is to design an algorithm to adjust the Vitual
Point so that it can give a stable and steady real-time perfor-
mance in a highly dynamic environment.

4.3.3. Adjusting the virtual point to control the number of
broadcast data items

Before describing the algorithm for the adjustment of the Vir-
tual Point, the control parameters and on-demand channel
states shown in figure 1 are formally defined. The following

parameters are used to control the adjustment of the Virtual
Point:

• Sub-Optimal Point: The request arrival rate level to be
maintained. It is also the maximum value for the Virtual
Point.

• Sub-Optimal Upper and Lower Bounds: Within this range,
the Sub-Optimal Point is regarded as successfully main-
tained.

• Unstable Point: The request arrival rate level at which the
on-demand channels start getting overloaded.

• Minimum Point: The minimum value for the Virtual Point.

Corresponding to these control points, four on-demand chan-
nel states are defined:

• SUB-OPTIMAL: When the on-demand request arrival rate
is within the range between the Sub-Optimal Upper and
Lower Bounds.

• TOO HIGH: When the on-demand request arrival rate is
larger than the Sub-Optimal Upper Bound and less than
the Unstable Point.

• TOO LOW: When the on-demand request arrival rate is
less than the Sub-Optimal Lower Bound.

• UNSTABLE: When the on-demand request arrival rate is
larger than or equal to the Unstable Point.

Two additional control parameters which are not shown in
figure 1 are used to control the adjustment speed of the Virtual
Point:

• Normal Step: A request arrival rate stepping used for the
adjustment of the Virtual Point when the on-demand chan-
nels are not overloaded.

• Large Step: A larger request arrival rate stepping used for
the adjustment of the Virtual Point when the on-demand
channels are overloaded.

Virtual Point can be adjusted between the Sub-Optimal
Point and the Minimum Point. The decision for the adjust-
ment of the Virtual Point is made according to the previous
state and current state of the on-demand channels:

• Case I: If both the previous state and current state of
the on-demand channels are UNSTABLE, then the Virtual
Point would be decreased with a Large Step. It is because
when the on-demand channels are overloaded, system re-
sponse time can increase exponentially. Therefore, the de-
crease of the Virtual Point must be able to stabilize the
system as soon as possible.

• Case II: If only the current state of the on-demand chan-
nels is UNSTABLE, or both the previous state and current
states are TOO HIGH, then the Virtual Point would be de-
creased by one or more Normal Steps. The amount of de-
crease is accumulative4.

4 When the same condition is sustained consecutively, more and more Nor-
mal Steps would be used. For instance, when the condition holds for the
first time, one Normal Step would be used. When the condition holds con-
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• Case III: If both the previous state and current state of
the on-demand channels are TOO LOW, then the Virtual
Point would be increased by one or more Normal Step.
The amount of increase is also accumulative.

• Case IV: If either the previous state is TOO LOW and the
current state is TOO HIGH, or the previous state is TOO
HIGH and the current state is TOO LOW, then it means
that the previous increase or decrease made to the Virtual
Point has been excessive. Instead of decreasing or increas-
ing the Virtual Point incrementally from the very begin-
ning, a mid-point would be taken from the previous and
current Virtual Points. This approach helps to speed up
the time required for the on-demand channels to reach the
SUB-OPTIMAL state.

Algorithm 2 shows the pseudo-code for the adjustment of
the Virtual Point.

Algorithm 2. Algorithm for the virtual point adjustment
Adjust-Virtual-Point(Previous-State, Current-State)
temp = Virtual-Point
if Previous-State= UNSTABLE and
Current-State= UNSTABLE then

Increase← Decrease← 0
Virtual-Point← Virtual-Point− Large-Step

else if ((Previous-State= UNSTABLE or
Previous-State= TOO-HIGH) and Current-State=
TOO-HIGH) or Current-State= UNSTABLE then

Increase← 0
Decrease← Decrease + Normal-Step
Virtual-Point← Virtual-Point− Decrease

else if Previous-State= TOO-LOW and
Current-State= TOO-LOW then

Decrease← 0
Increase← Increase + Normal-Step
Virtual-Point← Virtual-Point+ Increase

else
Increase← Decrease← 0
if Previous-State= TOO-HIGH and Current-State
= TOO-LOW or (Previous-State= TOO-LOW
and Current-State= TOO-HIGH) then

Virtual-Point← (Previous-Virtual-Point
+ Virtual-Point) / 2

Previous-Virtual-Point← temp
if Virtual-Point> Sub-Optimal-Point then

Virtual-Point← Sub-Optimal-Point
if Virtual-Point< Minimum-Point then

Virtual-Point←Minimum-Point
return Virtual-Point

secutively for the second time, two Normal Steps would be used and so
on.

4.4. Computation of request arrival rates

4.4.1. Request arrival rates for the data items
Request arrival rate λdi for data item i is computed with an
exponentially weighted moving average technique [20]:

λdi,j = (1− α)λdi ,j−1 + α ri,j
tj

(3)

where λdi,j is the request arrival rate of data item i for the j th
evaluation period, 0 < α � 1, ri,j is the number of requests
received corresponding to data item i during the j th evalua-
tion period and tj is the length of the j th evaluation period.

4.4.2. On-demand request arrival rate
On-demand request arrival rate is computed with the follow-
ing equation:

λo,j = oj

tj
(4)

where λo,j is the on-demand request arrival rate for the j th
evaluation period, oj is the total requests received through
the on-demand channels over the j th evaluation period and tj
is the length of the j th evaluation period.

4.5. Evaluation time for the system

To determine the evaluation period, two parameters are re-
quired:

• Maximum Evaluation Cycle: the maximum number of
broadcast cycles allowed for an evaluation period.

• Maximum Evaluation Time: the maximum time duration
allowed for an evaluation period.

Evaluation period ecycle in terms of number of broadcast cy-
cles is obtained with the following equation:

ecycle = Min

(
cmax,

⌊
tmax

tcycle

⌋)
(5)

where cmax is the Maximum Evaluation Cycle, tmax is the
Maximum Evaluation Time, tcycle is the time required for a
complete broadcast of the current set of broadcast data items
and we have assumed tmax � tcycle. Basically, this equation
states that evaluation period equals to an integer multiple of
broadcast cycles not more than the Maximum Evaluation Cy-
cle and the total length in time does not exceed the Maximum
Evaluation Time.

4.6. Real-time adaptive data delivery algorithm

With all the techniques described above, a real-time adaptive
data delivery algorithm is developed. Once the system starts,
a dummy data item is first broadcast for a short period of time,
so that the system can compute the request arrival rates based
on the number of requests received through the on-demand
channels. As long as the system is up, the following steps
are repeated. The request arrival rate for each data item and
the on-demand request arrival rate are computed with equa-
tions (3) and (4), respectively. Then the current state of
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the on-demand channels is determined according to the on-
demand request arrival rate. After that, the Virtual Point is
adjusted according to the previous state and current state of
the on-demand channels using the Virtual Point adjustment
algorithm shown in algorithm 2. Next, the set of broadcast
data items is determined with the broadcast data selection al-
gorithm shown in algorithm 1, according to the Virtual Point
and the request arrival rates of the data items. The selected
set of broadcast data items will then be broadcast for a spe-
cific number of cycles. The number of cycles is determined
by equation (5).

The running time of our algorithm is O(n logn). It is at-
tributed to the need for sorting the request arrival rates of the
data items in the broadcast data selection algorithm shown in
algorithm 1. The pseudo-code for our real-time adaptive data
delivery algorithm is shown in algorithm 3.

Algorithm 3. Algorithm for adaptive broadcast
Adaptive-Broadcast()
Evaluation-Start-Time← Clock
Broadcast(Dummy-Items)
while SYSTEM-UP do

Evaluation-Time← Clock − Evaluation-Start-Time
for i ← 1 to n do
λdi ← (1− α)λdi

+ αRequest-Received-For-Data-Itemi

Evaluation-Time

λo ← On-Demand-Requests-Received

Evaluation-Time
Previous-State← Current-State
if λo � Unstable-Point then

Current-State← UNSTABLE
else if λo > Sub-Optimal-Upper-Bound then

Current-State← TOO-HIGH
else if λo < Sub-Optimal-Lower-Bound then

Current-State← TOO-LOW
else

Current-State← SUB-OPTIMAL
Virtual-Point← Adjust-Virtual-Point(Previous-State,

Current-State)
Set-Of-Broadcast-Data← Select-Broadcast-Data(λd ,

Virtual-Point)
cycle←Min(Maximum-Evaluation-Cycle,⌊

Maximum-Evaluation-Period

Time-For-A-Broadcast-Cycle

⌋
)

Evaluation-Start-Time← Clock
for i ← 1 to cycle do

Broadcast(Set-Of-Broadcast-Data)

5. Experiments and results

5.1. Simulation model

Our simulation program is implemented with C and Csim [18].
The simulation model used in the experiments is shown in fig-
ure 2.

Figure 2. Simulation model.
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5.1.1. Server model
The server has a database with size, Database Size. Each
data item has a size of Data Item Size. The server is modeled
by two sub-processes, namely broadcast manager and pull
manager.

There is a single broadcast channel with bandwidth,
Broadcast Bandwidth. The broadcast manager is responsi-
ble for broadcasting data adaptively on the broadcast channel
according to the system workload. The adaptive broadcast
algorithm shown in algorithm 3 is used.

There are On-Demand Channel number of on-demand
channels, each having a bandwidth of On-Demand Band-
width. The pull manager is responsible for granting free on-
demand channels to clients.

5.1.2. Client model
To simulate the contention of the on-demand channels among
clients, each client is modeled by an independent process. It
is assumed that each client can have a single request at a time,
so a client will not issue a new request unless the previous
request is completed. Each request addresses a single data
item only.

For each request, a client waits for a random amount of
time drawn from a negative exponential distribution with the
mean of Think Time before generating another data request
with the query generator. Since Gaussian distribution [7] is
commonly used to model the client access pattern [11,20],
we make the query generator randomly selects a data item
from a Gaussian distribution, such that 68% of the generated
requests fall within a particular set of data items with size, Hot
Spot Size. After that, the request is directed to the broadcast
receiver.

The broadcast receiver first reads a frame from the broad-
cast channel. The frame contains (1) a data item, (2) a num-
ber k, which specifies the number of data on the broadcast
channel, (3) the bit position in the MFA vector corresponding
to this particular data item, and (4) the broadcast version num-
ber. Whenever a new broadcast version number is detected,
the MFA vector will be reset. If the data item received is not
the desired one, the broadcast receiver continues to examine
up to k − 1 succeeding frames on the broadcast channel. If
the desired data item is encountered, the corresponding bit in
the MFA vector is set. Otherwise, the request is directed to
the pull manager.

The pull manager first checks if an on-demand channel is
available. If not, it waits for a random period of time which
is drawn from a uniform [0,Wait Time) distribution. This is
repeated until a point-to-point connection is set up between
the client and the server. After the connection is established,
the pull manager sends a pull request with size Pull Request
Size to the server. At the same time, the broadcast version
number with size, Version Size and the MFA vector are also
sent to the server. The server then replies with the requested
data item to the pull manager through the same channel.

5.1.3. Modeling the client access pattern
As described in the client model, client access pattern is mod-
eled by the Gaussian distribution [7]. In this section, we will
define the hot spot of the data items using the Gaussian distri-
bution.

As shown in figure 3, the shaded region is the hot spot of
the data items. It is defined as follows. The mean of the
Gaussian distribution equals to the hot spot center and the
standard deviation σ is defined as

σ = Hot Spot Size

2
. (6)

Therefore, 68% of the generated requests fall within the hot
spot of the data items [7].

To model the dynamic changes of the client access pattern,
we have assumed that the hot spot center is shifted by one
data item every s seconds. Rather than changing the center of
the distribution explicitly, a shifting offset is used. This offset
is increased by one every s seconds and it is modular by the
total number of data items. Then the offset is added to each
of the generated requested data item id to simulate the effect
of shifting the hot spot center.

5.2. Parameter settings

The system parameters and control parameters used in the
simulations are shown in tables 1 and 2, respectively. The
control parameters marked by asterisks in table 2 are de-
rived analytically from the system parameters listed in ta-
ble 1. In the appendix, we give the derivation for four of
them, namely, Sub-Optimal Point, Unstable Point, Maximum

Figure 3. Client access pattern.

Table 1
System parameter settings.

Parameter Value

Broadcast Bandwidth 80000 bps
On-Demand Bandwidth 8000 bps
Broadcast Channel 1
On-Demand Channel 10
Database Size 1000 data items
Hot Spot Size 50 data items
Data Item Size 8000 bits
Pull Request Size 128 bits
Version Size 16 bits
Think Time 10 s
Wait Time 2 s
α 0.5
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Table 2
Control parameter settings.

Parameter Value

Sub-Optimal Point∗ 8 requests/s
Sub-Optimal Upper Bound∗ 8.3 requests/s
Sub-Optimal Lower Bound∗ 7.7 requests/s
Unstable Point∗ 9.4 requests/s
Minimum Point∗ 0.5 request/s
Maximum Evaluation Cycle∗ 20 cycles
Maximum Evaluation Time∗ 120 s
Normal Step 0.2 request/s
Large Step 2.5 requests/s

Evaluation Cycle and Maximum Evaluation Time. Since the
other three parameters, namely, Sub-Optimal Upper Bound,
Sub-Optimal Lower Bound, and Minimum Point, can be de-
rived in a similar manner, their derivations are not given.

The remaining two parameters, Normal Step and Large
Step, are determined based on the following rationale. Since
step movements are accumulative (see footnote 4), Normal
Step should be small enough so that the Virtual Point (and
hence the system) would not jolt around the optimal value.
Therefore, we set it to 0.2 requests/s. The Large Step, on
the contrary, should be large enough so that quick adaption
can be achieved. Since Virtual Point ranges between the Sub-
Optimal Point and the Minimum Point, which are 8 and 0.5
request/s, respectively, we use 2.5 requests/s as the Large Step
value so that even in the extremely overloaded case, 3 steps
are enough for the system to recover from being overloaded.

5.3. Notations used in the experiments

The following notations are used in the experiments:

• IDEAL: It represents the ideal case in which the access
information of the data items are known completely.

• MFA: It represents the case when the MFA vector mecha-
nism is used to collect the data access information.

• Evaluation(cmax, tmax): It shows the values of the Maxi-
mum Evaluation Cycle cmax and the Maximum Evaluation
Time tmax used to determine the evaluation period in equa-
tion (5).

5.4. Experiment 1: Relationship between optimal system
response time and on-demand request arrival rate

This experiment shows the relationship between the optimal
system response time and on-demand request arrival rate.
Since an explicit system response time equation cannot be
obtained for our model, the optimal system response time is
found by simulation only. Client access pattern is assumed
to be unchanged. To find the optimal system response time,
a fixed number of most frequently accessed data items are
broadcast under a specific client population. The number of
data items is tried exhaustively from 1 to n which is the num-
ber of data items in the database. The one which gives the
minimum system response time is regarded as the optimal so-
lution5.

As shown in figure 4(a), for the IDEAL case, maintaining
the on-demand request arrival rate at 8 requests/s can generate
a nearly optimal system response time under different client
populations. Even for the MFA case, as shown in figure 4(b),
maintaining the on-demand request arrival rate at 8 requests/s
can also give a performance close to the optimal solution.

It should be noted that when the on-demand request arrival
rate is maintained at 6 requests/s, the performance loss is not
too large. It means that, the choice of the Sub-Optimal Point
is not too critical to system performance. As long as the set-
ting of the Sub-Optimal Point is far enough away from the
Unstable Point, a reasonably good system performance can
be achieved.

From figure 4(b), it is found that the gap between the 8
requests/s line and the optimal line becomes larger when the
system workload is higher. It is because when the system
workload is higher, more data items will be broadcast, so the
fraction of MFA vectors received by the server is smaller6.
Hence, the accuracy of the captured relative popularities of
the data items is lower, so the system performance worsens.

Since the IDEAL case can give a nearly identical perfor-
mance to the optimal solution, hereafter, the IDEAL case will
be used as a comparison baseline for the MFA case.

5 The optimal lines shown in both figures 4(a) and 4(b) are identical.
6 If the requests of a client can all be answered by the broadcast data, the

MFA vector would not be sent to the server.

(a) IDEAL (b) MFA

Figure 4. Different on-demand request arrival rates.
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5.5. Experiment 2: Real-time adaptive performance of the
system

To see the real-time adaptive performance of the system, we
would like to know how it reacts to the changes in client popu-
lation and client access pattern in a real-time environment. To
achieve this, two dynamic environments are used to simulate
these two changes separately.

5.5.1. Real-time change of client population
In this experiment, system performance under real-time
change of client population is studied. The client access pat-
tern is assumed to be unchanged and the system response time
is sampled every 60 seconds in the experiment.

Figure 5 shows the real-time system performance under
the change of client populations. Each line in the sub-figure
shown in figure 5 represents a different number of clients in
the server during the intermediate period of the simulation
time.

From 0 to 1000 seconds, there are only 50 clients in the
server. Then the number of clients increases linearly during
the period 1000 to 2000 seconds from 50 clients to 100, 200,
500, 1000 and 2000 clients respectively for each line shown
in each sub-figure in figure 5. After that, the number of clients
remains unchanged until 5000 seconds. Finally, the number
of clients decreases linearly back to 50 clients during the pe-
riod 5000 to 6000 seconds. In fact, each line models a differ-
ent rate change of client population7.

It is found that the length of evaluation period, and hence,
the choice of the Maximum Evaluation Cycle and the Max-
imum Evaluation Time, is very critical to the real-time sys-
tem performance. As shown in figure 5(a), when an overall
short evaluation period8is used in the IDEAL case, the tran-
sition of the system to the change of client population is the
smoothest. It is because the system is evaluated most fre-
quently, so appropriate adjustment can always be made before
the on-demand channels approach the overloaded state. How-
ever, if a short evaluation period is used in the MFA case, as
shown in figure 5(b), the system response time is significantly
longer and more fluctuating than the IDEAL case. Since the
evaluation period is too short, the relative popularities of the
data items captured are not accurate enough. Therefore, some
less popular data items are broadcast while some more popu-
lar data items are not broadcast, so the system performance is
very poor.

On the other hand, if the Maximum Evaluation Cycle cho-
sen is too large, and hence, the overall evaluation period is
too long, as shown in figures 5(c) and (d), the evaluation pe-
riod used during the system transition from 50 to 1000 clients
and 50 to 2000 clients becomes too long. Therefore, the on-

7 The modeling for these changes is done by associating each client with a
Wake Up Time and Leave Time so that each client can enter and leave the
server accordingly.

8 Since evaluation period is determined according to the length of broadcast
cycle, so it can be long or short. Overall short evaluation period means the
evaluation period used for different lengths of broadcast cycle is relatively
short.

demand channels can get into the overloaded state easily be-
fore any adjustment can be made by the system. Nevertheless,
once the overloading of the on-demand channels is detected,
our adaptive data delivery algorithm can take the on-demand
channels back to stable quickly.

20 cycles seem to be an appropriate choice for the Max-
imum Evaluation Cycle because both the stability and reac-
tiveness of the system can be maintained. As shown in fig-
ures 5(e) and (f), with a proper setting of the evaluation pe-
riod such that the overall evaluation period is just long enough
for a fairly accurate capturing of the relative popularities of
the data items, the performance of the MFA case can be very
close to the IDEAL case. Since the relative popularities cap-
tured are not 100% accurate, so the performance of the MFA
case is still slightly worse than the IDEAL case.

As shown in figures 5(g) and (h), when the Maximum Eval-
uation Time, and hence, the upper bound of the evaluation pe-
riod, is increased, the system response times for the MFA case
get even closer to the IDEAL case comparing to figures 5(e)
and (f). However, the improvement is not very significant. It
means that once the accuracy of the captured popularities of
the data items are high already, further increasing the length
of the evaluation period does not help to further improve the
accuracy much.

5.5.2. Real-time change of client access pattern
In this experiment, system performance under real-time
change of client access pattern is studied. The client popu-
lation is fixed at 200 clients and the system response time9 is
sampled every 60 seconds in the experiment.

Figure 6 shows the real-time system performance under a
dynamic changing client access pattern environment. Each
line in the sub-figure shown in figure 6 represents a different
rate change of client access pattern during the intermediate
period of the simulation time.

Initially, the client access pattern changes every 60 sec-
onds. From 1000 to 4000 seconds, the client access pattern
changes every 1, 2, 5, 10 and 20 seconds, respectively, for
each line shown in each sub-figure in figure 6. Hereafter, 1 s
shift, 2 s shift and so on are used to represent these lines.

In an environment where the client access pattern is chang-
ing dynamically, the more frequent the evaluation of the sys-
tem, the better the system performance. It is because the
server can update the broadcast content more frequently to
meet the needs of the clients. Therefore, using an overall short
evaluation period, as shown in figures 6(a) and (b), would give
the best system performance among the others.

It is interesting to note that when the broadcast content is
updated frequently enough to meet the needs of the client, the
performance of the MFA case, as shown in figure 6(b), is even
better than the performance of the IDEAL case, as shown in
figure 6(a). The reason is due to the use of an exponentially
weighted computation in equation (3) for the data request ar-
rival rates. When an exponentially weighted computation is

9 Actually all clients record server’s response time for each request issued,
and the system response time is simply the averaged response time among
all clients.
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(a) IDEAl, Evaluation (5 cycles, 120 s) (b) MFA, Evaluation (5 cycles, 120 s)

(c) IDEAl, Evaluation (40 cycles, 120 s) (d) MFA, Evaluation (40 cycles, 120 s)

(e) IDEAl, Evaluation (20 cycles, 120 s) (f) MFA, Evaluation (20 cycles, 120 s)

(g) IDEAl, Evaluation (20 cycles, 180 s) (h) MFA, Evaluation (20 cycles, 180 s)

Figure 5. Real-time change of client population.
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(a) IDEAl, Evaluation (5 cycles, 120 s) (b) MFA, Evaluation (5 cycles, 120 s)

(c) IDEAl, Evaluation (40 cycles, 120 s) (d) MFA, Evaluation (40 cycles, 120 s)

(e) IDEAl, Evaluation (20 cycles, 120 s) (f) MFA, Evaluation (20 cycles, 120 s)

(g) IDEAl, Evaluation (20 cycles, 180 s) (h) MFA, Evaluation (20 cycles, 180 s)

Figure 6. Real-time change of client access pattern.



ADAPTIVE REALTIME BANDWIDTH ALLOCATION FOR WIRELESS DATA DELIVERY 115

used, even when a broadcast data item is no longer needed by
the clients, if it had a large request arrival rate value in the
previous system evaluation, it may still be broadcast. It is be-
cause the value is so large that it may take a few more system
evaluations for this value to decrease to a certain level, such
that it will not be selected by the server to broadcast. Since
this data item may still be broadcast for some times which be-
comes a hindrance to the broadcast of some other useful data
items, so the system performance will be affected. In fact, the
smaller the weighting factor α used in equation (3), the more
significant the problem. As a result, for a particular broadcast
data item, the request arrival rate computed in the IDEAL case
is always larger than the one computed in the MFA case. It
is because the exact data access frequencies are used in the
IDEAL case while only partial data access frequencies10 are
used in the MFA case to compute the request arrival rates of
the data items. Therefore, the problem caused by the used
of an exponentially weighted computation to calculate the re-
quest arrival rates in the IDEAL case is more serious than in
the MFA case. Thus, the performance of the MFA case, as
shown in figure 6(b), is much better than that of the IDEAL
case, as shown in figure 6(a).

As shown in figures 6(e) and (f), when the Maximum Eval-
uation Cycle increases, and hence, the overall evaluation pe-
riod increases, the performance of the system worsens signif-
icantly for 1 s shift and 2 s shift. Also, the MFA case does not
show any advantages over the IDEAL case for these two shift
cases. It is because the client access pattern is changing too
fast compared to the frequency of system evaluation such that
most of the data items on the broadcast channel originally in-
teresting to the client become uninteresting to the clients after
a short period of time. Therefore, the advantage of the MFA
case over the IDEAL case disappears. Nevertheless, for the
5 s shift, the performance of the MFA case is still better than
the IDEAL case. It is because the content of the broadcast
channel can be updated frequently enough comparing to the
client access pattern changing rate, so the ability of the sys-
tem to select the most frequently access data item to broadcast
becomes critical to system performance.

When the Maximum Evaluation Cycle is further increased,
and hence, the overall evaluation period increases, as shown
in figures 6(c) and (d), the performance for 5 s shift also be-
comes similar for both the IDEAL and MFA cases. It is be-
cause the evaluation period increased for the 5 s shift now
becomes too long compared to the rate change of the client
access pattern. However, 1 s shift and 2 s shift shown in fig-
ures 6(c) and (d) do not have much performance difference
compared to figures 6(e) and (f), respectively. It is because
the evaluation period for these two shifts are both bounded by
the Maximum Evaluation Time but not the Maximum Evalua-
tion Cycle.

When the Maximum Evaluation Time increases, and hence,
the upper bound of the evaluation period increases, as shown
in figures 6(g) and (h), the performance for 1 s shift and 2 s

10 Depending on the fraction of valid MFA vector received by the server, the
access frequency collected for a broadcast data item may just represent a
certain fraction of the actual value.

shift becomes the worst compared to figures 6(e) and (f), re-
spectively, because the evaluation period for these two shifts
are now longer. Thus, the frequency of system evaluation
is even less, making it more difficult for the broadcast data
to catch up with the changing access pattern of the clients.
Therefore, the setting of an upper bound Maximum Evalu-
ation Time is very important in a dynamic changing client
access pattern environment.

In fact, data broadcasting can also be seen as a kind of
caching which is stored in the air. Like any other caching
techniques, the more the cached data items are used, the more
the performance gain can be achieved by the use of caching.
Therefore, if the client access pattern changes too fast, the ef-
fectiveness of using data broadcasting is lost. Thus, the use of
data broadcasting may not be suitable when there is no com-
mon access pattern among clients or the client access pattern
changes too fast.

5.6. Experiment 3: Effect on the weighting factor used for
the computation of data request arrival rates

In the following experiments, we would like to study the ef-
fect of using different values of weighting factor α in equa-
tion (3) to compute the data request arrival rates. Specifically,
we would like to examine how it affects system performance
under different client populations and different rate changes
of client access pattern with different evaluation period set-
tings. Only the MFA case is considered. The case when α = 1
is used as the baseline for comparisons. It represents the case
where the computation of the data request arrival rates is not
weighted and based only on the current request arrival rates.

5.6.1. Different client populations
In this experiment, client access pattern is assumed to be un-
changed and different values of weighting factor are used.
The effect on system performance under different client pop-
ulations are studied.

As shown in figure 7(a), when a short evaluation period
is used, the use of an exponentially weighted computation
for the data request arrival rates can help to improve system
performance. Without it, when α = 1, the system perfor-
mance is poor, especially when the client population equals
to 1500 clients. The is because the exponentially weighted
computation can help to improve the accuracy of the captured
relative popularities of data items. Figure 7(a) also shows that
the smaller the weighting factor, the better it helps to improve
the accuracy of the relative popularities of the data items cap-
tured, and thus, the better the system performance.

When the evaluation period is long enough, as shown
in figures 7(c), (e) and (g), the ability of the exponentially
weighted computation to further improve the accuracy of the
captured relative popularities of the data items reduces signif-
icantly. This is because the data access information gathered
during a long evaluation period can already preserve the rela-
tive popularities of the data items with high accuracy. There-
fore, the need of using the exponentially weighted compu-
tation to improve the accuracy diminishes. Although perfor-
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(a) MFA, Evaluation (5 cycles, 120 s) (b) MFA, Evaluation (5 cycles, 120 s)

(c) MFA, Evaluation (20 cycles, 120 s) (d) MFA, Evaluation (20 cycles, 120 s)

(e) MFA, Evaluation (40 cycles, 120 s) (f) MFA, Evaluation (40 cycles, 120 s)

(g) MFA, Evaluation (20 cycles, 180 s) (h) MFA, Evaluation (20 cycles, 180 s)

Figure 7. Using different values of weighting factor.
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mance improvement is not significant, the smaller the weight-
ing factor the better the system performance phenomenon still
holds.

5.6.2. Different rate changes of client access pattern
In this experiment, client population is fixed at 200 clients
and different values of weighting factor are used. The effect
on system performance under different rate change of client
access pattern is studied.

The results presented in this section helps to strengthen
our argument used in section 5.5.2 to claim the disadvantage
of using an exponentially weighted computation in a dynam-
ically changing client access pattern environment.

As shown in figures 6(b), (d), (f) and (h), when the client
access pattern is changing too fast, i.e. 1 s shift and 2 s shift,
the use of an exponentially weighted computation always give
poorer result than without using it. In addition, the smaller the
weighting factor, the poorer the system performance. When
a small evaluation period is used, as shown in figure 6(b), the
negative effect of using the exponentially weighted computa-
tion disappears, except when a very small weighting factor is
used and the client access pattern is changing very fast.

However, when the client access pattern is not changing
too fast relative to the evaluation period settings, for example
5 s shift or longer in figure 6(b) and 20 s shift or longer in
figure 6(d), using an exponentially weighted computation can
give a better system performance than without using it, al-
though the performance improvement is not significant. This
suggests that relative popularities of the data items can be bet-
ter captured by the use of an exponentially weighted compu-
tation, provided that, the client access pattern is not changing
too fast relative to the evaluation period settings.

6. Conclusion

In this paper, a real-time adaptive data delivery algorithm is
presented. By maintaining a certain level of on-demand re-
quest arrival rate, our algorithm can approximate the opti-
mal system response time under different system workloads.
Most importantly, it does not require the development of a
system response time equation nor require to know the ex-
act request arrival rate for each data item. These features are
highly advantageous because the development of a system re-
sponse time equation is not always possible and the require-
ment for the system to know the exact request arrival rate for
each broadcast data item is impractical.

Given the relative popularities of the data items, on-
demand channel utilization is maintained by adjusting the
number of broadcast data items dynamically according to the
changes in system workload and client access pattern. Apart
from the algorithm to control the number of broadcast data
items, it is found that the length of the evaluation period is
also an important factor to the real-time performance of the
system. With a proper choice of the control parameters and
an appropriate setting of the evaluating period, our real-time
adaptive data delivery algorithm can give a performance com-

parable to the ideal case in which the exact request arrival
rates of the data items are known by the server.

Our algorithm can also be applied to other hybrid data
delivery models with different system architectures. For in-
stance, models which use a shared uplink channel to receive
requests from the clients can maintain the uplink channel uti-
lization with our algorithm to obtain a reasonably close to
optimal system response time.

Since our adaptive data delivery algorithm is developed on
an ad hoc basis, for future work, we would like to develop
an algorithm with the use of control theory. For instance, we
would like to see how fuzzy control theory [23] can be applied
to maintain the on-demand request arrival rate.

Furthermore, indexing [4,14,17,19] should be incorpo-
rated into the data access mechanism in our model. The use
of indexing can help to reduce the power consumption of the
clients because they do not have to examine every data item
on the broadcast channel. Also, clients can turn to the on-
demand channels directly once they determine from the index
that the requested data item will not appear on the broadcast
channel, thus, system performance can also be improved.

Once indexing is used to assist the retrieval of data items
on the broadcast channel, broadcast scheduling [8,9,21,22] or
broadcast disks [1] can be used to improve the access time of
the data on the broadcast channel.

Finally, we would like to study the effect of allowing each
client to have more than one data request at a time, and those
requests will be buffered in the client’s local queue. Once
the on-demand point-to-point connection is set up, all the
buffered requests will be sent to the server. Depending on
the system workload, the server may reply only a few of them.
Those unanswered requests will be answered by the broadcast
channel or the on-demand channels some time later according
to a more dynamic data access mechanism.
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Appendix A. Derivation of sub-optimal upper bound and
unstable point

In order to derive the two threshold control parameters in our
system, we use the M/M/m model to represent the service
model [5]. The client generates requests with a negative ex-
ponential distribution. There are m = 10 servers (channels)
and an infinite number of clients in our system.11 This model
is known as the Erlang Delay System. We will focus on the
average waiting time,W , in terms of ρ. Specifically, we focus
on its slope, i.e.,W ’s change rate. We define the Sub-Optimal
Upper Bound Point to be a point where ∂W/∂λ equals to
a threshold K0. Similarly, the Unstable Point represents a

11 In our experiment, the number of clients N is at least 200. Since N � m,
the infinite client source model is adopted.



118 LIN, HU AND LEE

point where ∂W/∂λ equals to another threshold K1. The two
thresholds are the system’s QoS parameters which can be de-
cided based on how stable we want the system to be in face
of varying workloads. In our experiment, we set K0 in such
a way that when the request rate increases by 2 requests/s the
response delay increases by 1 second. We set K1 to be 10
times larger thanK0, i.e., K0 = 0.5, K1 = 5.

The average waiting time, W , is equivalent to the follow-
ing [5]:

W = pm

mµ(1− ρ)2 . (A.1)

In addition, we can derive the following [5]:

pm = m
mρm

m! p0, (A.2)

p0 =
[
m−1∑
n=0

(mρ)n

n! +
(mρ)m

m!(1− ρ)

]−1

. (A.3)

We then rewrite equation (A.1) to make ρ the only inde-
pendent variable so that we can calculate its derivative. How-
ever, since equation (A.3) is very complicated, we have to
simplify it. Since we know ρ should be close to 1 (ρ < 1),
the last factor of the summation in equation (A.3) is much
larger than the other factors.12 Thus, we replace the summa-
tion with the last factor to simplify equation (A.3):

p0 =
[

(mρ)m

m!(1− ρ)
]−1

= m!(1− ρ)
mmρm

. (A.4)

Plugging equation (A.4) into equation (A.2), we have:

pm = mmρm

m! ×
m!(1− ρ)
mmρm

= 1− ρ. (A.5)

Plugging equation (A.5) into equation (A.1), we have:

W = 1− ρ
mµ(1− ρ)2 =

1

mµ(1− ρ) . (A.6)

Therefore, we have:

∂W

∂λ
= ∂W

∂ρ

∂ρ

∂λ
= 1

mµ(1− ρ)2
∂(λ/mµ)

∂λ

= 1

(mµ)2(1− ρ)2 . (A.7)

We then derive ρ0 for the Sub-Optimal Upper Bound accord-
ing to the following equation:

1

(mµ)2(1− ρ)2 = K. (A.8)

Plugging m = 10, µ = 0.984,13 K0 = 0.5 into equa-
tion (A.8), we get ρ0 = 0.85. Therefore,

λSub-OptimalUpper Bound = ρ0mµ = 8.3 request/s.

12 This can be verified to be valid using the ρ values derived later.
13 µ = 8000

8000+128 = 0.984 request/s.

Similarly, plugging m = 10, µ = 0.984, K1 = 5
into equation (A.8), we get ρ1 = 0.955. Therefore,
λUnstable Point = ρ1mµ = 9.4 request/s.

Appendix B. Maximum evaluation time

As we know, the maximum evaluation time (MET) is an im-
portant tuning parameter for the performance of the proposed
scheme. In order to adapt to the changing workload, MET
should be set to the smallest possible value. However, an
MET value that is too small will lead to inadequate statistics
for calculating the relative popularity of the data items,14 as
we will see in the experiments. Therefore, keeping MET just
long enough to have adequate access statistics for the current
broadcast version is our main criteria for obtaining an appro-
priate value for MET.

The basic idea is the following: we should set MET long
enough that even for a very unpopular item, at least one record
of accessing the item can be sent to the server among all N
clients during the MET period. In this way, the relative pop-
ularity of almost all items can be recorded. The following
equation helps us to derive tMET:

λdi · tMET = p∗ (B.1)

where λdi is the request arrival rate for a very unpopular
item i, p∗ is the required access probability so that among N
clients, one record of access can likely be obtained and sent
to the server. In the following subsections, we will derive p∗
and λdi , respectively.

B.1. Derivation of p∗

We restate the problem according to the probability theory:
N clients are independently performing the same trial (with
positive probability p∗), i.e., Bernoulli trials. What’s the min-
imum value of p∗ such that with a specified confidence (prob-
ability c), positive results will occur at least once during the
N trials?

Let f denote the proportion of positive results, i.e., f =
# of positive results/N . We would like f � 1/N . It is the
same as

p∗ − f√
p∗(1− p∗)/N � p∗ − 1/N√

p∗(1− p∗)/N .

Since we know from probability theory that (p∗ − f )/√
p∗(1− p∗)/N satisfies Gaussian distribution with µ = 0,

σ = 1. Therefore, in order for this inequation holds with the
probability of confidence c (we set c = 0.95 in the experi-
ment), the following equation must satisfy:

p∗ − 1/N√
p∗(1− p∗)/N = −z (B.2)

where −z = −1.65 for c = 0.95.
Having solved this equation, we have

14 According to the MFA mechanism, a MFA vector will be discarded if it
doesn’t correspond to the current broadcast version.
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p∗ = z2 + 2±√
z4 + 4z2 − 4z2/N

2(N + z2)
.

For z = 1.65,N = 200,15 we have p∗ = 1.096× 10−3.

B.2. Derivation of λdi

In this subsection, we define the threshold for the request ar-
rival rates of the objects, above which each of the objects
is expected to have at least one record of access among all
N clients to be sent to the server during the MET period.
Since the objects access pattern is also modeled by a Gaussian
distribution, we similarly set a confidence c representing the
proportion of items that exceeds the threshold. For high ac-
curacy, we set c = 0.999 here, resulting in z ≈ 3. If
we put x = µ + 3σ , σ = 25 into the Gaussian prob-
ability density function (PDF): 1√

2πσ
e−(x−µ)2/(2σ 2), we get

pdi = 1.773× 10−4.
Since λdi = pdi × λ, we approximate the request fulfilling

time with the mean Think Time, we have λ = 1
10+10 = 1

20 .

Therefore, λdi = 1.773 × 10−4 × 1
20 = 8.87 × 10−6 re-

quests/sec.

B.3. Derivation of MET

Finally,

tMET = p∗

λdi
= 1.096× 10−3

8.87× 10−6
= 123.6 sec.

Therefore, we set tMET = 120 sec in our experiments.

Appendix C. Maximum evaluation cycle

We derive Maximum Evaluation Cycle’s counterpart – Mini-
mum Cycle Length (MCL) first. A Maximum Evaluation Cy-
cle (MEC) will be used instead of MET to bound the evalua-
tion time when the broadcast cycle length is below the lower
bound of MCL. This scenario occurs when all the broadcast
items (even the coolest one) have such a large access probabil-
ity p∗ that during the MET period, each client has accessed
more than once the unpopular items. This scenario should
be prevented since it will make the MFA mechanism less ef-
fective.16 This is the intrinsic reason why we should set a
Minimum Cycle Length (MCL) in our scheme.

We still use equation (B.1) to derive tMCL. Again, to
achieve a high accuracy, we set our confidence to 0.95, i.e.,
p∗ = 0.05. Here λdi is the request arrival rate for the most
unpopular item in the broadcast channel. As we know, during
an tMCL period, 10tMCL different items will be broadcast,17

15 In the experiment, the minimum number of clients is 200. Since MET is
fixed for all numbers of clients, we must guarantee that it works for each
setting. Since N = 200 is the most strict case to satisfy, we set N = 200
here.

16 The MFA mechanism has only 1 bit for each item. It can not tell the
difference between accessing an item once or more than once.

17 According to the bandwidth and object size set in the experiment,

# of objects = 80,000∗tMCL
8000 = 10tMCL.

which are items with x-coordinate in the range of [µ−5tMCL,
µ + 5tMCL] in figure 3. Meanwhile, the average request ful-
filling time for all broadcast items is tMCL/2, resulting in the
total request arrival rate, i.e., λ, equal to 1

10+tMCL/2
.

In a way similar to the derivation of equation (B.1), we
derive the following equation:

pdi × λ× tMET = p∗. (C.1)

We put x = µ + 5tMCL, σ = 25 into equation (C.1) and
obtain:

1

25
√

2π
e−25t2MCL/(2×252) × 1

10+ tMCL/2
× 120 = 0.05.

(C.2)
After solving this equation with approximation, we obtain
tMCL ≈ 7. Therefore, MEC = tMET

tMCL
= 120

7 ≈ 20.
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