The Insertionsort Extra Credit

After performing the average case analysis of Insertionsort we asked the following exra credit question: What is the value of

$$
\sum_{p=1}^{n} E\left(e_{p}\right)
$$

where

$$
e_{p}= \begin{cases}0 & \text { if } p \text { is smaller than all items that appear to } p \prime \text { 's left } \\ 1 & \text { otherwise. }\end{cases}
$$

In this problem we assume that the input to Insertionsort is equally likely to be any of the n ! permutations of $1, \ldots, n$.

For $j \leq n$ set

$$
X_{j}= \begin{cases}0 & \text { if } a_{j} \text { is smaller than all items that appear to } a_{j} \text { 's left }, \\ 1 & \text { otherwise }\end{cases}
$$

Since the input is a permutation of $1, \ldots, n$ we have that

$$
\sum_{j=1}^{n} X_{j}=\sum_{p=1}^{n} e_{p}
$$

so, by the linearity of the expectation operator,

$$
\sum_{j=1}^{n} E\left(X_{j}\right)=E\left(\sum_{j=1}^{n} X_{j}\right)=E\left(\sum_{p=1}^{n} e_{p}\right)=\sum_{p=1}^{n} E\left(e_{p}\right)
$$

The important observation now is that
$\operatorname{Pr}\left(X_{j}=1\right)=1-\operatorname{Pr}\left(X_{j}=0\right)=1-\frac{1}{j}$ (see over) so

$$
E\left(X_{j}\right)=1 \cdot \operatorname{Pr}\left(X_{j}=1\right)+0 \cdot \operatorname{Pr}\left(X_{j}=0\right)=1-\frac{1}{j}
$$

Thus

$$
\sum_{p=1}^{n} E\left(e_{p}\right)=\sum_{j=1}^{n} E\left(X_{j}\right)=\sum_{j=1}^{n}\left(1-\frac{1}{j}\right)=n-\sum_{j=1}^{n} \frac{1}{j}
$$

Finding $\sum_{p=1}^{n} E\left(e_{p}\right)=n-\sum_{j=1}^{n} \frac{1}{j}$ was enough to get the extra credit correct.
To go further note that the sum $\sum_{j=1}^{n} \frac{1}{j}$ is usually denoted by H_{j} and is called the n 'th Harmonic number; it is known that $H_{n}=\ln n+O(1)$ (page 1060 in CLRS). Thus $\sum_{p=1}^{n} E\left(e_{p}\right)=n-\ln n-O(1)$.

On the previous page we used the fact that $\operatorname{Pr}\left(X_{j}=0\right)=\frac{1}{j}$. Why is this true?
To see that this is true note that we can partition the n ! permutations of $1, \ldots, n$ into different equivalency classes as follows: Two permutations $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, n_{n}$ will be put in the same class if and only if

$$
\forall i>j, \quad a_{i}=b_{i}
$$

(Note that this gives $n!/(n-j)!$ different classes). This means that, as sets, $\left\{a_{1}, \ldots, a_{j}\right\}=$ $\left\{b_{1}, \ldots, b_{j}\right\}$ so each class is precisely identified by the j first items in its permutations. Therefore each class contains exactly j ! permutations.

Of these j ! permutations exactly $(j-1)$! have the property that their j th element is smaller than all items to its left (why?). This means that $1 / j$ of the permutations in the class have the property that $X_{j}=0$. Since this is true of every class and the classes partition the set of permutations this implies that $1 / j$ of all permutations have $X_{j}=0$ which is just another way of saying that $\operatorname{Pr}\left(X_{j}=0\right)=\frac{1}{j}$.

