
Design and Analysis of Algorithms

Revised 05/02/03

Comp 271

Mordecai Golin

Department of Computer Science, HKUST

Information about the Lecturer

� Dr. Mordecai Golin

� Office: 3559

� Email: golin@cs.ust.hk

� http://www.cs.ust.hk/˜golin

� Office hours: Just drop by or send email for ap-
pointment.

1

Textbook and Lecture Notes

Textbook: Cormen, Leiserson, Rivest, Stein:
“Introduction to Algorithms”, 2.ed. MIT Press 2001.

Lecture Slides: Available on course webpage
http://www.cs.ust.hk/course/comp271

References: Recommendations

1. Dave Mount: Lecture Notes
Available on course web page

2. Jon Bentley: Programming Pearls (2nd ed). Addison-Wesley,
2000.

3. Michael R. Garey & David S. Johnson: Computers and in-
tractability : a guide to the theory of NP-completeness. W.
H. Freeman, 1979.

4. Robert Sedgewick: Algorithms in C++ (3rd ed) Volumes 1
and 2. Addison-Wesley, 1998.

2

About COMP 271

A continuation of COMP 171, with advanced topics
and techniques. Main topics are:

1. Design paradigms: divide-and-conquer, greedy
algorithms, dynamic programming.

2. Analysis of algorithms (goes hand in hand with
design).

3. Graph Algorithms.

4. Complexity classes (P, NP, NP-complete).

Prerequisite: Discrete Math. and COMP 171

3

We assume that you know

� Sorting: Quicksort, Insertion Sort, Mergesort, Radix Sort
(with analysis). Lower Bounds on Sorting.

� Big
�����

notation and simple analysis of algorithms

� Heaps

� Graphs and Digraphs. Breadth & Depth first search and
their running times. Topological Sort.

� Balanced Binary Search Trees (dictionaries)

� Hashing

4

Tentative Syllabus

� Introduction & Review

� Maximum Contiguous Subarray:
case study in algorithm design

� Divide-and-Conquer Algorithms: Mergesort, Polynomial Mul-
tiplication, Randomized Selection

� Graphs:

– Review: Notation, Depth/Breadth First Search

– Cycle Finding & Topological Sort

– Minimum Spanning Trees: Kruskal’s and Prim’s algo-
rithms

– Dijkstra’s shortest path algorithm

� Dynamic Programming: Knapsack, Chain Matrix Multipli-
cation, Longest Common Subsequence, All Pairs Shortest
Path

� Greedy algorithms: Activity Selection, Huffman Coding

� Complexity Classes: Nondeterminism, the classes P and
NP, NP-complete problems, polynomial reductions

5

Other Information

� Lecture and tutorial schedule, TAs.
No Tutorials this week.
Tutorials start on February 14, 2003.

� Question banks: To help you review

� Assignments: 4, each worth 5% of grade
Midterm: worth 35% of grade
Final exam (comprehensive): worth 45% of grade.

� Final Grade. Will be curved based on class per-
formance. Guaranteed Grades:
Average of � ��� � �
Average of � ��� � �
Average of � 	�� �

Average of � ��� � �

6

Classroom Etiquette

� No pagers and cell phones – switch off in class-
room.

� Latecomers should enter QUIETLY.

� No loud talking during lectures.

� But please ask questions and provide feedback.

7

Lecture 1: Introduction

Computational Problems and Algorithms

Definition: A computational problem is a specifica-
tion of the desired input-output relationship.

Definition: An instance of a problem is all the inputs
needed to compute a solution to the problem.

Definition: An algorithm is a well defined computa-
tional procedure that transforms inputs into outputs,
achieving the desired input-output relationship.

Definition: A correct algorithm halts with the correct
output for every input instance. We can then say that
the algorithm solves the problem.

8

Example of Problems and Instances

Computational Problem: Sorting

� Input: Sequence of � numbers
�������	�
�	�
������

.

� Output: Permutation (reordering)
���� � ��������	�	�
�	����� �

such that
� � � � � � � � �	�
� � � ��

.

Instance of Problem:
� � ����� � � 	 ��������� � �

9

Example of Algorithm: Insertion Sort

In-Place Sort: uses only a fixed amount of storage
beyond that needed for the data.

Pseudocode: � is an array of numbers

for � � �
to length(�)�

key = � ����� ;� � � � �
;

while (
� � �

and � � � �
	 key)�
� � ��� � �� � � � � ;� � � � �

;�

� � ��� � �� key;�

Pause: How does it work?

10

Insertion Sort: an Incremental Approach

To sort a given array of length � , at the
�
th step it

sorts the array of the first
�

items by making use of the
sorted array of the first

� � �
items in the � � � ���

th
Step.

Example: Sort � � � � ����������� � with Insertion Sort.

Step 1:
� � � ��������� �

Step 2:
� ��� � � ����� �

Step 3:
� ������� � � � �

Step 4:
� ��������� � � �

11

Analyzing Algorithms

Predict resource utilization

1. Memory (space complexity)

2. Running time (time complexity)

Remark: Really depends on the model of computa-
tion (sequential or parallel). We usually assume se-
quential.

12

Analyzing Algorithms – Continued

Running time: the number of primitive operations
used to solve the problem.

Primitive operations: e.g., addition, multiplication,
comparisons.

Running time: depends on problem instance, often
we find an upper bound: F(input size)

Input size: rigorous definition given later.

1. Sorting: number of items to be sorted

2. Multiplication: number of bits, number of digits.

3. Graphs: number of vertices and edges.

13

Three Cases of Analysis

Best Case: constraints on the input, other than size,
resulting in the fastest possible running time.

Worst Case: constraints on the input, other than size,
resulting in the slowest possible running time.
Example. In the worst case Quicksort runs in � � �

� �
time on an input of � keys.

Average Case: average running time over every pos-
sible type of input (usually involve probabilities of dif-
ferent types of input).
Example. In the average case Quicksort runs in � � � ����� � �
time on an input of � keys. All ��� inputs of � keys are
considered equally likely.

Remark: All cases are relative to the algorithm under
consideration.

14

Three Analyses of Insertion Sorting

Best Case: � � � � � � � � � � � � � � � �	�
� � � � ��� .

The number of comparisons needed is equal to
� � � � � � �
�	� � �
� ��� ��

�

� � � � � � � � � � �

Worst Case: � � � � � � � � � � � � � � � �	�
� � � � ��� .

The number of comparisons needed is equal to

� � � � �	�
� � � � � ��� � � � � � ���
� � � � �

� �
�

Average Case: � � �
� �

assuming that each of the � �
instances are equally likely.

15

Big Oh

� � � � � � ��� � � � � : � � � � is an asymptotically upper
bound for

� � � � .
� ��� � � � � � � � � � � ��� � 	 	 and ��
 	 	

such that 	 � � � � � � � � � � �
for all � � �
� �

Remark: “
� � � � � � ��� � � � � ” means that

� � � � � � ��� � � � � �

Examples:
(1) �

� � � � � � � �
� �

.
(2)

� 	�	 �
�
� � 	�	 � � � � �

� �
.

(3) � �����
�
� � � � �

� �
.

(4) �
�
� � �

� � �� � � �
� �

.
(5) � � ��� 	 � �

��� ��� � � � � ������� � � �
16

Big Omega

� � � � � � ��� � � � � : � � � � is an asymptotically lower
bound for

� � � � .
� ��� � � � � � � � � � � ��� � 	 	 and �
 	 	

such that 	 � � � � � � � � � � �
for all � � �
� �

Examples:
(1)

� 	�	 �
�
� � 	�	 � � � � �

� � � � � � � � � � ��� .
(2) �

�
� � � � � .

(3) �
�
�� � � �

�
� � � � � .

(3) Does
� � � � � � ��� � � � � imply � � � � � � � � � � � � ?

(4) Does
� � � � � � ��� � � � � imply � � � � � � � � � � � � ?

17

Big Theta

� � � � � � ��� � � � � : � � � � is an asymptotically tight
bound for

� � � � .
� ��� � � � � � � � � � � ��� �
 	 	 � � � 	 	 and

� � 	 	
such that 	 � � � � � � � � � � � � � � � � � � �
for all � � �
� �

Examples:
(1) � �

�
� � � � � � � � �

� �
(2) � �

�
� � � � � � � � �

� � � � � � �

18

Note that if
� � � � � � ��� � � � � �

then
� � � � � � ��� � � � � and

� � � � � � ��� � � � � �
� � � � � � �

In the other direction, if
� � � � � � ��� � � � � and

� � � � � � ��� � � � � �

then
� � � � � � ��� � � � � �

� � � � � � �
� � � ��� � ��� � � � � � � � � ��� ����� � � � �

and
� � � ��� � �	� � � � �

19

Some thoughts on Algorithm Design

� Algorithm Design, as taught in this class, is mainly
about designing algorithms that have small big
� � � running times.

� “All other things being equal”, � � � ����� � � algo-
rithms will run more quickly than � � �

� �
ones and

� � � � algorithms will beat � � � ����� � � ones.

� Being able to do good algorithm design lets you
identify the hard parts of your problem and deal
with them effectively.

� Too often, programmers try to solve problems us-
ing brute force techniques and end up with slow
complicated code! A few hours of abstract thought
devoted to algorithm design could have speeded
up the solution substantially and simplified it.

20

Note: After algorithm design one can continue on to
Algorithm tuning which would further concentrate on
improving algorithms by cutting cut down on the con-
stants in the big � � � bounds. This needs a good un-
derstanding of both algorithm design principles and
efficient use of data structures. In this course we will
not go further into algorithm tuning. For a good intro-
duction, see chapter 9 in Programming Pearls, 2nd ed
by Jon Bentley.

21

