Lecture 3: Divide-and-Conquer Algorithms

We just derived an O(n log n) divide-and-conquer al-
gorithm for solving the Maximum Contiguous Subar-
ray problem.

In COMP171 you already saw Mergesort, an O(n logn)
time divide-and-conguer sorting algorithm.

Divide-and-Conquer is not a trick. It is a very use-

ful general purpose tool for designing efficient algo-
rithms.

The Basic Divide-and-Conqguer Approach

Divide: Divide a given problem into two subproblems
(ideally of approximately equal size).

Conquer: Solve each subproblem (directly or
recursively), and

Combine: Combine the solutions of the two subprob-
lems into a global solution.

Note: the hard work and cleverness is usually in the
Combine step.

MERGESORT

Mergesort(A,,5) : Sort Alz...]

If (2 % j) o o

{ Mergesort (A,i, L%J.J). M (%)
Mergesort (A, 1+ L%J,j) M (%)
Merge the two sorted lists O(3 —1)

Ali. B2 and A |1+ |52], 5]
and return complete sorted list

}

The algorithm sorts an array of size N by splitting it
Into two parts of (almost) equal size, recursively sort-
ing each of them, and then merging the two sorted
subarrays back together into a fully sorted listin O (V)
time (how?).

The running time of the algorithm satisfies
VN >1, M(N)<2M(N/2)+ O(N)
which we previously saw implies

M(N) = O(N log N).

Mergesort Example

12

23

13

8

4

11

24

/

12

23

3

13

split

\

8

11

24

sort each sublist

12

13

23

N\

Merge

4

11

24

/

11

12

13

23

24

A More General Divide-and-Conquer Approach

Divide: Divide a given problem into subproblems (ide-
ally of approximately equal size).
No longer only TWO subproblems

Conquer: Solve each subproblem (directly or
recursively), and

Combine: Combine the solutions of the subproblems
Into a global solution.

The Polynomial Multiplication Problem
another divide-and-conquer algorithm

Problem:
Given two polynomials of degree n — 1

A(x) ag+ayjz+---+ anz” 1
B(z) bo + b1z + -+ - + bpz™ 1,

compute the product A(z)B(x).

Example:
A(z) = 1+ 2z+ 322
B(z) = 34 2z+ 227
A(z)B(z) = 3+ 5z + 15z° 4 102> + 6%

Question: How can we efficiently calculate the coef-
ficients of A(x)B(x)7

Assume that the coefficients a; and b; are stored in
arrays A[0...n—1]and B[0...n — 1].

Cost of any algorithm is number of scalar multiplica-
tions and additions performed.

Convolutions

Let A(x) = >, a;z; and B(xz) = Y71 b;z;.

Set C(z) = Xt ¢;a' = A(z)B(x).

Then
k
¢ =) aiby_;
i=0
forall0 < k < m + n.
Definition: The vector (cg,c1,. .., Cpntn)
Is the convolution of the vectors
(ao, A1y, a,n) and (bo, by, ... ,bm).

Calculating convolutions (and thus polynomial multi-
plication) is a major problem in digital signal process-

ing.

The Direct (Brute Force) Approach

Let A(x) = 11 a;x; and B(x) = b iy

’L_

Set C(z) = Y27 5% ciz® = A(z)B(z) with

k

cr = ajbgp_;
i=0

forall0 < k <2n — 2.

The direct approach is to compute all ¢;, using the for-
mula above. The total number of multiplications and
additions needed are n2 and (n — 1)2 respectively.
Hence the complexity is ©(n2).

Questions: Can we do better?
Can we apply the divide-and-conquer approach to de-
velop an algorithm?

The Divide-and-Conquer Approach

The Divide Step: Define

Ag(z) = a0+a1x—|—--~—|—aL%J_1a}L%J_l,
Ai(z) = aL%J+aL%J+1fv+---+anxn_L%J.

Then A(z) = Ag(z) + Aq(z)z!2!.

Similarly we define Bo(x) and B1(x) such that
B(z) = Bo(z) + By (a)z!2/.
Then

A(z)B(z) = Ap(z)Bo(z) +nAo(x)Bl(x)xL%J +
Al(f'?)BO(fE)ijJ + A1(x)B; (:B):ch?J.

Remark: The original problem of size n is divided into
4 problems of input size %

Example:

A(z) = 2452+ 322423
B(z) = 14 2z+42z°4 32°
A(z)B(z) = 249z 4 172+ 232> +232% 4+ 112° 4 32°

Ao(z) =2+ 52, Ai(x) =3+2, A(x) = Ao(z) + A1(z)z?
Bo(z) =142z, Bi(z) =243z, B(z) = Bo(z) + B1(z)z?

Ao(z2)Bo(z) = 24 9z + 1022
Ai1(z)Bi(z) = 64 11X + 322
Ao(2)Bi(z) = 4+ 16z + 1522
A1(2)Bo(z) = 347z 4+ 227

Aog(z)Bi(z) + A1(x)Bo(x) 7+ 23z 4 1727

Ao(z)Bo(x)
+(Ao(z)B1(x) + A1(x) Bo(z))x?
4+ A1 (2)Bi(z)z* = 2492+ 1727
42323 4+ 23z% +
+11z° + 32°

10

The Divide-and-Conquer Approach

The Conquer Step: Solve the four subproblems, i.e.,
computing

Ao(z)Bo(z), Ao(z)Bi(z),
A1(z)Bo(z), A1(z)Bi(z)

by recursively calling the algorithm 4 times.

11

The Divide-and-Conquer Approach

The Combining Step: Adding the following four poly-
nomials

Ao(z)Bo(x)
+Ao(z) B (2)z!2]
+A1(z) Bo(z)z 2.
+A1(z) By (2)2212).

takes ©(n) operations. Why?

12

The First Divide-and-Conguer Algorithm

PolyMultil(A(xz), B(x))
{

Ao(2) = ag+arz + -+ +ap_yalBY
USE]

Bo(a) = bo +brz+ -+ +bya 227
By(x) = bjg) +bg g+ +bua" 2]

U(x) = PolyMultil(Ag(x), Bo(x));
V(x) = PolyMultil(Ag(x), B1(x));
W (z) = PolyMultil(A1(x), Bo(x));
Z(x) = PolyMultil(A1(z), B1(x));

return (U(a:) + [V(2) + W(2)]zl3) + Z(az)wQL%J> ;

13

Running Time of the Algorithm

Assume n is a power of 2, n = 2", By substitution (expansion),

T(n) = 4T(E>+cn
— 4[4T<)—I—c]—I—cn
= 42T(< S) + (L +2)en
= 42 [4T< >+c—]+(1+2)cn
— 43T(<)—I—(1—|—2+22)cn
i1

= 4'T((%) +) 2icn (induction)

i=0

— 4hT(() + ZQJCn

= n?T(1) + cn(n —1)
h—1
(sincen =2"and » 2/ =2"—1=n-1)
j=0
= O(n?).

The same order as the brute force approach!
14

Comments on the Divide-and-Conquer Algorithm

Comments: The divide-and-conquer approach makes
no essential improvement over the brute force approach!

Question: Why does this happen.

Question: Can you improve this divide-and-conquer
algorithm?

15

Problem: Given 4 numbers
AO7 A17 B07 Bl

how many multiplications are needed to calculate the
three values

AgBg, AgB1 + A1Bg, A1B17

This can obviously be done using 4 multiplications but
there is a way of doing this using only the following 3:

U = (Ag+ A1)(Bo + B1)

|4 AoBg
%4 A1B1

Y and Z are what we originally wanted and

AoB1 + A1Bg=U -V —W.

16

Improving the Divide-and-Conquer Algorithm

Define

U(x) (Ao(z) + A1(z)) X (Bo(x) + Bi(x))
V(z) = Ao(z)Bo(z)
W(z) A1(z)Bi1(x)

Then

U(z)—V(z)-W(z) = Ag(z)B1(z)+A1(z)Bo(z).
Hence A(xz)B(x) is equal to

V(z)+[U(x)-V(x)— W(x)]xL%J + W (x) x 215

Conclusion: You need to call the multiplication pro-
cedure 3, rather than 4 times.

17

The Second Divide-and-Conquer Algorithm

PolyMulti2(A(x), B(x))

{

Ao(a:) = ap + alx + s + CLL%J_le%J_l;

A(@) = aygy + o+ oo+ a1

Bo() = bo + b1z + -+ + by _zl 7,

Bi(z) = by + gz + -+ bz 2,

U(x) = PolyMulti2(Ao(z) + A1(x), Bo(z) + Bi(x))

V(x) = PolyMulti2(Ag(x), Bo(x));

W (x) = PolyMulti2(A1(x), B1(x));

return (V(a:) + [U(x) — V(x) — W(m)]xL%J 4+ W(:B):L'QL%J) ;
}

18

Running Time of the Modified Algorithm

Assume n = 2. Let Ig « denote log, .
By the substitution method,

T(n) = T(E>—I—cn
= 3[3T<)—I—c]—I—cn
= 32T(§)—|—(1+—>cn
2
— 32 [3T<)—l—c—]—|—<1—|—§—l—%>cn
2
_ 33T(%)-|—<1-|—5+B] >cn
: h—1 j
- (245
<2h) ;) 2| "
Wehave
(2Ig 3)h - 2h|g3 (Qh)lg3 — n|g3 1 586,
and
2317 (3/2) -1 3h
;H =321 =2. E—Q—Qn'gf‘3 12
Hence

T(n) = O ((n'93T(1) +2cn'93) = 0(n'93).
19

Comments

e The divide-and-conquer approach doesn’t always
give you the best solution.
Our original D-A-C algorithm was just as bad as
brute force.

e There is actually an O(nlogn) solution to the
polynomial multiplication problem.
It involves using the Fast Fourier Transform algo-
rithm as a subroutine.
The FFT is another classic D-A-C algorithm (Chapt
30 in CLRS gives detalls).

e The idea of using 3 multiplications instead of 4 is
used in large-integer multiplications.
A similar idea is the basis of the classic Strassen
matrix multiplication algorithm (CLRS, Chapter 28).

20

