
Lecture 3: Divide-and-Conquer Algorithms

We just derived an
� ��� ����� �
	

divide-and-conquer al-
gorithm for solving the Maximum Contiguous Subar-
ray problem.

In COMP171 you already saw Mergesort, an
� ��� ����� �
	

time divide-and-conquer sorting algorithm.

Divide-and-Conquer is not a trick. It is a very use-
ful general purpose tool for designing efficient algo-
rithms.
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The Basic Divide-and-Conquer Approach

Divide: Divide a given problem into two subproblems
(ideally of approximately equal size).

Conquer: Solve each subproblem (directly or
recursively), and

Combine: Combine the solutions of the two subprob-
lems into a global solution.

Note: the hard work and cleverness is usually in the
Combine step.
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MERGESORT

Mergesort
��� ������� 	 �

Sort
� 	
����������

If
��� �� � 	�

Mergesort � � �������������� �! " � �$#%��  
Mergesort � � �$& ' � ������ � ���  " � �$#%��  
Merge the two sorted lists

� ��� ( � 	� )*������+�,������ �- and
� ).& ' �������� � ��� -

and return complete sorted list/
The algorithm sorts an array of size 0 by splitting it
into two parts of (almost) equal size, recursively sort-
ing each of them, and then merging the two sorted
subarrays back together into a fully sorted list in

� � 0 	

time (how?).

The running time of the algorithm satisfies1 0 2 &3� " � 0 	 4 5 " � 0 6 5 	7' � � 0 	

which we previously saw implies

" � 0 	 � � � 0 ����� 0 	8�
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Mergesort Example
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12 23 3 13 8 4 11 24

12 23 3 13 8 4 11 24

3 12 13 23 4 8 11 24

3 4 8 11 12 13 23 24

sort each sublist

split

Merge
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A More General Divide-and-Conquer Approach

Divide: Divide a given problem into subproblems (ide-
ally of approximately equal size).
No longer only TWO subproblems

Conquer: Solve each subproblem (directly or
recursively), and

Combine: Combine the solutions of the subproblems
into a global solution.
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The Polynomial Multiplication Problem
another divide-and-conquer algorithm

Problem:
Given two polynomials of degree

� ( &
� ��� 	 � ��� ' ��� � ' ���	� ' ��
 � 
 # �
� ��� 	 � �� ' �� � ' ���	� ' �
 � 
 # � �

compute the product
� ��� 	 � ��� 	

.

Example:� ��� 	 � & ' 5�� ' ��� �
� ��� 	 � � ' 5�� ' 5�� �� ��� 	 � ��� 	 � � ' ��� ' &���� � ' &������ ' �����

Question: How can we efficiently calculate the coef-
ficients of

� ��� 	 � ��� 	��

Assume that the coefficients � � and  � are stored in
arrays

� 	�� ���� � ( & �
and

� 	�� ���� � ( & �
.

Cost of any algorithm is number of scalar multiplica-
tions and additions performed.
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Convolutions

Let
� ��� 	 � � 
��� � � � � � and

� ��� 	 � � ���� �  � � � .
Set � ��� 	 � � 
 � �� � � � � � � � � ��� 	 � ��� 	

.

Then

� � � �

��� �
� �  � #%�

for all
� 4 � 4 � ' �

.

Definition: The vector
� � � � � � �������� � � � 
 	

is the convolution of the vectors
� ��� � � � ������� � 
 	 and

�  � � �� ��������  � 	
.

Calculating convolutions (and thus polynomial multi-
plication) is a major problem in digital signal process-
ing.
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The Direct (Brute Force) Approach

Let
� ��� 	 � � 
 # ���� � � � � � and

� ��� 	 � � 
 # ���� �  � � � .
Set � ��� 	 � � � 
 # �� � � � � � � � � ��� 	 � ��� 	

with

� � � �

��� �
� �  � #%�

for all
� 4 � 4 5 � ( 5

.

The direct approach is to compute all � � using the for-
mula above. The total number of multiplications and
additions needed are

� �
and

��� ( & 	 �
respectively.

Hence the complexity is � ��� � 	
.

Questions: Can we do better?
Can we apply the divide-and-conquer approach to de-
velop an algorithm?
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The Divide-and-Conquer Approach

The Divide Step: Define� � ��� 	 � ��� ' � � � ' �	��� ' ��� 
 ��� # � � � 
 ��� # � �� � ��� 	 � � � 
 ��� ' � � 
 ��� � � � ' �	�	� ' � 
 � 
 # � 
 ��� �
Then

� ��� 	 � � � ��� 	7' � � ��� 	 �
� 
 ���

.

Similarly we define
� � ��� 	 and

� � ��� 	 such that

� ��� 	 � � � ��� 	 ' � � ��� 	 �
� 
 ��� �

Then� ��� 	 � ��� 	 � � � ��� 	 � � ��� 	 ' � � ��� 	 � � ��� 	 �
� 
 ��� '

� � ��� 	 � � ��� 	 �
� 
 ��� ' � � ��� 	 � � ��� 	 � � � 
 ��� �

Remark: The original problem of size
�

is divided into
4 problems of input size


 � .
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Example:� ����� � � � � � � � ��� � �
	
� ����� � � � � � � � � � � � � 	� ����� � ����� � � �  � � ��� ��� � � � ��	 � � � ��� � � � ��� � � ���

�
� ����� � � � � ���

�
� ����� � � � ��� � ����� �

�
� ����� � �

� ������� �� � ����� � � � � ��� � � ����� � � � � ��� � ����� � � � ����� � � � ������� �
�
� ����� � � ����� � � �  � � �	� �
��
� ����� � � ����� � � � � ��� � � � ��
� ����� � � ����� � � � � � � � � � �
��
� ����� � � ����� � � � � � � � � ��

� ����� � � ����� � �
� ����� � � ����� � � � � � � � ��� �
�
�
� ����� � � ������ � � � ����� � � ����� � �

� ����� � � ����� ��� �� �
� ����� � � ������� � � � �  � � ��� � �� � � � 	 � � � � � �� � � ��� � � ���
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The Divide-and-Conquer Approach

The Conquer Step: Solve the four subproblems, i.e.,
computing � � ��� 	 � � ��� 	8� � � ��� 	 � � ��� 	8�� � ��� 	 � � ��� 	8� � � ��� 	 � � ��� 	

by recursively calling the algorithm 4 times.
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The Divide-and-Conquer Approach

The Combining Step: Adding the following four poly-
nomials � � ��� 	 � � ��� 	' � � ��� 	 � � ��� 	 �

� 
 ���
' � � ��� 	 � � ��� 	 �

� 
 ���
' � � ��� 	 � � ��� 	 � � � 
 ��� �

takes � ���
	
operations. Why?
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The First Divide-and-Conquer Algorithm

PolyMulti1
��� ��� 	8� � ��� 	 	�

� � ��� 	 � � � ' � � � ' ���	� ' � � 
 ��� # � � � 
 � � # ���� � ��� 	 � ��� 
 ��� ' ��� 
 ��� � � � ' �	�	�8' � 
 � 
 # � 
 ��� �
� � ��� 	 � �� ' �� � ' ���	� '  � 
 ��� # � � � 
 ��� # � �
� � ��� 	 �  � 
 ��� '  � 
 ��� � � � ' ���	� ' �
 � 
 # � 
 ��� �
� ��� 	 � � ���	� " 
 ��� � & ��� � ��� 	8� � � ��� 	 	

� ��� 	 � � ���	� " 
 ��� � & ��� � ��� 	8� � � ��� 	 	
�� ��� 	 � � ����� " 
 ��� � & ��� � ��� 	8� � � ��� 	 	
�� ��� 	 � � ���	� " 
 ��� � & ��� � ��� 	8� � � ��� 	 	
�

����������� � � ��� 	 ' 	  ��� 	 ' � ��� 	 � � � 
 ��� ' � ��� 	 � � � 
 ����� �
�
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Running Time of the Algorithm

Assume



is a power of 2,

 � ���

. By substitution (expansion),

� � 
 � � � � � 
 �  � � 


� � ) � � � 
� �  � �

 � - � � 


� � � � � � 
� �  � � � � � � � 

� � � ) � � � 
� 	  � �


� � - � � � � � � � 

� � 	 � � � 
� 	  � � � � � � � � � � 


...

� ��� � � � 
� �  � ��� �
�
	 �

� � � 
 (induction)

...

� � � � � � 
� �  � � � �
�
	 �

� � � 

� 
 � � � � � � � 
 � 
 # � �

�
since


 � ���
and

� � �
�
	 �

� � � � � # � � 
 # � �

� � � 
 � ��

The same order as the brute force approach!
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Comments on the Divide-and-Conquer Algorithm

Comments: The divide-and-conquer approach makes
no essential improvement over the brute force approach!

Question: Why does this happen.

Question: Can you improve this divide-and-conquer
algorithm?
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Problem: Given 4 numbers� � � � � � � � � � �

how many multiplications are needed to calculate the
three values� � � � � � � � � ' � � � � � � � � � �

This can obviously be done using 4 multiplications but
there is a way of doing this using only the following 3:� � ��� � ' � � 	 � � � ' � � 	 � � � � �� � � � � �

�
and

�
are what we originally wanted and� � � � ' � � � � � � (  ( � �
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Improving the Divide-and-Conquer Algorithm

Define� ��� 	 � � � � ��� 	7' � � ��� 	 	 � � � � ��� 	 ' � � ��� 	 	 ��� 	 � � � ��� 	 � � ��� 	� ��� 	 � � � ��� 	 � � ��� 	

Then� ��� 	8(  ��� 	8( � ��� 	 � � � ��� 	 � � ��� 	!' � � ��� 	 � � ��� 	8�
Hence

� ��� 	 � ��� 	
is equal to ��� 	�' 	 � ��� 	 (  ��� 	 ( � ��� 	 � � � 
 � � ' � ��� 	 � � � � 
 � �

Conclusion: You need to call the multiplication pro-
cedure 3, rather than 4 times.
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The Second Divide-and-Conquer Algorithm

PolyMulti2
� � ����� � � ����� �

� �
� ����� � � � � � � � � ����� � ����� �	� � � �

� � � � � ��
�
� ����� � ��� � � � � ��� � � �� � � � ������� � � � � � ��� ��� 


� � ����� � � � � � � � � ����� � ��� � � � � � �
��� ��� � � 


� � ����� � ����� �	� � ����� ���� � � � ����� � � � � � � � � � � 


� ����� � ��������� ���! � � � � � ����� � �
� ����� � � � ����� � � � ����� �" ����� � �������#� ���! � � � � � ����� � � � ����� � 
$ ����� � �������#� ���! � � � � � ����� � � � ����� � 


%�&('�)*%,+ � " ����� � - � ����� # " ����� # $ �����/. � � � � � � $ ������� � � � � �  

0
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Running Time of the Modified Algorithm

Assume

 � � �

. Let ��� �
denote ����� � � 

By the substitution method,
� � 
 � � � � � 
 �  � � 


� � ) � � � 
� �  � �

 � - � � 


� � � � � 
� �  � � � � � � � � 


� � � ) � � � 
� 	  � �

� � - � � � � �� � � �� � � � 


� � 	 � � 
� 	  � � � �� � � ���� � � 


...

� � � � � 
� �  � � � �
�
	 �

� �� � � � 
 
We have

� � � � �	��
 	 � � � � � ��
 	 � � � � � ��
 	 � 
 ��
 	  
 ��� ����� �
and

� � �
�
	 �

� ���� � �
� ��� � � � # �
��� � # � � � � �

�� � # � � � 
���
 	 � � # � 
Hence� � 
 � � � � 
 ��
 	 � � � � � � � 
 ��
 	 � � � � 
 ��
 	 ��
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Comments

� The divide-and-conquer approach doesn’t always
give you the best solution.
Our original D-A-C algorithm was just as bad as
brute force.

� There is actually an
� ��� � ��� �
	

solution to the
polynomial multiplication problem.
It involves using the Fast Fourier Transform algo-
rithm as a subroutine.
The FFT is another classic D-A-C algorithm (Chapt
30 in CLRS gives details).

� The idea of using 3 multiplications instead of 4 is
used in large-integer multiplications.
A similar idea is the basis of the classic Strassen
matrix multiplication algorithm (CLRS, Chapter 28).
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