Lecture 6: Breadth-First Search

Outline of this Lecture

- The shortest path problem.
- The breadth-first search algorithm.
- The running time of BFS.
- The correctness proof.

Note: We introduce BFS for undirected graphs, but the same algorithm will also work for directed graphs.

Shortest Paths

Example: 3 simple paths from the source s to b :

$$
\langle s, b\rangle,\langle s, a, b\rangle,\langle s, e, d, b\rangle
$$

of length 1, 2, 3 respectively. So the shortest path from s to b is $\langle s, b\rangle$. The shortest paths from s to other vertices are

$$
\langle s, a\rangle,\langle s, b\rangle,\langle s, b, c\rangle,\langle s, b, d\rangle,\langle s, e\rangle .
$$

There are two shortest paths from s to d.

The Shortest Path Problem

Distance $d[v]$: The length of a shortest path from s to v. For example $d[c]=2$. We define $d[s]=0$.

The Problem: Given a graph $G=(V, E)$ and a source vertex $s \in V$, find the distances $d[v]$ and a shortest path from s to each other vertex in G.

What Does the Breadth-First Search Do

Given a graph $G=(V, E)$, the BFS returns

- the distances $d[v]$ from s to v;
- the predecessors pred[$v]$, which is used to derive a shortest path from s to every other vertex v.

> BFS is actually returning a shortest path tree in which the unique path from s to node u is a shortest path from s to u in the original graph.

Remarks: In addition to the two arrays $d[v]$ and pred[v], the BFS also uses another auxiliary array color $[v]$, which has three possible values:

- white (W, "undiscovered"),
- gray (G, "discovered" but not "processed"),
- black (B, "discovered" and "processed").

The Breath-First Search

The Idea of the BFS:

Visit the vertices as follows:

1. visit all vertices at distance 1
2. visit all vertices at distance 2
3. visit all vertices at distance 3 etc.

Initially, s is made gray.
When a gray vertex is visited, its color is changed to black, and the color of all white neighbors is changed to gray.

Gray vertices are kept in a queue Q.

The Breath-First Search

More details.
G given by its adjacency list.
Initialization, first part:
For each vertex $u \in V$, $\operatorname{color}[u]=W ; d[u]=\infty ; \operatorname{pred}[u]=N I L ;$

Initialization, second part:

$$
\operatorname{color}[s]=G, d[s]=0, Q=\langle s\rangle .
$$

Main loop:

if Q is nonempty,

$$
\begin{aligned}
& u=\text { dequeue }(Q) \\
& \text { for each } v \in \operatorname{adj}[u], \\
& \text { if }(\operatorname{color}[v]=W) \text {, do } \\
& \quad \text { color }[v]=G \\
& d[v]=d[u]+1 \\
& \operatorname{pred}[v]=u \\
& \operatorname{put} v \text { in } Q \\
& \operatorname{color}[u]=B .
\end{aligned}
$$

Example of the Breadth-First Search

Problem: Given the following undirected graph and source vertex, find the distance from s to each vertex $u \in V$ and the predecessor pred $[u]$ along a shortest path by following the algorithm described earlier.

Example - Continued

Initialization, first part

vertex u	s	a	b	c	d	e	f
color $[u]$	W	W	W	W	W	W	W
$d[u]$	∞						
$\operatorname{pred}[u]$	NIL						

Example - Continued

Initialization, second part

vertex u	s	a	b	c	d	e	f
color $[u]$	G	W	W	W	W	W	W
$d[u]$	0	∞	∞	∞	∞	∞	∞
$\operatorname{pred}[u]$	NIL						

$Q=\langle s\rangle$
(Put s into Q (discovered) \& mark "G", meaning "unprocessed")

Example - Continued

While loop, first iteration
Dequeue s from Q. Find $a d j[s]=\langle b, e\rangle$. Mark b and e " G ", mark s " B ".
Update $d[b], d[e]$, pred[b], pred $[e]$.
Put b, e in Q.

vertex u	s	a	b	c	d	e	f
color $[u]$	B	W	G	W	W	G	W
$d[u]$	0	∞	1	∞	∞	1	∞
$\operatorname{pred}[u]$	NIL	NIL	s	NIL	NIL	s	NIL

$Q=\langle b, e\rangle$

Example - Continued

While loop, second iteration
Dequeue b from Q. Find $a d j[b]=\langle s, a, c, f\rangle$. Mark a, c, f " G ", mark b " B ".
Update $d[a], d[c], d[f]$, $\operatorname{pred}[a], \operatorname{pred}[d], \operatorname{pred}[f]$. Put a, c, f in Q.

vertex u	s	a	b	c	d	e	f
color $[u]$	B	G	B	G	W	G	G
$d[u]$	0	2	1	2	∞	1	2
$\operatorname{pred}[u]$	NIL	b	s	b	NIL	s	b

$Q=\langle e, a, c, f\rangle$

Example - Continued

While loop, third iteration
Dequeue e from Q. Find $a d j[e]=\langle s, a, d, f\rangle$. Mark d "gray", mark e "B".
Update $d[d]$, pred $[d]$.
Put d in Q.

vertex u	s	a	b	c	d	e	f
color $[u]$	B	G	B	G	G	B	G
$d[u]$	0	2	1	2	2	1	2
$\operatorname{pred}[u]$	NIL	b	s	b	e	s	b

$Q=\langle a, c, f, d\rangle$

Example - Continued

While loop, forth iteration
Dequeue a from Q. Find $\operatorname{adj}[a]=\langle b, e\rangle$. Mark a "B".

vertex u	s	a	b	c	d	e	f
color $[u]$	B	B	B	G	G	B	G
$d[u]$	0	2	1	2	2	1	2
$\operatorname{pred}[u]$	NIL	b	s	b	e	s	b

$Q=\langle c, f, d\rangle$

Example - Continued

While loop, fifth iteration
Dequeue c from Q. Find $a d j[c]=\langle b, d\rangle$. Mark c "B".

vertex u	s	a	b	c	d	e	f
color $[u]$	B	B	B	B	G	B	G
$d[u]$	0	2	1	2	2	1	2
$\operatorname{pred}[u]$	NIL	b	s	B	e	s	b

$Q=\langle f, d\rangle$

Example - Continued

While loop, sixth iteration
Dequeue f from Q. Find $\operatorname{adj}[f]=\langle b, e\rangle$. Mark f "B".

vertex u	s	a	b	c	d	e	f
color $[u]$	B	B	B	B	G	B	B
$d[u]$	0	2	1	2	2	1	2
$\operatorname{pred}[u]$	NIL	B	s	B	e	s	b

$Q=\langle d\rangle$

Example - Continued

While loop, seventh iteration
Dequeue d from Q. Find $a d j[d]=\langle c, e\rangle$. Mark d "B".

vertex u	s	a	b	c	d	e	f
color $[u]$	B	B	B	B	B	B	B
$d[u]$	0	2	1	2	2	1	2
$\operatorname{pred}[u]$	NIL	B	s	B	e	s	b

$Q=\emptyset$

Example - Continued

While loop, eigth iteration
Since Q is empty, stop.

vertex u	s	a	b	c	d	e	f
color $[u]$	B	B	B	B	B	B	B
$d[u]$	0	2	1	2	2	1	2
$\operatorname{pred}[u]$	NIL	B	s	B	e	s	B

$Q=\emptyset$

Example - Continued

Question: How do you construct a shortest path from s to any vertex by using the following table?

vertex u	s	a	b	c	d	e	f
color $[u]$	B	B	B	B	B	B	B
$d[u]$	0	2	1	2	2	1	2
$\operatorname{pred}[u]$	NIL	B	s	B	e	s	B

The Breadth-First Search Algorithm

```
for (each vertex u\inV)
{ color [u] =W;
    d[u] = \infty;
    pred[u] = NIL;
}
color [s] =G;d[s]=0; enqueue(Q,s);
if ( }Q\mathrm{ is nonempty)
{ u= dequeue(Q);
    for (each v \in adj[u])
        if (color[v] ==W)
        { color [v] =G;
                d[v]=d[u]+1;
                pred [v] = u;
                enqueue( }C,v)\mathrm{ ;
        }
    color [u] = B;
}
```


Analysis of the Breadth-First Search Algorithm

Let $n=|V|$ and $e=|E|$. We assume that it takes one time unit to test the color of a vertex, or to update the color of a vertex, or to compute $d[v]=d[u]+1$, or to set $\operatorname{pred}[v]=u$, or to enqueue, or to dequeue.

The following analysis is valid for connected graphs.

- The initialization requires $3 n+3$ time units.
- Each vertex u must be processed and is processed once. What is the total amount of time for processing u ?
For each $v \in \operatorname{adj}[u]$, if color $[v]=W$, the inner loop takes 4 time units. Otherwise the inner loop will not be carried out.
dequeue $[u]$ and set color $[u]=B$ take 2 time units. Hence the total amount of time needed for processing u is at most

$$
5 \operatorname{deg}(u)+2
$$

Hence the total amount of time needed for processing all the vertices is at most

$$
\sum_{u \in V}(5 \operatorname{deg}(u)+2)=10 e+2 n
$$

- Hence

$$
\begin{aligned}
T(n, e) & \leq(3 n+3)+(10 e+2 n) \\
& =5 n+10 e+3=O(n+e)
\end{aligned}
$$

Analysis of the Breadth-First Search Algorithm

The analysis can be improved:
Each vertex is colored G exactly once.
Therefore, the inner loop is executed exactly $(n-1)$ times.
Hence

$$
\begin{aligned}
T(n, e) & =(3 n+3)+4(n-1)+\sum_{u \in V}(\operatorname{deg}(u)+2) \\
& =(3 n+3)+(4 n-4)+(2 e+2 n) \\
& =9 n+2 e-1
\end{aligned}
$$

Compare to

$$
T(n, e) \leq 5 n+10 e+3
$$

Remark: Note that $e \leq n(n-1) / 2$.
Since the graph is connected, $e \geq n-1$.
If $e=\Theta(n)$, then $T(n, e)=\Theta(n)$.

Graphs that are not connected

The BFS algorithm also works for graphs that are not connected. For such graphs, only the vertices v that are in the same component as s will get a value $d[v] \neq \infty$.

In particular, we can use the array $d[]$ at the end of the computation to decide if the graph is connected.

Alternatively, we can use the array color[] or the array pred[]. Explain why.

How is the analysis of the BFS algorithm changed if we do not assume that the graph is connect?

We can actually modify BFS so that it returns a forest. More specifically, if the original graph is composed of connected components $C_{1}, C_{2}, \ldots, C_{k}$ then BFS will return a tree corresponding to each C_{i}.

```
\(B F S(s)\) Start BFS
\(\operatorname{color}[s]=G ; d[s]=0 ;\) enqueue \((Q, s)\);
if ( \(Q\) is nonempty)
\{ \(\quad u=\) dequeue \((Q)\);
    for (each \(v \in \operatorname{adj}[u]\) )
        if \((\operatorname{color}[v]==W)\)
        \(\{\quad \operatorname{color}[v]=G\);
        \(d[v]=d[u]+1\);
        pred \([v]=u\);
        enqueue \((C, v)\);
        \}
    \(\operatorname{color}[u]=B ;\)
\} End BFS
for (each vertex \(u \in V\) ) Initialize
\{ color \([u]=W\);
    \(d[u]=\infty\);
    \(\operatorname{pred}[u]=N I L\);
\}
for (each vertex \(u \in V\) ) Start Connected Component
    if \(d[u] \neq \infty)\)
        BFS(u);
```


Correctness of the BFS Algorithm

The correctness of the BFS algorithm consists of the following two parts.

1. Prove that the BFS algorithm outputs the correct distance $d[v]$.
2. Prove that the paths obtained by using the array pred[v] are the shortest.

Since the path constructed with the array pred $[v]$ has length exactly $d[v]$, we need to prove only the first part!

Correctness of the BFS Algorithm

Observations: Any vertex v in Q has a real value $d[v] \neq \infty$.
For $u, v \in Q$ at any time, if $d[u]<d[v]$ then u was discovered earlier than v and (will be processed) earlier than v.

Proof: No proof is given here. You are encouraged to come up with your own proof.

Theorem: The BFS algorithm outputs the correct distance $d[v]$. Proof: See next page.

Correctness of the BFS Algorithm

Proof: By induction on $d[v]$. If $d[v]=0$, then $v=s$. The conclusion is true.

Assume that $d[v]$ is the correct distance for all $d[v]<i$. Consider the case $d[v]=i$. If $d[v]$ were not the correct distance, then the true distance $d^{\prime}[v]<d[v]$. We then have two paths:

(1) st...a must be a shortest path by induction hypothesis as $\mathrm{d}[\mathrm{a}]=\mathrm{d}[\mathrm{v}]-1=\mathrm{i}-1<\mathrm{i}$
(2) sw...b must be a shortest path as it is a subpath of the shortest path sw...bv
(3) a distinct from b because $d[b]<d[a]$, while both $\mathrm{d}\lceil\mathrm{al}$ and $\mathrm{d}\lceil\mathrm{bl}$ are true distance

Since $d[b]<d[a], b$ should be processed earlier than a, and should discover v. This is contrary to that a discovered v.

