
Lecture 6: Breadth-First Search
Outline of this Lecture

• The shortest path problem.

• The breadth-first search algorithm.

• The running time of BFS.

• The correctness proof.

Note: We introduce BFS for undirected graphs, but the same
algorithm will also work for directed graphs.
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Shortest Paths

s a

b c

d

e

Example: 3 simple paths from the source s to b:

〈s, b〉, 〈s, a, b〉, 〈s, e, d, b〉

of length 1, 2, 3 respectively. So the shortest path from s to b is
〈s, b〉. The shortest paths from s to other vertices are

〈s, a〉, 〈s, b〉, 〈s, b, c〉, 〈s, b, d〉, 〈s, e〉.

There are two shortest paths from s to d.
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The Shortest Path Problem

s a

b c

d

e

Distance d[v]: The length of a shortest path from s to v.
For example d[c] = 2. We define d[s] = 0.

The Problem: Given a graph G = (V, E) and a source vertex
s ∈ V , find the distances d[v] and a shortest path from s to each
other vertex in G.
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What Does the Breadth-First Search Do

Given a graph G = (V, E), the BFS returns

• the distances d[v] from s to v;

• the predecessors pred[v], which is used to derive a short-
est path from s to every other vertex v.

BFS is actually returning a shortest path tree in which the unique
path from s to node u is a shortest path from s to u in the original
graph.

Remarks: In addition to the two arrays d[v] and pred[v], the
BFS also uses another auxiliary array color[v], which has three
possible values:
• white (W, “undiscovered”),
• gray (G, “discovered” but not “processed”),
• black (B, “discovered” and “processed”).
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The Breath-First Search

The Idea of the BFS:

Visit the vertices as follows:
1. visit all vertices at distance 1
2. visit all vertices at distance 2
3. visit all vertices at distance 3
etc.

Initially, s is made gray.

When a gray vertex is visited, its color is changed to black,
and the color of all white neighbors is changed to gray.

Gray vertices are kept in a queue Q.
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The Breath-First Search

More details.

G given by its adjacency list.

Initialization, first part:
For each vertex u ∈ V ,

color[u] = W ; d[u] = ∞; pred[u] = NIL;

Initialization, second part:
color[s] = G, d[s] = 0, Q = 〈s〉.

Main loop:
if Q is nonempty,

u = dequeue(Q)
for each v ∈ adj[u],
if (color[v] == W ), do

color[v] = G
d[v] = d[u] + 1
pred[v] = u
put v in Q

color[u] = B.
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Example of the Breadth-First Search

Problem: Given the following undirected graph and source ver-
tex, find the distance from s to each vertex u ∈ V and the prede-
cessor pred[u] along a shortest path by following the algorithm
described earlier.

a

b c

de

fs
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Example – Continued

Initialization, first part

vertex u s a b c d e f
color[u] W W W W W W W

d[u] ∞ ∞ ∞ ∞ ∞ ∞ ∞
pred[u] NIL NIL NIL NIL NIL NIL NIL

a

b c

de

fs
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Example – Continued

Initialization, second part

vertex u s a b c d e f
color[u] G W W W W W W

d[u] 0 ∞ ∞ ∞ ∞ ∞ ∞
pred[u] NIL NIL NIL NIL NIL NIL NIL

Q = 〈s〉
(Put s into Q (discovered) & mark “G”, meaning “unprocessed”)

a

b c

de

fs 0
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Example – Continued

While loop, first iteration

Dequeue s from Q. Find adj[s] = 〈b, e〉.
Mark b and e “G”, mark s “B”.
Update d[b], d[e], pred[b], pred[e].
Put b, e in Q.

vertex u s a b c d e f
color[u] B W G W W G W

d[u] 0 ∞ 1 ∞ ∞ 1 ∞
pred[u] NIL NIL s NIL NIL s NIL

Q = 〈b, e〉

a

b c

de

fs 0

1

1
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Example – Continued

While loop, second iteration

Dequeue b from Q. Find adj[b] = 〈s, a, c, f〉.
Mark a, c, f “G”, mark b “B”.
Update d[a], d[c], d[f ], pred[a], pred[d], pred[f ].
Put a, c, f in Q.

vertex u s a b c d e f
color[u] B G B G W G G

d[u] 0 2 1 2 ∞ 1 2
pred[u] NIL b s b NIL s b

Q = 〈e, a, c, f〉

a

b c

de

fs 0

1

1

2
2

2
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Example – Continued

While loop, third iteration

Dequeue e from Q. Find adj[e] = 〈s, a, d, f〉.
Mark d “gray”, mark e “B”.
Update d[d], pred[d].
Put d in Q.

vertex u s a b c d e f
color[u] B G B G G B G

d[u] 0 2 1 2 2 1 2
pred[u] NIL b s b e s b

Q = 〈a, c, f, d〉

a

b c

de

fs 0

1

1

2
2

2

2
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Example – Continued

While loop, forth iteration

Dequeue a from Q. Find adj[a] = 〈b, e〉.
Mark a “B”.

vertex u s a b c d e f
color[u] B B B G G B G

d[u] 0 2 1 2 2 1 2
pred[u] NIL b s b e s b

Q = 〈c, f, d〉

a

b c

de

fs 0

1

1

2
2

2

2
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Example – Continued

While loop, fifth iteration

Dequeue c from Q. Find adj[c] = 〈b, d〉.
Mark c “B”.

vertex u s a b c d e f
color[u] B B B B G B G

d[u] 0 2 1 2 2 1 2
pred[u] NIL b s b e s b

Q = 〈f, d〉

a

b c

de

fs 0

1

1

2
2

2

2
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Example – Continued

While loop, sixth iteration

Dequeue f from Q. Find adj[f ] = 〈b, e〉.
Mark f “B”.

vertex u s a b c d e f
color[u] B B B B G B B

d[u] 0 2 1 2 2 1 2
pred[u] NIL b s b e s b

Q = 〈d〉

a

b c

de

fs 0

1

1

2
2

2

2
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Example – Continued

While loop, seventh iteration

Dequeue d from Q. Find adj[d] = 〈c, e〉.
Mark d “B”.

vertex u s a b c d e f
color[u] B B B B B B B

d[u] 0 2 1 2 2 1 2
pred[u] NIL b s b e s b

Q = ∅

a

b c

de

fs 0

1

1

2
2

2

2
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Example – Continued

While loop, eigth iteration

Since Q is empty, stop.

vertex u s a b c d e f
color[u] B B B B B B B

d[u] 0 2 1 2 2 1 2
pred[u] NIL b s b e s b

Q = ∅

a

b c

de

fs 0

1

1

2
2

2

2
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Example – Continued

a

b c

de

fs 0

1

1

2
2

2

2

Question: How do you construct a shortest path from s to any
vertex by using the following table?

vertex u s a b c d e f
color[u] B B B B B B B

d[u] 0 2 1 2 2 1 2
pred[u] NIL b s b e s b
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The Breadth-First Search Algorithm

for (each vertex u ∈ V )

{ color[u] = W ;

d[u] = ∞;

pred[u] = NIL;

}

color[s] = G; d[s] = 0; enqueue(Q, s);

if (Q is nonempty)
{ u = dequeue(Q);

for (each v ∈ adj[u])

if (color[v] == W)

{ color[v] = G;

d[v] = d[u] + 1;

pred[v] = u;

enqueue(C, v);

}

color[u] = B;

}
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Analysis of the Breadth-First Search Algorithm

Let n = |V | and e = |E|. We assume that it takes one time unit
to test the color of a vertex, or to update the color of a vertex,
or to compute d[v] = d[u] + 1, or to set pred[v] = u, or to
enqueue, or to dequeue.

The following analysis is valid for connected graphs.

• The initialization requires 3n + 3 time units.

• Each vertex u must be processed and is processed once.
What is the total amount of time for processing u?

For each v ∈ adj[u], if color[v] = W , the inner loop takes
4 time units. Otherwise the inner loop will not be carried
out.

dequeue[u] and set color[u] = B take 2 time units. Hence
the total amount of time needed for processing u is at most

5deg(u) + 2

Hence the total amount of time needed for processing all
the vertices is at most

∑

u∈V

(5 deg(u) + 2) = 10e + 2n.

• Hence

T(n, e) ≤ (3n + 3) + (10e + 2n)

= 5n + 10e + 3 = O(n + e).
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Analysis of the Breadth-First Search Algorithm

The analysis can be improved:

Each vertex is colored G exactly once.

Therefore, the inner loop is executed exactly (n − 1) times.

Hence

T(n, e) = (3n + 3) + 4(n − 1) +
∑

u∈V

(deg(u) + 2)

= (3n + 3) + (4n − 4) + (2e + 2n)

= 9n + 2e − 1.

Compare to

T(n, e) ≤ 5n + 10e + 3.

Remark: Note that e ≤ n(n − 1)/2.

Since the graph is connected, e ≥ n − 1.

If e = Θ(n), then T(n, e) = Θ(n).
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Graphs that are not connected

The BFS algorithm also works for graphs that are not connected.
For such graphs, only the vertices v that are in the same compo-
nent as s will get a value d[v] 6= ∞.

In particular, we can use the array d[ ] at the end of the compu-
tation to decide if the graph is connected.

Alternatively, we can use the array color[ ] or the array pred[ ].
Explain why.

How is the analysis of the BFS algorithm changed if we do not
assume that the graph is connect?
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We can actually modify BFS so that it returns a forest.
More specifically, if the original graph is composed of connected
components C1, C2, . . . , Ck then BFS will return a tree corre-
sponding to each Ci.

BFS(s) Start BFS
color[s] = G; d[s] = 0; enqueue(Q, s);

if (Q is nonempty)
{ u = dequeue(Q);

for (each v ∈ adj[u])

if (color[v] == W)

{ color[v] = G;

d[v] = d[u] + 1;

pred[v] = u;

enqueue(C, v);

}

color[u] = B;

} End BFS
for (each vertex u ∈ V ) Initialize
{ color[u] = W ;

d[u] = ∞;

pred[u] = NIL;

}

for (each vertex u ∈ V ) Start Connected Component
if d[u] 6= ∞)

BFS(u);

23



Correctness of the BFS Algorithm

The correctness of the BFS algorithm consists of the following
two parts.

1. Prove that the BFS algorithm outputs the correct distance
d[v].

2. Prove that the paths obtained by using the array pred[v]
are the shortest.

Since the path constructed with the array pred[v] has length ex-
actly d[v], we need to prove only the first part!
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Correctness of the BFS Algorithm

Observations: Any vertex v in Q has a real value d[v] 6= ∞.

For u, v ∈ Q at any time, if d[u] < d[v] then u was discovered
earlier than v and (will be processed) earlier than v.

Proof: No proof is given here. You are encouraged to come up
with your own proof.

Theorem: The BFS algorithm outputs the correct distance d[v].

Proof: See next page.

25



Correctness of the BFS Algorithm

Proof: By induction on d[v]. If d[v] = 0, then v = s. The
conclusion is true.

Assume that d[v] is the correct distance for all d[v] < i. Consider
the case d[v] = i. If d[v] were not the correct distance, then the
true distance d′[v] < d[v]. We then have two paths:

....

....
s

v

t

w

a

b

hypothesis  as d[a]=d[v]−1=i−1<i 
(1) st...a must be a shortest path by induction 

(2) sw...b must be a shortest path as it is a 

(3) a distinct from b because d[b]<d[a], while 
both d[a] and d[b] are true distance

d[a] = d[v]−1 = i−1

d[b] = d’[v]−1 < d[a]
d’[v]−1 < d[v]−1 = i−1

subpath of the shortest path sw...bv

Since d[b] < d[a], b should be processed earlier than a, and
should discover v. This is contrary to that a discovered v.
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