Lecture 9: Dijkstra’s Shortest Path
Algorithm
CLRS 24.3

Outline of this Lecture

e Recalling the BFS solution of the shortest path
problem for unweighted (di)graphs.

e The shortest path problem for weighted digraphs.

e Dijkstra’s algorithm.
Given for digraphs but easily modified to work on
undirected graphs.

Recall: Shortest Path Problem for Graphs

Let G = (V, E) be a (di)graph.

e The shortest path between two vertices is a path
with the shortest length (least number of edges).
Call this the link-distance.

e Breadth-first-search is an algorithm for finding short-
est (link-distance) paths from a single source ver-
tex to all other vertices.

e BFS processes vertices in increasing order of their
distance from the root vertex.

e BFS has running time O(|V| 4 |E|).

Shortest Path Problem for Weighted Graphs

Let G = (V, E) be a weighted digraph, with weight
function w : E — R mapping edges to real-valued
weights. If e = (u, v), we write w(u, v) for w(e).

e The length of a path p = (vg,v1,...,vg) IS the
sum of the weights of its constituent edges:

k
length(p) = > w(vi—1,v;).

=1

e The distance from u to v, denoted §(u, v), is the
length of the minimum length path if there is a
path from « to v; and is co otherwise.

(@) 85 @ length((a,b,c,e)) = 6
> / \4 distancefroma toe is6
1 3@

Single-Source Shortest-Paths Problem

The Problem: Given a digraph with positive edge
weights G = (V, E)

and a distinguished source vertex, s € V,

determine the distance and a shortest path from the
source vertex to every vertex in the digraph.

Question: How do you design an efficient algorithm
for this problem?

Single-Source Shortest-Paths Problem

Important Observation: Any subpath of a shortest
path must also be a shortest path. Why?

Example: In the following digraph, {a, b, c, e} is a short-
est path. The subpath (a, b, c) is also a shortest path.

(@) 85 @ length({a, b, c,e)) = 6

5 \© \4 distancefroma toe is6

b1 e

Observation Extending this idea we observe the ex-
Istence of a shortest path tree in which distance from
source to vertex v is length of shortest path from source
to vertex in original tree.

Intuition behind Dijkstra’s Algorithm

e Reportthe vertices in increasing order of their dis-
tance from the source vertex.

e Construct the shortest path tree edge by edge; at
each step adding one new edge, corresponding
to construction of shortest path to the current new
vertex.

The Rough Idea of Dijkstra’s Algorithm

e Maintain an estimate d[v] of the length §(s, v) of
the shortest path for each vertex v.

e Always d[v] > 6(s,v) and d[v] equals the length
of a known path
(d[v] = oo if we have no paths so far).

e Initially d[s] = 0 and all the other d[v] values are
set to co. The algorithm will then process the ver-
tices one by one in some order.

The processed vertex’s estimate will be validated
as being real shortest distance, i.e. d[v] = §(s, v).

Here “processing a vertex «” means finding new
paths and updating d[v] for all v € Adj[u] if nec-
essary. The process by which an estimate is up-
dated is called relaxation.

When all vertices have been processed,
d[v] = 6(s,v) for all v.

The Rough Idea of Dijkstra’s Algorithm

Question 1: How does the algorithm find new paths
and do the relaxation?

Question 2: In which order does the algorithm pro-
cess the vertices one by one?

Answer to Question 1

e Finding new paths. When processing a vertex u,
the algorithm will examine all vertices v € Adj[u].
For each vertex v € Adj[u], a new path from s to
v iIs found (path from s to u + new edge).

e Relaxation. If the new path from s to v is shorter
than d[v], then update d[v] to the length of this
new path.

Remark: Whenever we set d[v] to a finite value, there

exists a path of that length. Therefore d[v] > (s, v).

(Note: If d[v] = §(s,v), then further relaxations cannot change
its value.)

Implementing the Idea of Relaxation

Consider an edge from a vertex u to v whose weight is w(u, v).
Suppose that we have already processed u« so that we know
dlu] = 6(s,u) and also computed a current estimate for d[v].
Then

e There is a (shortest) path from s to u with length d[u].
e There is a path from s to v with length d[v].

Combining this path from s to « with the edge (u,v), we obtain
another path from s to v with length d[u] + w(u, v).

If d[u]4+w(u,v) < d[v], then we replace the old path (s, ..., w,v)
with the new shorter path (s, ..., u,v). Hence we update

o d[v] = d[u] + w(u,v)

e pred[v] = u (originally, pred[v] == w).

@%O — (O %@\g[)v]
—0—@

d[u]

10

The Algorithm for Relaxing an Edge

Relax(u,v)

{
if (d[u] + w(u,v) < d[v])
{ dlo) = dlu] + w(u, v);
pred[v] = u;

}

Remark: The predecessor pointer pred| | is for deter-
mining the shortest paths.

11

Idea of Dijkstra’s Algorithm: Repeated Relaxation

e Dijkstra’s algorithm operates by maintaining a sub-
set of vertices, S C V, for which we know the true
distance, that is d[v] = §(s, v).

e Initially S = 0, the empty set, and we set d[s] =
0 and d[v] = oo for all others vertices v. One hy
one we select vertices from V' \ Stoaddto S.

e The set S can be implemented using an array of
vertex colors. Initially all vertices are white, and
we set color[v] = black to indicate that v € S.

12

The Selection in Dijkstra’s Algorithm

Recall Question 2: What is the best order in which
to process vertices, so that the estimates are guaran-
teed to converge to the true distances.

That is, how does the algorithm select which vertex
among the vertices of V' \ S to process next?

Answer: We use a greedy algorithm. For each ver-
tex inu € V' \ S, we have computed a distance es-
timate d[u]. The next vertex processed is always a
vertex u € V \ S for which d[u] is minimum, that is,
we take the unprocessed vertex that is closest (by our
estimate) to s.

Question: How do we implement this selection of ver-
tices efficiently?

13

The Selection in Dijkstra’s Algorithm

Question: How do we perform this selection efficiently?

Answer: We store the vertices of V' \ S in a priority
gueue, where the key value of each vertex v is d[v].

[Note: if we implement the priority queue using a heap,
we can perform the operations Insert(), Extract_Min(),
and Decrease_Key(), each in O(log n) time.]

14

Review of Priority Queues

A Priority Queue is a data structure (can be imple-
mented as a heap) which supports the following oper-
ations:

Insert(u, key): Insert u with the key value key in Q.

u = extractMin(): Extract the item with the minimum
key value in Q.

decreaseKey(u, new-key): Decrease u’s key value to
new-key.

Remark: Priority Queues can be implementad such
that each operation takes time O(log |Q|). See CLRS!

15

Description of Dijkstra’s Algorithm

Dijkstra(G,w,s)

{ % Initialize
for (each u € V)
{
d[u] = oo;
color[u] =white;
}
d[s] = O;
pred[s] = NIL;
@ = (queue with all vertices);
while (Non-Empty(Q)) % Process all vertices
{
u = Extract-Min(Q); % Find new vertex
for (each v € Adj[u])
if (d[u] + w(u,v) < d[v]) % If estimate improves
d[v] = d[u] + w(u,v); relax
Decrease-Key(Q, v, d[v]);
pred[v] = u;
}

color[u] =black;

}
}

16

Dijkstra’s Algorithm

Example:

Step 0: Initialization.

v s a b ¢ d
d[v] 0 oo 00 o oo
pred[v] | nil nil nil nil nil
colorf[v] W W W W W

's a b c d
d['v]‘Ooooooooo

Priority Queue:

17

Dijkstra’s Algorithm

Example:

Step 1: As Adj[s] = {a,b}, work on a and b and
update information.

v s a b ¢ d
d[v] 0 2 7 oo o0
pred[v] | nil s s nil nil
colorflv] | B W W W W

a

. v b c¢c d
Priority Queue: d[v]\2 .

18

Dijkstra’s Algorithm

Example:

a 5 @d

Step 2: After Step 1, a has the minimum key in the
priority queue. As Adjla] = {b,c,d}, work on b, ¢, d
and update information.

v s a b ¢ d

dv] |0 2 5 10 7

predfv] |nl s a a a

colorfv] | B B W W W
‘b c d

.. _ v
Priority Queue: d[v]\S 10 7

19

Dijkstra’s Algorithm

Example:

a 5 @d

Step 3: After Step 2, b has the minimum key in the
priority queue. As Adj[b] = {a,c}, work on a, ¢ and
update information.

v s a b c¢c d
d[v] 0O 2 5 6 7
predfv] |nil s a b a
colorfv] | B B B W W

v ‘C d
dlv] |6 7

Priority Queue:

20

Dijkstra’s Algorithm

Example:

a 5 @d

Step 4: After Step 3, ¢ has the minimum key in the pri-
ority queue. As Adj[c] = {d}, work on d and update
iInformation.

v s a b c d
d[v] 0O 2 5 6 7
predfv] [nil s a b a
colorflv] | B B B B W

d

.. _ v
Priority Queue: alv] ‘ Z

21

Dijkstra’s Algorithm

Example:

a 5 0d

Step 5: After Step 4, d has the minimum key in the pri-
ority queue. As Adj[d] = {c}, work on ¢ and update
iInformation.

v s a b c¢c d
d[v] 0 2 5 6 7
pred[fv] |nl s a b a
colorflv] | B B B B B

Priority Queue: Q = 0.

We are done.
22

Dijkstra’s Algorithm

Shortest Path Tree: T'= (V, A), where

A= {(pred[v],v)lv € V \ {s}}.
The array pred[v] is used to build the tree.

be 1 @c
Q 3

S
2
a 5 ad
Example:
v s a b c¢c d
d[v] 0O 2 5 6 7
predfvl] | nil s a b a

23

Correctness of Dijkstra’s Algorithm

Lemma: When a vertex « is added to S (i.e., dequeued from the
queue), d[u] = 6(s,u).

Proof: Suppose to the contrary that at some point Dijkstra’s al-
gorithm first attempts to add a vertex u to S for which d[u] #
d(s,u). By our observations about relaxation, d[u] > §(s,u).

Consider the situation just prior to the insertion of u. Consider
the true shortest path from s to u. Because s € Sandu € V'\ S,
at some point this path must fi rst take a jump out of S. Let (z, y)
be the edge taken by the path, where z € Sandy € V' \ S (it
may be that x = s and/or y = u).

g

' \ o)
/ \
’
! \
! \
S)
I \
\
\ \
\ \
\ \
\ /
\ ‘ y
\ o
N\
N 1
N /
N /
> 7/

X

24

Correctness of Dijkstra’s Algorithm — Continued

We now prove that d[y] = 6(s,y). We have done relaxation
when processing x, SO

dly] < d[z] + w(z, y). (1)
Since z is added to S earlier, by hypothesis,
dlz] = 6(s,x). (2)
Since (s, ..., z,y) is subpath of a shortest path, by (2)
6(s,y) = 6(s,z) + w(z,y) = d[z] + w(z,y). (3)

By (1) and (3),
dly] < 4(s,y).
Hence
dly] = 6(s,y).
So y # u (because we suppose d[u] > §(s,u)).

Now observe that since y appears midway on the path from s to
u, and all subsequent edges are positive, we have
5(s,y) < 6(s,u), and thus

dly] = 6(s,y) < é(s,u) < d[u].

Thus y would have been added to S before u, in contradiction to
our assumption that « is the next vertex to be added to S.

25

Proof of the Correctness of Dijkstra’s Algorithm

e By the lemma, d[v] = §(s,v) when v is added
into S, that is when we set color[v] = black.

e At the end of the algorithm, all vertices are in S,
then all distance estimates are correct.

26

Analysis of Dijkstra’s Algorithm:

The initialization uses only O(n) time.

Each vertex is processed exactly once so Non -Empty ()
and Extract-Min () are called exactly once, e.g., n
times in total.

The inner loop for (each v € Adj[u]) is called once
for each edge in the graph. Each call of the inner loop
does O(1) work plus, possibly, one Decrease-Key
operation.

Recalling that all of the priority queue operations re-
quire O(log|Q|) = O(logn) time we have that the
algorithm uses

nO(1+logn)4+0(e)+0(elogn) = O((n+e) logn)

time.

27

Prove: Dijkstra’s algorithm processes vertices in non-
decreasing order of their actual distance from the source
vertex.

28

