
Lecture 9: Dijkstra’s Shortest Path
Algorithm
CLRS 24.3

Outline of this Lecture

� Recalling the BFS solution of the shortest path
problem for unweighted (di)graphs.

� The shortest path problem for weighted digraphs.

� Dijkstra’s algorithm.
Given for digraphs but easily modified to work on
undirected graphs.

1

Recall: Shortest Path Problem for Graphs

Let
� � ������� 	

be a (di)graph.

� The shortest path between two vertices is a path
with the shortest length (least number of edges).
Call this the link-distance.

� Breadth-first-search is an algorithm for finding short-
est (link-distance) paths from a single source ver-
tex to all other vertices.

� BFS processes vertices in increasing order of their
distance from the root vertex.

� BFS has running time
 ���
� ��� ��� ��	
.

2

Shortest Path Problem for Weighted Graphs

Let
� � ����� � 	

be a weighted digraph, with weight
function � � � �� �

mapping edges to real-valued
weights. If � � ��� ��	 	

, we write � ��� �
	 	
for � � � 	 .

� The length of a path � � �
	�� ��	�� ������� ��	����
is the

sum of the weights of its constituent edges:

length
� � 	 �

�

�
� � � ��	 ��� � ��	 � 	 �

� The distance from
�

to
	
, denoted ! ��� ��	 	

, is the
length of the minimum length path if there is a
path from

�
to

	
; and is " otherwise.

$% &

$% &

$%�&

$%�&
$%�&

'

(
)

*

�
+ ,

-

.

/

0132 2 2 254
67 7 7 798
1: : : :5;

length(<>=3?�@�?
A
?CB�DFE � G
distance from = to B is

G

3

Single-Source Shortest-Paths Problem

The Problem: Given a digraph with positive edge
weights

� � ������� 	
and a distinguished source vertex, � �

�
,

determine the distance and a shortest path from the
source vertex to every vertex in the digraph.

Question: How do you design an efficient algorithm
for this problem?

4

Single-Source Shortest-Paths Problem

Important Observation: Any subpath of a shortest
path must also be a shortest path. Why?

Example: In the following digraph,
� ' � (�) � � � is a short-

est path. The subpath
� ' � (�) � is also a shortest path.

$% &

$% &

$%�&

$%�&
$%�&

'

(
)

*

�
+ ,

-

.

/

0132 2 2 254
67 7 7 798
1: : : :5;

length(<>=3?�@�?
A
?CB�DFE � G
distance from = to B is

G

Observation Extending this idea we observe the ex-
istence of a shortest path tree in which distance from
source to vertex

	
is length of shortest path from source

to vertex in original tree.

5

Intuition behind Dijkstra’s Algorithm

� Report the vertices in increasing order of their dis-
tance from the source vertex.

� Construct the shortest path tree edge by edge; at
each step adding one new edge, corresponding
to construction of shortest path to the current new
vertex.

6

The Rough Idea of Dijkstra’s Algorithm

� Maintain an estimate
*�� 	��

of the length ! � �
�
	 	

of
the shortest path for each vertex

	
.

� Always
*�� 	���� ! � �

��	 	
and

*�� 	��
equals the length

of a known path
(
*�� 	�� � " if we have no paths so far).

� Initially
*��

�
� � �

and all the other
*�� 	��

values are
set to " . The algorithm will then process the ver-
tices one by one in some order.
The processed vertex’s estimate will be validated
as being real shortest distance, i.e.

*�� 	�� � ! � �
��	 	 �

Here “processing a vertex
�

” means finding new
paths and updating

*�� 	��
for all

	
� � *
	�� ���

if nec-
essary. The process by which an estimate is up-
dated is called relaxation.

When all vertices have been processed,*�� 	�� � ! � �
�
	 	

for all
	
.

7

The Rough Idea of Dijkstra’s Algorithm

Question 1: How does the algorithm find new paths
and do the relaxation?

Question 2: In which order does the algorithm pro-
cess the vertices one by one?

8

Answer to Question 1

� Finding new paths. When processing a vertex
�

,
the algorithm will examine all vertices

	
� � *
	�� ���

.
For each vertex

	
� � *
	�� ���

, a new path from � to	
is found (path from � to

�
+ new edge).

� Relaxation. If the new path from � to
	

is shorter
than

*�� 	��
, then update

*�� 	��
to the length of this

new path.

Remark: Whenever we set
*�� 	��

to a finite value, there
exists a path of that length. Therefore

*�� 	�� � ! � �
�
	 	

.

(Note: If
������� � �
	�� ? � E , then further relaxations cannot change

its value.)

9

Implementing the Idea of Relaxation

Consider an edge from a vertex � to
�

whose weight is �
	
� ? � E .

Suppose that we have already processed � so that we know���
�
� � �
	�� ?�� E and also computed a current estimate for

��� � �
.

Then

� There is a (shortest) path from
�

to � with length
���
�
�
.

� There is a path from
�

to
�

with length
�������

.

Combining this path from
�

to � with the edge
	
� ? � E , we obtain

another path from
�

to
�

with length
���
�
���

�
	
� ? � E .

If
���
�
���

�
	
� ? � E�� ��� � �

, then we replace the old path < � ?
	
	
	 ?�� ? � D
with the new shorter path < � ?
	
	
	 ?�� ? � D . Hence we update

� ������� � ���
�
���

�
	
� ? � E

�
�� B ������� � � (originally,
�� B ������� � �
�).

s

u

v
d[v]

d[u]

w

10

The Algorithm for Relaxing an Edge

Relax(u,v)�

if (
*�� � � � � ��� ��	 	 � *�� 	��

)� *�� 	�� � *�� ��� � � ��� ��	 	
;

��� � *�� 	�� � �
;�

�

Remark: The predecessor pointer ��� � *�� � is for deter-
mining the shortest paths.

11

Idea of Dijkstra’s Algorithm: Repeated Relaxation

� Dijkstra’s algorithm operates by maintaining a sub-
set of vertices, � � �

, for which we know the true
distance, that is

*�� 	�� � ! � �
��	 	

.

� Initially � � �
, the empty set, and we set

*��
�
� �

�
and

*�� 	�� � " for all others vertices
	
. One by

one we select vertices from
� � � to add to � .

� The set � can be implemented using an array of
vertex colors. Initially all vertices are white, and
we set)������ � � 	�� �

black to indicate that
	

� � .

12

The Selection in Dijkstra’s Algorithm

Recall Question 2: What is the best order in which
to process vertices, so that the estimates are guaran-
teed to converge to the true distances.
That is, how does the algorithm select which vertex
among the vertices of

� � � to process next?

Answer: We use a greedy algorithm. For each ver-
tex in

�
�

� � � , we have computed a distance es-
timate

*�� ���
. The next vertex processed is always a

vertex
�

�
� � � for which

*�� � �
is minimum, that is,

we take the unprocessed vertex that is closest (by our
estimate) to � .

Question: How do we implement this selection of ver-
tices efficiently?

13

The Selection in Dijkstra’s Algorithm

Question: How do we perform this selection efficiently?

Answer: We store the vertices of
� � � in a priority

queue, where the key value of each vertex
	

is
*�� 	��

.

[Note: if we implement the priority queue using a heap,
we can perform the operations Insert(), Extract Min(),
and Decrease Key(), each in
 ������� � 	

time.]

14

Review of Priority Queues

A Priority Queue is a data structure (can be imple-
mented as a heap) which supports the following oper-
ations:

insert(
� ��� ���): Insert

�
with the key value

� ��� in � .

u = extractMin(): Extract the item with the minimum
key value in � .

decreaseKey(
� � � � � -

� ���): Decrease
�

’s key value to
� � � -

� ��� .

Remark: Priority Queues can be implementad such
that each operation takes time
 ������� � � ��	

. See CLRS!

15

Description of Dijkstra’s Algorithm

Dijkstra(G,w,s)�
% Initialize

for (each � � �)�
���
�
� � �

;A������ � � � � � white;	
��� � � � �

;

�� B ��� � � � NIL;
 �

(queue with all vertices);

while (Non-Empty(

)) % Process all vertices�
�
�

Extract-Min
	
 E ; % Find new vertex

for (each
� � � �
� �

�
�
)

if (
���
�
���

�
	
� ? � E�� �������

) % If estimate improves�
������� � ���

�
� �

�
	
� ? � E ; relax

Decrease-Key
	
 ? � ? ������� E ;

�� B ������� � � ;	
A������ � � � � � black;	

	

16

Dijkstra’s Algorithm

Example:

s

a

b c

d

7

2

3 2

1

8

5

4 5
0

inf

inf

inf

inf

Step 0: Initialization.

	
s a b c d*�� 	��
0 " " " "

� �3� *�� 	�� nil nil nil nil nil)������ � � 	�� W W W W W

Priority Queue:
	

s a b c d*�� 	��
0 " " " "

17

Dijkstra’s Algorithm

Example:

s

a

b c

d

7

2

3 2

1

8

5

4 5

inf

inf

7

2

0

Step 1: As � *
	��
�
� � � ' � (�� , work on ' and

(
and

update information.

	
s a b c d*�� 	��
0

+ � " "
� �3� *�� 	�� nil s s nil nil)������ � � 	�� B W W W W

Priority Queue:
	

a b c d*�� 	�� + � " "
18

Dijkstra’s Algorithm

Example:

s

a

b c

d

7

2

3 2

1

8

5

4 5
0

2 7

5 10

Step 2: After Step 1, ' has the minimum key in the
priority queue. As � *
	 � ' � � � (�) � * � , work on

(
,) , *

and update information.

	
s a b c d*�� 	��
0

+ - . � �

� � � *�� 	�� nil s a a a) ��� � � � 	�� B B W W W

Priority Queue:
	

b c d*�� 	�� - . � �

19

Dijkstra’s Algorithm

Example:

s

a

b c

d

7

2

3 2

1

8

5

4 5
0

2 7

65

Step 3: After Step 2,
(

has the minimum key in the
priority queue. As � *
	�� (� � � ' �) � , work on ' ,) and
update information.

	
s a b c d*�� 	��
0

+ - � �

� �3� *�� 	�� nil s a b a)������ � � 	�� B B B W W

Priority Queue:
	

c d*�� 	�� � �

20

Dijkstra’s Algorithm

Example:

s

a

b c

d

7

2

3 2

1

8

5

4 5
0

2 7

5 6

Step 4: After Step 3,) has the minimum key in the pri-
ority queue. As � *
	��) � � � * �

, work on
*

and update
information.

	
s a b c d*�� 	��
0

+ - � �

��� � *�� 	�� nil s a b a)������ � � 	�� B B B B W

Priority Queue:
	

d*�� 	�� �

21

Dijkstra’s Algorithm

Example:

s

a

b c

d

7

2

3 2

1

8

5

4 5
0

2

5 6

7

Step 5: After Step 4,
*

has the minimum key in the pri-
ority queue. As � *
	�� * � � �) � , work on) and update
information.

	
s a b c d*�� 	��
0

+ - � �

� � � *�� 	�� nil s a b a)������ � � 	�� B B B B B

Priority Queue: � � �
.

We are done.
22

Dijkstra’s Algorithm

Shortest Path Tree: � � 	 � ? � E , where

� � � 	
�� B ��� � � ? � E�� � � � � � ����� 	
The array
�� B ������� is used to build the tree.

s

a

b c

d

2

3

1

5

0

2

5 6

7

Example:
�

s a b c d�������
0 � 	 G

�� B ������� nil s a b a

23

Correctness of Dijkstra’s Algorithm

Lemma: When a vertex � is added to � (i.e., dequeued from the
queue),

���
�
� � �
	 � ?�� E .

Proof: Suppose to the contrary that at some point Dijkstra’s al-
gorithm first attempts to add a vertex � to � for which

���
�
� ��

�
	�� ?�� E . By our observations about relaxation,
���
�
��� �
	�� ?�� E .

Consider the situation just prior to the insertion of � . Consider
the true shortest path from

�
to � . Because

� � � and � � � ��� ,
at some point this path must first take a jump out of � . Let

	�� ?�� E
be the edge taken by the path, where

� � � and � � � ��� (it
may be that

� � �
and/or � � �).

s

x
y

uS

24

Correctness of Dijkstra’s Algorithm – Continued

We now prove that
��� � � � �
	�� ? � E . We have done relaxation

when processing
�

, so
��� � � � ��� � ���

�
	�� ?�� E 	 (1)

Since
�

is added to � earlier, by hypothesis,
��� � � � �
	 � ? � E 	 (2)

Since < � ?
	
	
	 ? � ? � D is subpath of a shortest path, by (2)
�
	 � ? � E � �
	 � ? � E � �

	 � ? � E � ��� � � �
�
	 � ? � E 	 (3)

By (1) and (3),
��� � � � �
	�� ? � E 	

Hence
��� � � � �
	 � ? � E 	

So � �� � (because we suppose
���
�
� � �
	�� ?�� E).

Now observe that since � appears midway on the path from
�

to
� , and all subsequent edges are positive, we have�
	�� ? � E�� �
	 � ?�� E , and thus

��� � � � �
	 � ? � E�� �
	�� ?�� E � ���
�
�
	

Thus � would have been added to � before � , in contradiction to
our assumption that � is the next vertex to be added to � .

25

Proof of the Correctness of Dijkstra’s Algorithm

� By the lemma,
*�� 	�� � ! � �

��	 	
when

	
is added

into � , that is when we set)������ � � 	�� �
black.

� At the end of the algorithm, all vertices are in � ,
then all distance estimates are correct.

26

Analysis of Dijkstra’s Algorithm:

The initialization uses only
 � � 	
time.

Each vertex is processed exactly once so Non-Empty()
and Extract-Min() are called exactly once, e.g.,

�

times in total.

The inner loop for (each
	

� � *
	�� ���
) is called once

for each edge in the graph. Each call of the inner loop
does
 � . 	

work plus, possibly, one Decrease-Key
operation.

Recalling that all of the priority queue operations re-
quire
 ������� � � � 	 �
 ������� � 	

time we have that the
algorithm uses

�
 � . � � � � � 	 �
 � � 	 �
 � � � � � � 	 �
 � � � � � 	 ����� � 	

time.

27

Prove: Dijkstra’s algorithm processes vertices in non-
decreasing order of their actual distance from the source
vertex.

28

