Lecture 10: Minimum Spanning Trees
and Prim’s Algorithm
CLRS Chapter 23

Outline of this Lecture

e Spanning trees and minimum spanning trees.

e The minimum spanning tree (MST) problem.

e Prim’s algorithm for the MST problem.
— The algorithm
— Correctness

— Implementation + Running Time

Spanning Trees

Spanning Trees: A subgraph T of a undirected graph
G = (V, E) is a spanning tree of GG if it is a tree and
contains every vertex of G.

Example:
(b)
O
Spanning tree 1
(b) O
e °)

spanning tree 2 gpanning tree 3

Spanning Trees

Theorem: Every connected graph has a spanning
tree.

Question: Why is this true?

Question: Given a connected graph G, how can you
find a spanning tree of G?

I O/O\O
b

Weighted Graphs

Weighted Graphs: A weighted graph is a graph, in
which each edge has a weight (some real number).

Weight of a Graph: The sum of the weights of all
edges.

Example:

Tree 1l. w=/4

2 b)

10 7 3

23
@G

Tree2, w=71 Tree 3, w=r2
Minimum spanning tree

Minimum Spanning Trees

A Minimum Spanning Tree in an undirected connected

weighted graph is a spanning tree of minimum weight
(among all spanning trees).

Example:

Tree l. w=/4

107 3 O

23
@G

Tree 2, w=71 Tree 3, w=/2
Minimum spanning tree

Minimum Spanning Trees

Remark: The minimum spanning tree may not be
unique. However, if the weights of all the edges are
pairwise distinct, it is indeed unique (we won'’t prove
this now).

Example:

a—b
N\ 2 2\ /2
24/ \6T 24 /@\67 24 /@\67

@ ey dy ey (d (e

weighted MST 1 MST 2
graph

Minimum Spanning Tree Problem

MST Problem: Given a connected weighted undi-
rected graph G, design an algorithm that outputs a
minimum spanning tree (MST) of G.

Question: What is most intuitive way to solve?

Generic approach: A tree is an acyclic graph.

Idea Is to start with an empty graph and try to add
edges one at a time, always making sure that what is
built remains acyclic.

We introduce two greedy algorithms (Prim’s and Kruskal’s
algorithms) for computing a MST.
They differ in how to choose edges to add.

Greedy: make the cheapest possible choice in each step.

What is Prim’s Algorithm?

e A greedy algorithm for the MST problem.

e Looks very much like Dijkstra’s algorithm:
Grow a Tree

— Start by picking any vertex r to be the root of
the tree.

— While the tree does not contain
all vertices in the graph
find shortest edge leaving the tree
and it to the tree .

e Running time is O((|V| + |E|) log |V]).

More Detalils

Step 0: Choose any element r; set S = {r} and
A = (). (Take r as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint
is in S and the otherisin V' \ S. Add this edge to
A and its (other) endpoint to S.

Step 2: If V \ S = (), then stop & output (minimum)
spanning tree (S, A). Otherwise go to Step 1.

The idea: expand the current tree by adding the
lightest (shortest) edge leaving it and its endpoint.

b. 24 O h b. 24 O h
26 0 . 26
/ 0 120 Q 12 O
cCg 16 g 7| 6 |
O —@, o B |
—@ 8 \.
d e \

new edge

9

Prim’s Algorithm

Worked Example

V
A

4

(o) 9

.

\/
/\

\/
/\

mgg

x@%

Connected graph

Step O
S={a}

V\S={b,cdef,qg}
lightest edge = { a,b}

10

Prim’s Algorithm

Prim’s Example — Continued

®

X

s

©

O

N

=N

©

2

10
7

@

\3 /@W gt:e{pa;.l before

5 (@ V\S={bcdefg}

9
A={}
\®A lightest edge = {ab}
1

10
7
e

® Step 1.1 after
X; S={a,h}
5 © V\S={cdef,g}

ﬁ A={{ab}}
lightest edge = {b,d}, {a,c}

/ °
2
1

®

11

Prim’s Algorithm

Prim’s Example — Continued

\3 /@& gt:e{pa’lb}z before

V\S={cdef,g}

/ \ A ﬁ;étzgge ={b,d}, {ac}

7‘?&
é

Step 1.2 after

\ / N \S/:\{g, E’?{:,e,f,g}
/ U7 et

;&

12

Prim’s Algorithm

Prim’s Example — Continued

Ne

\/
/\

v

©

\/
/\

/‘:’,\h

Step 1.3 before
S={ab,d}
V\S={cef,qg

A={{ab} {b,d}}
lightest edge = {d,c}

Step 1.3 after

S={ab,c,d}
V\S={ef,g

A={{ab} {bd} {cd}}
lightest edge = {c,f}

13

Prim’s Algorithm

Prim’s Example — Continued

10
O ® Step 1.4 before

y w / & S={ab,c,d}

©@ 99 0O, 5 © yis={efg

A ﬁ & A A={{ab} {bd} {cd}}

0 [© lightest edge = {c,f}

b 10 ® Step 1.4 after

X; S={ab,c,d,f}

9 @ 5 © V\S={eg}

4
©
9 A={{ab} {b,d} {cd} {cf}}
K ﬁ \ ﬁ lightest edge = {f.g}

14

Prim’s Algorithm

Prim’s Example — Continued

N

@ ° O, 5
ol e
0 Y ©

AN

Step 1.5 before
S={ab,c,d,f}
V\S={eg}

A={{ab}{bd} {cd}.{cf}}
lightest edge = {f,g}

Step 1.5 after

S={ab,c,d,f,g}

V\S={¢

A={{ab} {bd}.{cd} {cf},
{f.o}}

lightest edge = {f,e}

15

Prim’s Algorithm

Prim’s Example — Continued

N

@ ° O, 5
e
o "0

AN

Step 1.6 before
S={ab,c,d,f,g}
V\S={¢}
A={{ab}.{bd} {cd} {cf},

{f.9}}
lightest edge = {f,e}

Step 1.6 after

S={ab,c,d,ef,g}
V\S={}

A={{ab} {bd} {cd}.{c/},
{f.g}.{f.€}}

MST completed

16

Recall Idea of Prim’s Algorithm

Step 0: Choose any element r and set S = {r} and A = 0.
(Take r as the root of our spanning tree.)

Step 1. Find a lightest edge such that one endpointis in S and
the other is in V' \ S. Add this edge to A and its (other)
endpointto S.

Step 2: If V' \ S = (), then stop and output the minimum span-

ning tree (S, A).
Otherwise go to Step 1.

Questions:

e Why does this produce a Minimum Spanning
Tree?

e How does the algorithm find the lightest edge and
update A efficiently?

e How does the algorithm update S efficiently?

17

Correctness of Prim’s Algorithm

Lemma: Let (S, A) be a subtree of a MST of an undirected
graph G = (V, E),where S C Vand A C E. Lete = {u,v} be
an edge such that

(1) weSandveV\S;
(2) e has lowest weight among all the edges between
avertex in S and a vertexin V' \ S.

Then (S U {v}, AU {e}) is a subtree of a MST.

Proof: Let T' be a MST of GG that contains (S, A).
If e is an edge of T', we are done.

Suppose that e is not an edge of T'.

There is a unique path from « to v in T'. There must be at least
one edge ¢ = {u/,v'} in the path such that v’ € S and v €
V '\ S. By (2) above,

W(e) <W(e). (%)
Consider the new tree 77 := (T'U {e}) \ {€'}. Since T is MST,
W(T) <W(T") = W(T) - W(e) + W(e)
and so W(e') < W(e). Combined with (x), this proves that
W(e) = W(e), and so W(T") = W(T). Therefore T" is also
a MST, and 7" contains (S U {v}, AU {e}).

18

Correctness of Prim’s Algorithm

Lemma: Let (S, A) be a subtree of a MST of an undirected
graph G = (V, E),where S C Vand A C E. Lete = {u,v} be
an edge such that

(1) weSandveV\S;
(2) e has the lowest weight among all the edges between
avertexin S and a vertexin V' \ S.

Then (S U {v}, AU {e}) is a subtree of a MST.

We can now prove the correctness of Prim’s algorithm
by induction.

When the algorithm starts, ({r}, @) is definitely a sub-
tree of a MST of G (why).

At each step the algorithm chooses an edge e =
{u,v} that satisfies (1) and (2) so, from the lemma,
(Su{v}, Au{e}) remains a subtree of some MST of
G.

In particular, when the algorithm ends, S = V and A
is a tree on V. We know from above that (S, A) is a
subtree of some MST of GG but, since A itself is a tree
on G, this means that A itself is a MST.

19

Prim’s Algorithm

Question: How does the algorithm update S efficiently?

Answer: Color the vertices. Initially all are white.
Change the color to black when the vertex is moved
to S. Use color[v] to store color.

Question: How does the algorithm find the lightest
edge and update A efficiently?

Answer:
(a) Use a priority queue to find the lightest edge.
(b) Use pred[v] to update A.

20

Reviewing Priority Queues

Priority Queue is a data structure (can be implemented
as a heap) which supports the following operations:

insert(u, key):
Insert » with the key value key in Q.

u = extractMin():
Extract the item with the minimum key value in Q.

decreaseKey(u, new-key):
Decrease u's key value to new-key.

Remark: Priority Queues can be implemented so that
each operation takes time O(log |Q]). See CLRS!

21

Using a Priority Queue to Find the Lightest Edge

Each item of the queue is a triple (u, pred[u], key[u]),

where

e uisavertexinV \ S,

e keylu] is the weight of the lightest edge
from v to any vertex in S, and

e pred[u] is the endpoint of this edge in S.
The array is used to build the MST tree.

/ 160 120 i

I‘.—C.14Og23
o
—@ 8
d e

key[f] =8, pred[f] =e

key[i] = infinity, pred[i] = nil

key[g] = 16, pred[g] = c

key[h] = 24, pred[h] = b

— f has the minimum key

new edge

key[i] = 23, pred[i] = f

After adding the new edge
and vertex f, update the key[V]
and pred[v] for each vertex v
adjacent to f

22

Description of Prim’s Algorithm

Remark: G is given by adjacency lists. The vertices in V' \ S
are stored in a priority queue with key=value of lightest edge to
vertexin S.

Prim(G, w, r)
{ foreachu eV initialize
{ keylu] = 4o0;
color[u] = W,
}
key[r] = 0O; start at root
pred[r] = NIL;
@ = new PriQueue(V); put vertices in Q)
while(Q is nonempty) until all vertices in MST
{ u=Q.extraxtMin(); lightest edge

for each (v € adj[u])
{ if ((color[v] == W)&(w[u,v] < key[v]))

key[v] = wlu,v]; new lightest edge
(.decreaseKey(v, key[v]);
pred[v] = u;

color[u] = B;

}
}

When the algorithm terminates, Q = () and the MST is
T = {{v,pred[v]} : v e V\ {r}}.

The pred pointers defi ne the MST as an inverted tree
rooted at r.
23

Example for Running Prim’s Algorithm

24

Analysis of Prim’s Algorithm

Letn = |V|and e = |E|. The data structure PriQueue
supports the following two operations: (See CLRS)

e O(logn) to extract each vertex from the queue.
Done once for each vertex = O(nlogn).

e O(logn) time to decrease the key value of neigh-
boring vertex.
Done at most once for each edge = O(elogn).

Total cost is then

O((n+e)logn)

25

Analysis of Prim’s Algorithm — Continued

Prim(G, w, r) {
for each (UinV)

key[u] = +infinity; on

color[u] = white;

key[r] =0;
pred[r] = nil;
Q = new PriQueue(V);

S5k

\{/vhi le (Q. nonempty())

u = Q.extractMin();
for each (v in adj[u])

If ((color[v] == white) &
(w(u,v) <key[v])

key[v] =w(u, v);
Q.decreaseKey(v, key[V]);
pred[v] = u;

}}

color[u] = black;

(log n)

ROFr RBR

. [O(log) + O(deg(u) log)]
uinVv
26

Analysis of Prim’s Algorithm — Continued

So the overall running time is

T(n,e)
= 3n+4+2+) [O(logn)+ O(deg(u) logn)]

ueV

= 3n+2+0 |(logn) > _ (1+ deg(u))

ueV

3n+ 2+ O[(logn)(n + 2e)]
= O[(logn)(n + 2e¢)]
O[(logn)(n + e)]

O[(I[V]+ |E|) log |V]].

27

