Lecture 10: Minimum Spanning Trees and Prim's Algorithm CLRS Chapter 23

Outline of this Lecture

- Spanning trees and minimum spanning trees.
- The minimum spanning tree (MST) problem.
- Prim's algorithm for the MST problem.
- The algorithm
- Correctness
- Implementation + Running Time

Spanning Trees

Spanning Trees: A subgraph T of a undirected graph $G=(V, E)$ is a spanning tree of G if it is a tree and contains every vertex of G.

Example:

Graph

spanning tree 2

spanning tree 1

spanning tree 3

Spanning Trees

Theorem: Every connected graph has a spanning tree.

Question: Why is this true?

Question: Given a connected graph G, how can you find a spanning tree of G ?

Weighted Graphs

Weighted Graphs: A weighted graph is a graph, in which each edge has a weight (some real number).

Weight of a Graph: The sum of the weights of all edges.

Example:

Minimum Spanning Trees

A Minimum Spanning Tree in an undirected connected weighted graph is a spanning tree of minimum weight (among all spanning trees).

Example:

weighted graph

Tree 2, w=71
Minimum spanning tree

Tree 1. w=74

Tree 3, w=72

Minimum Spanning Trees

Remark: The minimum spanning tree may not be unique. However, if the weights of all the edges are pairwise distinct, it is indeed unique (we won't prove this now).

Example:

weighted graph

MST 1

MST 2

Minimum Spanning Tree Problem

MST Problem: Given a connected weighted undirected graph G, design an algorithm that outputs a minimum spanning tree (MST) of G.

Question: What is most intuitive way to solve?

Generic approach: A tree is an acyclic graph. Idea is to start with an empty graph and try to add edges one at a time, always making sure that what is built remains acyclic.

We introduce two greedy algorithms (Prim's and Kruskal's algorithms) for computing a MST.
They differ in how to choose edges to add.
Greedy: make the cheapest possible choice in each step.

What is Prim's Algorithm?

- A greedy algorithm for the MST problem.
- Looks very much like Dijkstra's algorithm: Grow a Tree
- Start by picking any vertex r to be the root of the tree.
- While the tree does not contain all vertices in the graph find shortest edge leaving the tree and it to the tree .
- Running time is $O((|V|+|E|) \log |V|)$.

More Details

Step 0: Choose any element r; set $S=\{r\}$ and $A=\emptyset$. (Take r as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint is in S and the other is in $V \backslash S$. Add this edge to A and its (other) endpoint to S.

Step 2: If $V \backslash S=\emptyset$, then stop \& output (minimum) spanning tree (S, A). Otherwise go to Step 1 .

The idea: expand the current tree by adding the lightest (shortest) edge leaving it and its endpoint.

new edge

Prim's Algorithm

Worked Example

Step 0
$S=\{a\}$
$V \backslash S=\{b, c, d, e, f, g\}$
lightest edge $=\{a, b\}$

Prim's Algorithm

Prim's Example - Continued

Step 1.1 before
S=\{a\}
$\mathrm{V} \backslash \mathrm{S}=\{\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$
A=\{\}
lightest edge $=\{a, b\}$

Step 1.1 after
$\mathrm{S}=\{\mathrm{a}, \mathrm{b}\}$
$\mathrm{V} \backslash \mathrm{S}=\{\mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$
$\mathrm{A}=\{\{\mathrm{a}, \mathrm{b}\}\}$
lightest edge $=\{b, d\},\{a, c\}$

Prim's Algorithm

Prim's Example - Continued

Step 1.2 before
$\mathrm{S}=\{\mathrm{a}, \mathrm{b}\}$
$\mathrm{V} \backslash \mathrm{S}=\{\mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$
A=\{ $\{\mathrm{a}, \mathrm{b}\}\}$
lightest edge $=\{\mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}\}$

Step 1.2 after
$\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$
$\mathrm{V} \backslash \mathrm{S}=\{\mathrm{c}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$
$\mathrm{A}=\{\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{d}\}\}$
lightest edge $=\{\mathrm{d}, \mathrm{c}\}$

Prim's Algorithm

Prim's Example - Continued

Step 1.3 before
$\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$
$\mathrm{V} \backslash \mathrm{S}=\{\mathrm{c}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$
$\mathrm{A}=\{\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{d}\}\}$
lightest edge $=\{\mathrm{d}, \mathrm{c}\}$

Step 1.3 after
$\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
$\mathrm{V} \backslash \mathrm{S}=\{\mathrm{e}, \mathrm{f}, \mathrm{g}\}$
$A=\{\{a, b\},\{b, d\},\{c, d\}\}$
lightest edge $=\{c, f\}$

Prim's Algorithm

Prim's Example - Continued

Step 1.4 before
$\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
$\mathrm{V} \backslash \mathrm{S}=\{\mathrm{e}, \mathrm{f}, \mathrm{g}\}$
$A=\{\{a, b\},\{b, d\},\{c, d\}\}$
lightest edge $=\{c, f\}$

Step 1.4 after
$\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}\}$
$\mathrm{V} \backslash \mathrm{S}=\{\mathrm{e}, \mathrm{g}\}$
$A=\{\{a, b\},\{b, d\},\{c, d\},\{c, f\}\}$
lightest edge $=\{\mathrm{f}, \mathrm{g}\}$

Prim's Algorithm

Prim's Example - Continued

Step 1.5 before
$\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}\}$
$\mathrm{V} \backslash \mathrm{S}=\{\mathrm{e}, \mathrm{g}\}$
$A=\{\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{c}, \mathrm{f}\}\}$
lightest edge $=\{\mathrm{f}, \mathrm{g}\}$

Step 1.5 after
$\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{g}\}$
$V \backslash S=\{e\}$
$A=\{\{a, b\},\{b, d\},\{c, d\},\{c, f\}$, $\{f, g\}\}$
lightest edge $=\{\mathrm{f}, \mathrm{e}\}$

Prim's Algorithm

Prim's Example - Continued

Step 1.6 before
$\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{g}\}$
$\mathrm{V} \backslash \mathrm{S}=\{\mathrm{e}\}$
$A=\{\{a, b\},\{b, d\},\{c, d\},\{c, f\}$, $\{f, g\}\}$
lightest edge $=\{\mathrm{f}, \mathrm{e}\}$

Step 1.6 after
$\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$
$\mathrm{V} \backslash \mathrm{S}=\{ \}$
$A=\{\{a, b\},\{b, d\},\{c, d\},\{c, f\}$,
$\{f, g\},\{f, e\}\}$
MST completed

Recall Idea of Prim's Algorithm

Step 0: Choose any element r and set $S=\{r\}$ and $A=\emptyset$. (Take r as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint is in S and the other is in $V \backslash S$. Add this edge to A and its (other) endpoint to S.

Step 2: If $V \backslash S=\emptyset$, then stop and output the minimum spanning tree (S, A).
Otherwise go to Step 1.

Questions:

- Why does this produce a Minimum Spanning Tree?
- How does the algorithm find the lightest edge and update A efficiently?
- How does the algorithm update S efficiently?

Correctness of Prim's Algorithm

Lemma: Let (S, A) be a subtree of a MST of an undirected graph $G=(V, E)$, where $S \subset V$ and $A \subset E$. Let $e=\{u, v\}$ be an edge such that
(1) $u \in S$ and $v \in V \backslash S$;
(2) e has lowest weight among all the edges between a vertex in S and a vertex in $V \backslash S$.

Then $(S \cup\{v\}, A \cup\{e\})$ is a subtree of a MST.

Proof: Let T be a MST of G that contains (S, A). If e is an edge of T, we are done.

Suppose that e is not an edge of T.
There is a unique path from u to v in T. There must be at least one edge $e^{\prime}=\left\{u^{\prime}, v^{\prime}\right\}$ in the path such that $u^{\prime} \in S$ and $v^{\prime} \in$ $V \backslash S$. By (2) above,

$$
W(e) \leq W\left(e^{\prime}\right) . \quad(*)
$$

Consider the new tree $T^{\prime}:=(T \cup\{e\}) \backslash\left\{e^{\prime}\right\}$. Since T is MST,

$$
W(T) \leq W\left(T^{\prime}\right)=W(T)-W\left(e^{\prime}\right)+W(e)
$$

and so $W\left(e^{\prime}\right) \leq W(e)$. Combined with $(*)$, this proves that $W\left(e^{\prime}\right)=W(e)$, and so $W\left(T^{\prime}\right)=W(T)$. Therefore T^{\prime} is also a MST, and T^{\prime} contains $(S \cup\{v\}, A \cup\{e\})$.

Correctness of Prim's Algorithm

Lemma: Let (S, A) be a subtree of a MST of an undirected graph $G=(V, E)$, where $S \subset V$ and $A \subset E$. Let $e=\{u, v\}$ be an edge such that
(1) $u \in S$ and $v \in V \backslash S$;
(2) e has the lowest weight among all the edges between a vertex in S and a vertex in $V \backslash S$.

Then $(S \cup\{v\}, A \cup\{e\})$ is a subtree of a MST.

We can now prove the correctness of Prim's algorithm by induction.

When the algorithm starts, $(\{r\}, \emptyset)$ is definitely a subtree of a MST of G (why).

At each step the algorithm chooses an edge $e=$ $\{u, v\}$ that satisfies (1) and (2) so, from the lemma, $(S \cup\{v\}, A \cup\{e\})$ remains a subtree of some MST of G.

In particular, when the algorithm ends, $S=V$ and A is a tree on V. We know from above that (S, A) is a subtree of some MST of G but, since A itself is a tree on G, this means that A itself is a MST.

Prim's Algorithm

Question: How does the algorithm update S efficiently?

Answer: Color the vertices. Initially all are white. Change the color to black when the vertex is moved to S. Use color $[v]$ to store color.

Question: How does the algorithm find the lightest edge and update A efficiently?

Answer:
(a) Use a priority queue to find the lightest edge.
(b) Use pred $[v]$ to update A.

Reviewing Priority Queues

Priority Queue is a data structure (can be implemented as a heap) which supports the following operations:
insert $(u, k e y)$:
Insert u with the key value key in Q.

$\mathbf{u}=$ extractMin():

Extract the item with the minimum key value in Q.
decreaseKey(u, new-key):
Decrease u 's key value to new-key.

Remark: Priority Queues can be implemented so that each operation takes time $O(\log |Q|)$. See CLRS!

Using a Priority Queue to Find the Lightest Edge

Each item of the queue is a triple ($u, \operatorname{pred}[u], \operatorname{key}[u]$), where

- u is a vertex in $V \backslash S$,
- $k e y[u]$ is the weight of the lightest edge from u to any vertex in S, and
- $\operatorname{pred}[u]$ is the endpoint of this edge in S.

The array is used to build the MST tree.

$\operatorname{key}[\mathrm{f}]=8, \operatorname{pred}[\mathrm{f}]=\mathrm{e}$
$\operatorname{key}[i]=$ infinity, $\operatorname{pred}[i]=$ nil
$\operatorname{key}[\mathrm{g}]=16, \operatorname{pred}[\mathrm{~g}]=\mathrm{c}$
$\operatorname{key}[\mathrm{h}]=24, \operatorname{pred}[\mathrm{~h}]=\mathrm{b}$
$\rightarrow \mathrm{f}$ has the minimum key

new edge
$\operatorname{key}[\mathrm{i}]=23, \operatorname{pred}[\mathrm{i}]=\mathrm{f}$
After adding the new edge and vertex f , update the key[v] and pred $[\mathrm{v}]$ for each vertex v adjacent to f

Description of Prim's Algorithm

Remark: G is given by adjacency lists. The vertices in $V \backslash S$ are stored in a priority queue with key=value of lightest edge to vertex in S.
$\operatorname{Prim}(G, w, r)$
\{ for each $u \in V \quad$ initialize
$\{\quad \operatorname{key}[u]=+\infty$; color $[u]=W$;
\}
$k e y[r]=0 ; \quad$ start at root
$\operatorname{pred}[r]=N I L$;
$Q=$ new PriQueue (V);
put vertices in Q
while (Q is nonempty) until all vertices in MST
\{ u=Q.extraxtMin();
lightest edge for each $(v \in \operatorname{adj}[u])$
$\{\quad$ if $(($ color $[v]==W) \&(w[u, v]<\operatorname{key}[v]))$ $k e y[v]=w[u, v]$;
new lightest edge Q.decreaseKey (v, key $[v]$);
$\operatorname{pred}[v]=u$;
\}
$\operatorname{color}[u]=B$;
\}
\}
When the algorithm terminates, $Q=\emptyset$ and the MST is

$$
T=\{\{v, \operatorname{pred}[v]\}: v \in V \backslash\{r\}\} .
$$

The pred pointers defi ne the MST as an inverted tree rooted at r.

Example for Running Prim's Algorithm

Analysis of Prim's Algorithm

Let $n=|V|$ and $e=|E|$. The data structure PriQueue supports the following two operations: (See CLRS)

- $O(\log n)$ to extract each vertex from the queue. Done once for each vertex $=O(n \log n)$.
- $O(\log n)$ time to decrease the key value of neighboring vertex.
Done at most once for each edge $=O(e \log n)$.

Total cost is then

$$
O((n+e) \log n)
$$

Analysis of Prim's Algorithm - Continued

$\operatorname{Prim}(\mathrm{G}, \mathrm{w}, \mathrm{r})\{$
for each (u in V)
\{
$\operatorname{key}[\mathrm{u}]=+$ +infinity;
color[u] = white;
\}

$$
\operatorname{key}[\mathrm{r}]=0 ; \quad \longrightarrow \quad 1
$$

$$
\text { pred }[\mathrm{r}]=\text { nil; } \quad \quad 1
$$

$$
\mathrm{Q}=\text { new PriQueue }(\mathrm{V}) ;
$$

while (Q. nonempty())
\{
$\mathrm{u}=\mathrm{Q} . \operatorname{extractMin}()$;
$\mathrm{O}(\log \mathrm{n})$ for each (v in adj[u]) \{
if ((color[v] == white) \& (w(u,v) < key[v]) $\operatorname{pred}[\mathrm{v}]=\mathrm{u}$;
color[u] = black;

Analysis of Prim's Algorithm - Continued

So the overall running time is

$$
\begin{aligned}
& T(n, e) \\
& \quad=3 n+2+\sum_{u \in V}[O(\log n)+O(\operatorname{deg}(u) \log n)] \\
& =3 n+2+O\left[(\log n) \sum_{u \in V}(1+\operatorname{deg}(u))\right] \\
& =3 n+2+O[(\log n)(n+2 e)] \\
& =O[(\log n)(n+2 e)] \\
& =O[(\log n)(n+e)] \\
& =O[(|V|+|E|) \log |V|]
\end{aligned}
$$

