Lecture 10: Minimum Spanning Trees and Prim’s Algorithm

CLRS Chapter 23

Outline of this Lecture

- Spanning trees and minimum spanning trees.
- The minimum spanning tree (MST) problem.
- Prim’s algorithm for the MST problem.
 - The algorithm
 - Correctness
 - Implementation + Running Time
Spanning Trees: A subgraph T of an undirected graph $G = (V, E)$ is a spanning tree of G if it is a tree and contains every vertex of G.

Example:

Graph spanning tree 1

spanning tree 2

spanning tree 3
Spanning Trees

Theorem: Every connected graph has a spanning tree.

Question: Why is this true?

Question: Given a connected graph G, how can you find a spanning tree of G?
Weighted Graphs

Weighted Graphs: A weighted graph is a graph, in which each edge has a weight (some real number).

Weight of a Graph: The sum of the weights of all edges.

Example:

Weighted graph

Tree 1. \(w = 74 \)

Tree 2. \(w = 71 \)

Minimum spanning tree
Minimum Spanning Trees

A **Minimum Spanning Tree** in an undirected connected weighted graph is a spanning tree of **minimum weight** (among all spanning trees).

Example:

- **weighted graph**
- **Tree 2, w=71**
- **Minimum spanning tree**
Minimum Spanning Trees

Remark: The minimum spanning tree may not be unique. However, if the weights of all the edges are pairwise distinct, it is indeed unique (we won’t prove this now).

Example:

![Weighted Graph and Minimum Spanning Trees](image)

- Weighted graph
- Minimum Spanning Tree 1 (MST 1)
- Minimum Spanning Tree 2 (MST 2)
Minimum Spanning Tree Problem

MST Problem: Given a connected weighted undirected graph G, design an algorithm that outputs a minimum spanning tree (MST) of G.

Question: What is most intuitive way to solve?

Generic approach: A tree is an acyclic graph. Idea is to start with an empty graph and try to add edges one at a time, always making sure that what is built remains acyclic.

We introduce two greedy algorithms (Prim’s and Kruskal’s algorithms) for computing a MST. They differ in how to choose edges to add.

Greedy: make the cheapest possible choice in each step.
What is Prim’s Algorithm?

- A greedy algorithm for the MST problem.

- Looks very much like Dijkstra’s algorithm:

 Grow a Tree

 – Start by picking any vertex \(r \) to be the root of the tree.

 – While the tree does not contain all vertices in the graph find shortest edge leaving the tree and it to the tree.

- Running time is \(O((|V| + |E|) \log |V|) \).
More Details

Step 0: Choose any element r; set $S = \{r\}$ and $A = \emptyset$. (Take r as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint is in S and the other is in $V \setminus S$. Add this edge to A and its (other) endpoint to S.

Step 2: If $V \setminus S = \emptyset$, then stop & output (minimum) spanning tree (S, A). Otherwise go to Step 1.

The idea: expand the current tree by adding the lightest (shortest) edge leaving it and its endpoint.
Prim’s Algorithm

Worked Example

Connected graph

Step 0
S={a}

V \ S = \{b,c,d,e,f,g\}
lighest edge = \{a,b\}
Step 1.1 before
S={a}
V \ S = \{b,c,d,e,f,g\}
A={}
lightest edge = \{a,b\}

Step 1.1 after
S={a,b}
V \ S = \{c,d,e,f,g\}
A={\{a,b\}}
lightest edge = \{b,d\}, \{a,c\}
Step 1.2 before
S={a,b}
V \ S = \{c,d,e,f,g\}
A=\{\{a,b\}\}
lighest edge = \{b,d\}, \{a,c\}

Step 1.2 after
S={a,b,d}
V \ S = \{c,e,f,g\}
A=\{\{a,b\},\{b,d\}\}
lighest edge = \{d,c\}
Step 1.3 before
S={a,b,d}
V \ S = \{c,e,f,g\}
A=\{\{a,b\},\{b,d\}\}
lighest edge = \{d,c\}

Step 1.3 after
S={a,b,c,d}
V \ S = \{e,f,g\}
A=\{\{a,b\},\{b,d\},\{c,d\}\}
lighest edge = \{c,f\}
Prim’s Algorithm

Prim’s Example – Continued

Step 1.4 before
- \(S = \{a, b, c, d\} \)
- \(V \setminus S = \{e, f, g\} \)
- \(A = \{\{a, b\}, \{b, d\}, \{c, d\}\} \)
- Lightest edge = \{c, f\}

Step 1.4 after
- \(S = \{a, b, c, d, f\} \)
- \(V \setminus S = \{e, g\} \)
- \(A = \{\{a, b\}, \{b, d\}, \{c, d\}, \{c, f\}\} \)
- Lightest edge = \{f, g\}
Step 1.5 before
S={a,b,c,d,f}
V \ S = \{e,g\}
A=\{\{a,b\},\{b,d\},\{c,d\},\{c,f\}\}
lighest edge = \{f,g\}

Step 1.5 after
S={a,b,c,d,f,g}
V \ S = \{e\}
A=\{\{a,b\},\{b,d\},\{c,d\},\{c,f\},
\{f,g\}\}
lighest edge = \{f,e\}
Prim’s Algorithm

Prim’s Example – Continued

Step 1.6 before
S={a,b,c,d,f,g}
V \ S = \{e\}
A={\{a,b\},\{b,d\},\{c,d\},\{c,f\},
 \{f,g\}}
lighest edge = \{f,e\}

Step 1.6 after
S={a,b,c,d,e,f,g}
V \ S = \{
A={\{a,b\},\{b,d\},\{c,d\},\{c,f\},
 \{f,g\},\{f,e\}}
MST completed
Recall Idea of Prim’s Algorithm

Step 0: Choose any element \(r \) and set \(S = \{ r \} \) and \(A = \emptyset \). (Take \(r \) as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint is in \(S \) and the other is in \(V \setminus S \). Add this edge to \(A \) and its (other) endpoint to \(S \).

Step 2: If \(V \setminus S = \emptyset \), then stop and output the minimum spanning tree \((S, A)\). Otherwise go to Step 1.

Questions:

- Why does this produce a *Minimum* Spanning Tree?

- How does the algorithm find the *lightest edge* and update \(A \) efficiently?

- How does the algorithm update \(S \) efficiently?
Lemma: Let \((S, A)\) be a subtree of a MST of an undirected graph \(G = (V, E)\), where \(S \subseteq V\) and \(A \subseteq E\). Let \(e = \{u, v\}\) be an edge such that

1. \(u \in S\) and \(v \in V \setminus S\);
2. \(e\) has lowest weight among all the edges between a vertex in \(S\) and a vertex in \(V \setminus S\).

Then \((S \cup \{v\}, A \cup \{e\})\) is a subtree of a MST.

Proof: Let \(T\) be a MST of \(G\) that contains \((S, A)\). If \(e\) is an edge of \(T\), we are done.

Suppose that \(e\) is not an edge of \(T\). There is a unique path from \(u\) to \(v\) in \(T\). There must be at least one edge \(e' = \{u', v'\}\) in the path such that \(u' \in S\) and \(v' \in V \setminus S\). By (2) above,

\[
W(e) \leq W(e').
\]

Consider the new tree \(T' := (T \cup \{e\}) \setminus \{e'\}\). Since \(T\) is MST,

\[
W(T) \leq W(T') = W(T) - W(e') + W(e)
\]

and so \(W(e') \leq W(e)\). Combined with (**), this proves that \(W(e') = W(e)\), and so \(W(T') = W(T)\). Therefore \(T'\) is also a MST, and \(T'\) contains \((S \cup \{v\}, A \cup \{e\})\).
Correctness of Prim’s Algorithm

Lemma: Let \((S, A)\) be a subtree of a MST of an undirected graph \(G = (V, E)\), where \(S \subset V\) and \(A \subset E\). Let \(e = \{u, v\}\) be an edge such that

1. \(u \in S\) and \(v \in V \setminus S\);
2. \(e\) has the lowest weight among all the edges between a vertex in \(S\) and a vertex in \(V \setminus S\).

Then \((S \cup \{v\}, A \cup \{e\})\) is a subtree of a MST.

We can now prove the correctness of Prim’s algorithm by induction.

When the algorithm starts, \((\{r\}, \emptyset)\) is definitely a subtree of a MST of \(G\) (why).

At each step the algorithm chooses an edge \(e = \{u, v\}\) that satisfies (1) and (2) so, from the lemma, \((S \cup \{v\}, A \cup \{e\})\) remains a subtree of some MST of \(G\).

In particular, when the algorithm ends, \(S = V\) and \(A\) is a tree on \(V\). We know from above that \((S, A)\) is a subtree of some MST of \(G\) but, since \(A\) itself is a tree on \(G\), this means that \(A\) itself is a MST.
Prim’s Algorithm

Question: How does the algorithm update \(S \) efficiently?

Answer: Color the vertices. Initially all are white. Change the color to black when the vertex is moved to \(S \). Use \(\text{color}[v] \) to store color.

Question: How does the algorithm find the lightest edge and update \(A \) efficiently?

Answer:
(a) Use a priority queue to find the lightest edge.
(b) Use \(\text{pred}[v] \) to update \(A \).
Reviewing Priority Queues

Priority Queue is a data structure (can be implemented as a heap) which supports the following operations:

- **insert**(u, key):
 Insert u with the key value key in Q.

- **extractMin**(u):
 Extract the item with the minimum key value in Q.

- **decreaseKey**$(u, new-key)$:
 Decrease u’s key value to $new-key$.

Remark: Priority Queues can be implemented so that each operation takes time $O(\log |Q|)$. See CLRS!
Using a Priority Queue to Find the Lightest Edge

Each item of the queue is a triple \((u, \text{pred}[u], \text{key}[u])\), where

- \(u\) is a vertex in \(V \setminus S\),
- \(\text{key}[u]\) is the weight of the lightest edge from \(u\) to any vertex in \(S\), and
- \(\text{pred}[u]\) is the endpoint of this edge in \(S\).

The array is used to build the MST tree.

After adding the new edge and vertex \(f\), update the \(\text{key}[v]\) and \(\text{pred}[v]\) for each vertex \(v\) adjacent to \(f\).

- \(\text{key}[f] = 8, \ \text{pred}[f] = e\)
- \(\text{key}[i] = \text{infinity}, \ \text{pred}[i] = \text{nil}\)
- \(\text{key}[g] = 16, \ \text{pred}[g] = c\)
- \(\text{key}[h] = 24, \ \text{pred}[h] = b\)
- \(f\) has the minimum key

\[\text{new edge}\]
Description of Prim’s Algorithm

Remark: G is given by adjacency lists. The vertices in $V \setminus S$ are stored in a priority queue with key=value of lightest edge to vertex in S.

\[
\text{Prim}(G, w, r)\\{\text{for each } u \in V \{\begin{array}{l}
\text{key}[u] = +\infty; \\
\text{color}[u] = W;
\end{array}\}\text{initialize}\\key[r] = 0; \\
pred[r] = NIL; \\
Q = \text{new PriQueue}(V); \\
\text{while}(Q \text{ is nonempty}) \\
\{u = Q.\text{extractMin}(); \\
\text{for each } (v \in \text{adj}[u]) \\
\{\text{if } ((\text{color}[v] == W) \&\&(w[u, v] < \text{key}[v])) \\
\text{key}[v] = w[u, v]; \\
Q.\text{decreaseKey}(v, \text{key}[v]); \\
pred[v] = u;
\}\} \\
\text{color}[u] = B; \\
}\}
\]

When the algorithm terminates, $Q = \emptyset$ and the MST is

\[T = \{\{v, \text{pred}[v]\} : v \in V \setminus \{r\}\}.\]

The pred pointers define the MST as an inverted tree rooted at r.

23
Example for Running Prim’s Algorithm

![Graph Diagram]

<table>
<thead>
<tr>
<th>u</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>key[u]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pred[u]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analysis of Prim’s Algorithm

Let $n = |V|$ and $e = |E|$. The data structure PriQueue supports the following two operations: (See CLRS)

- $O(\log n)$ to extract each vertex from the queue.
 Done once for each vertex $= O(n \log n)$.

- $O(\log n)$ time to decrease the key value of neighboring vertex.
 Done at most once for each edge $= O(e \log n)$.

Total cost is then

$$O((n + e) \log n)$$
Prim(G, w, r) {
 for each (u in V)
 {
 key[u] = +infinity;
 color[u] = white;
 }
 key[r] = 0;
 pred[r] = nil;
 Q = new PriQueue(V);

 while (Q. nonempty())
 {
 u = Q.extractMin();
 for each (v in adj[u])
 {
 if ((color[v] == white) & (w(u,v) < key[v]))
 {
 key[v] = w(u,v);
 Q.decreaseKey(v, key[v]);
 pred[v] = u;
 }
 }
 color[u] = black;
 }
}

\[\sum_{u \in V} [O(\log n) + O(\text{deg}(u) \log n)] \]
So the overall running time is

\[
T(n, e) = 3n + 2 + \sum_{u \in V} [O(\log n) + O(\deg(u) \log n)]
\]

\[
= 3n + 2 + O \left(\log n \sum_{u \in V} (1 + \deg(u)) \right)
\]

\[
= 3n + 2 + O[(\log n)(n + 2e)]
\]

\[
= O[(\log n)(n + 2e)]
\]

\[
= O[(\log n)(n + e)]
\]

\[
= O[(|V| + |E|) \log |V|].
\]