
Lecture 10: Minimum Spanning Trees
and Prim’s Algorithm

CLRS Chapter 23

Outline of this Lecture

• Spanning trees and minimum spanning trees.

• The minimum spanning tree (MST) problem.

• Prim’s algorithm for the MST problem.

– The algorithm

– Correctness

– Implementation + Running Time

1

Spanning Trees

Spanning Trees: A subgraph T of a undirected graph
G = (V, E) is a spanning tree of G if it is a tree and
contains every vertex of G.

Example:

��
��

��
�� ��

��

��
��

��
��

��
��

��
��

��
�� ��

��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

A
A

����
"

"
""

XXXX

�
�

�
�

�
�

�
�
!!!! aaaa

�
�

��

L
LL

!!!!
"

"
"

"

aaaa

�
�

�
�

A
A

"
"

"
"
XXXX

a b

c
d

e

a b

c
d

e

a b

c
d

e

a b

c
d

e

Graph spanning tree 1

spanning tree 2 spanning tree 3

2

Spanning Trees

Theorem: Every connected graph has a spanning
tree.

Question: Why is this true?

Question: Given a connected graph G, how can you
find a spanning tree of G?

3

Weighted Graphs

Weighted Graphs: A weighted graph is a graph, in
which each edge has a weight (some real number).

Weight of a Graph: The sum of the weights of all
edges.

Example:

��
��

��
�� ��

��

��
��

��
��

��
��

��
��

��
�� ��

��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

A
A

����
"

"
""

XXXX

�
�

�
�

�
�

�
�
!!!! aaaa

�
�

��

L
LL

!!!!
"

"
"

"

aaaa

�
�

�
�

A
A

"
"

"
"
XXXX

a b

c
d

e

a b

c
d

e

a b

c
d

e

a b

c
d

e

10

9

7 32

23
10 32

23
9

7 7

9

32

23

32
23

10

weighted graph

Tree 2, w=71 Tree 3, w=72

Tree 1. w=74

Minimum spanning tree

4

Minimum Spanning Trees

A Minimum Spanning Tree in an undirected connected
weighted graph is a spanning tree of minimum weight
(among all spanning trees).

Example:

��
��

��
�� ��

��

��
��

��
��

��
��

��
��

��
�� ��

��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

A
A

����
"

"
""

XXXX

�
�

�
�

�
�

�
�
!!!! aaaa

�
�

��

L
LL

!!!!
"

"
"

"

aaaa

�
�

�
�

A
A

"
"

"
"
XXXX

a b

c
d

e

a b

c
d

e

a b

c
d

e

a b

c
d

e

10

9

7 32

23
10 32

23
9

7 7

9

32

23

32
23

10

weighted graph

Tree 2, w=71 Tree 3, w=72

Tree 1. w=74

Minimum spanning tree

5

Minimum Spanning Trees

Remark: The minimum spanning tree may not be
unique. However, if the weights of all the edges are
pairwise distinct, it is indeed unique (we won’t prove
this now).

Example:

a b

c

d e

a b

c

d e

a b

c

d e

2

24 67

2 2

24 2467 67

weighted
graph

MST 1 MST 2

1 1 1

2

6

Minimum Spanning Tree Problem

MST Problem: Given a connected weighted undi-
rected graph G, design an algorithm that outputs a
minimum spanning tree (MST) of G.

Question: What is most intuitive way to solve?

Generic approach: A tree is an acyclic graph.
Idea is to start with an empty graph and try to add
edges one at a time, always making sure that what is
built remains acyclic.

We introduce two greedy algorithms (Prim’s and Kruskal’s
algorithms) for computing a MST.
They differ in how to choose edges to add.

Greedy: make the cheapest possible choice in each step.

7

What is Prim’s Algorithm?

• A greedy algorithm for the MST problem.

• Looks very much like Dijkstra’s algorithm:
Grow a Tree

– Start by picking any vertex r to be the root of
the tree.

– While the tree does not contain
all vertices in the graph
find shortest edge leaving the tree
and it to the tree .

• Running time is O((|V | + |E|) log |V |).

8

More Details

Step 0: Choose any element r; set S = {r} and
A = ∅. (Take r as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint
is in S and the other is in V \ S. Add this edge to
A and its (other) endpoint to S.

Step 2: If V \ S = ∅, then stop & output (minimum)
spanning tree (S, A). Otherwise go to Step 1.

The idea: expand the current tree by adding the
lightest (shortest) edge leaving it and its endpoint.

e

24
20

r

a
b

c

d

26

f

g i
r

a
b

c

d e

f

g i

8 8

12

16
14

new

24
2026

16
14

12

23 23

new edge

12
12

h h

9

Prim’s Algorithm

Worked Example

a

b

c

d

e

f

g

4

8

9

8

2

1

9

7

10

5

6

2

b

c

d

e

f

g

4

8

10

8

2

1

7

9
5

6

2

S={a}

Step 0

a
V \ S = {b,c,d,e,f,g}

9

Connected graph

lightest edge = {a,b}

10

Prim’s Algorithm

Prim’s Example – Continued

b

c

d

e

f

g

4

8

9

8

2

1

9

7

10

5

6

2

c

d

e

f

g

8

9

10

8

2

1

7

9
5

6

2

a

a

Step 1.1

Step 1.1 after

4

S={a}

S={a,b}
b

before

V \ S = {b,c,d,e,f,g}

V \ S = {c,d,e,f,g}

lightest edge = {a,b}

lightest edge = {b,d}, {a,c}

A={}

A={{a,b}}

11

Prim’s Algorithm

Prim’s Example – Continued

c

d

e

f

g

4

8

9

8

2

1

9

7

10

5

6

2

c

e

f

g

8

10

8

2

1

7

9
5

6

2

a

a

4
b

beforeb Step 1.2
S={a,b}

Step 1.2 after

S={a,b,d}

d

V \ S = {c,d,e,f,g}

V \ S = {c,e,f,g}9

lightest edge = {b,d}, {a,c}

lightest edge = {d,c}

A={{a,b}}

A={{a,b},{b,d}}

12

Prim’s Algorithm

Prim’s Example – Continued

c

e

f

g

4

8

9

8

2

1

9

7

10

5

6

2

e

f

g

8

9

10

8

2

1

7

9
5

6

2

a

a

4
b

beforeb

d

Step 1.3

Step 1.3 after

S={a,b,d}
d

S={a,b,c,d}

V \ S = {c,e,f,g}

V \ S = {e,f,g}

c

lightest edge = {d,c}

lightest edge = {c,f}

A={{a,b},{b,d}}

A={{a,b},{b,d},{c,d}}

13

Prim’s Algorithm

Prim’s Example – Continued

e

f

g

4

8

9

8

2

1

9

7

10

5

6

2

e

g

8

9

10

8

2

1

7

9
5

6

2

a

a

4
b

beforeb

d

d

c

S={a,b,c,d}

V \ S = {e,f,g}

c

S={a,b,c,d,f}
V \ S = {e,g}

Step 1.4

Step 1.4 after

f

lightest edge = {c,f}

lightest edge = {f,g}

A={{a,b},{b,d},{c,d}}

A={{a,b},{b,d},{c,d},{c,f}}

14

Prim’s Algorithm

Prim’s Example – Continued

e

g

4

8

9

8

2

1

9

7

10

5

6

2

e

8

9

10

8

2

1

7

9
5

6

2

a

a

4
b

beforeb

d

d

c

c

f

S={a,b,c,d,f}
V \ S = {e,g}

f

Step 1.5

Step 1.5 after

S={a,b,c,d,f,g}
V \ S = {e}

{f,g}}

g

lightest edge = {f,g}

lightest edge = {f,e}

A={{a,b},{b,d},{c,d},{c,f}}

A={{a,b},{b,d},{c,d},{c,f},

15

Prim’s Algorithm

Prim’s Example – Continued

e
4

8

9

8

2

1

9

7

10

5

6

2

8

9

10

8

2

1

7

9
5

6

2

a

a

4
b

beforeb

d

d

c

c

f

f

g

S={a,b,c,d,f,g}
V \ S = {e}

{f,g}}

g

Step 1.6

Step 1.6 after

S={a,b,c,d,e,f,g}
V \ S = {}

{f,g},{f,e}}

MST completed

e

lightest edge = {f,e}

A={{a,b},{b,d},{c,d},{c,f},

A={{a,b},{b,d},{c,d},{c,f},

16

Recall Idea of Prim’s Algorithm

Step 0: Choose any element r and set S = {r} and A = ∅.
(Take r as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint is in S and
the other is in V \ S. Add this edge to A and its (other)
endpoint to S.

Step 2: If V \ S = ∅, then stop and output the minimum span-
ning tree (S, A).
Otherwise go to Step 1.

Questions:

• Why does this produce a Minimum Spanning
Tree?

• How does the algorithm find the lightest edge and
update A efficiently?

• How does the algorithm update S efficiently?

17

Correctness of Prim’s Algorithm

Lemma: Let (S, A) be a subtree of a MST of an undirected
graph G = (V, E), where S ⊂ V and A ⊂ E. Let e = {u, v} be
an edge such that

(1) u ∈ S and v ∈ V \ S;
(2) e has lowest weight among all the edges between

a vertex in S and a vertex in V \ S.

Then (S ∪ {v}, A ∪ {e}) is a subtree of a MST.

Proof: Let T be a MST of G that contains (S, A).
If e is an edge of T , we are done.

Suppose that e is not an edge of T .
There is a unique path from u to v in T . There must be at least
one edge e′ = {u′, v′} in the path such that u′ ∈ S and v′ ∈
V \ S. By (2) above,

W(e) ≤ W(e′). (∗)

Consider the new tree T ′ := (T ∪ {e}) \ {e′}. Since T is MST,

W(T) ≤ W(T ′) = W(T) − W(e′) + W(e)

and so W(e′) ≤ W(e). Combined with (∗), this proves that

W(e′) = W(e), and so W(T ′) = W(T). Therefore T ′ is also

a MST, and T ′ contains (S ∪ {v}, A ∪ {e}).

18

Correctness of Prim’s Algorithm

Lemma: Let (S, A) be a subtree of a MST of an undirected
graph G = (V, E), where S ⊂ V and A ⊂ E. Let e = {u, v} be
an edge such that

(1) u ∈ S and v ∈ V \ S;
(2) e has the lowest weight among all the edges between

a vertex in S and a vertex in V \ S.

Then (S ∪ {v}, A ∪ {e}) is a subtree of a MST.

We can now prove the correctness of Prim’s algorithm
by induction.

When the algorithm starts, ({r}, ∅) is definitely a sub-
tree of a MST of G (why).

At each step the algorithm chooses an edge e =

{u, v} that satisfies (1) and (2) so, from the lemma,
(S∪{v}, A∪{e}) remains a subtree of some MST of
G.

In particular, when the algorithm ends, S = V and A

is a tree on V . We know from above that (S, A) is a
subtree of some MST of G but, since A itself is a tree
on G, this means that A itself is a MST.

19

Prim’s Algorithm

Question: How does the algorithm update S efficiently?

Answer: Color the vertices. Initially all are white.
Change the color to black when the vertex is moved
to S. Use color[v] to store color.

Question: How does the algorithm find the lightest
edge and update A efficiently?

Answer:
(a) Use a priority queue to find the lightest edge.
(b) Use pred[v] to update A.

20

Reviewing Priority Queues

Priority Queue is a data structure (can be implemented
as a heap) which supports the following operations:

insert(u, key):
Insert u with the key value key in Q.

u = extractMin():
Extract the item with the minimum key value in Q.

decreaseKey(u, new-key):
Decrease u’s key value to new-key.

Remark: Priority Queues can be implemented so that
each operation takes time O(log |Q|). See CLRS!

21

Using a Priority Queue to Find the Lightest Edge

Each item of the queue is a triple (u, pred[u], key[u]),
where
• u is a vertex in V \ S,
• key[u] is the weight of the lightest edge

from u to any vertex in S, and
• pred[u] is the endpoint of this edge in S.

The array is used to build the MST tree.

r

a
b

c

d e

f

g i
r

a
b

c

d e

f

g i

24
2026

16
14

8

24
2026

16
14

8

12
12

23 23

new edge
key[f] = 8, pred[f] = e

12
12

key[i] = infinity, pred[i] = nil key[i] = 23, pred[i] = f

After adding the new edge
and vertex f, update the key[v]
and pred[v] for each vertex v
adjacent to f

key[g] = 16, pred[g] = c

key[h] = 24, pred[h] = b

f has the minimum key

h h

22

Description of Prim’s Algorithm

Remark: G is given by adjacency lists. The vertices in V \ S
are stored in a priority queue with key=value of lightest edge to
vertex in S.

Prim(G, w, r)
{ for each u ∈ V initialize

{ key[u] = +∞;
color[u] = W ;

}
key[r] = 0; start at root
pred[r] = NIL;
Q = new PriQueue(V); put vertices in Q
while(Q is nonempty) until all vertices in MST
{ u=Q.extraxtMin(); lightest edge

for each (v ∈ adj[u])
{ if ((color[v] == W)&(w[u, v] < key[v]))

key[v] = w[u, v]; new lightest edge
Q.decreaseKey(v, key[v]);
pred[v] = u;

}
color[u] = B;

}
}

When the algorithm terminates, Q = ∅ and the MST is

T = {{v, pred[v]} : v ∈ V \ {r}}.

The pred pointers define the MST as an inverted tree

rooted at r.

23

Example for Running Prim’s Algorithm

a

b

c

d

e

f

1

2

3

4

5

1

10
3

4

u

key[u]

pred[u]

a b c d e f

24

Analysis of Prim’s Algorithm

Let n = |V | and e = |E|. The data structure PriQueue
supports the following two operations: (See CLRS)

• O(logn) to extract each vertex from the queue.
Done once for each vertex = O(n logn).

• O(logn) time to decrease the key value of neigh-
boring vertex.
Done at most once for each edge = O(e logn).

Total cost is then

O((n + e) logn)

25

Analysis of Prim’s Algorithm – Continued

Prim(G, w, r) {
for each (u in V)
{

key[u] = +infinity;
color[u] = white;

}

key[r] = 0;
pred[r] = nil;
Q = new PriQueue(V);

while (Q. nonempty())
{

u = Q.extractMin();
for each (v in adj[u])
{

if ((color[v] == white) &
(w(u,v) < key[v])

key[v] = w(u, v);
{

}
}
color[u] = black;

}
}

1
O(log n)
1

1
1

pred[v] = u;

O(log n)

1

O(deg(u) log n)

1

[O(log n) + O(deg(u) log n)]
u in V

1
1

2n

n

Q.decreaseKey(v, key[v]);

26

Analysis of Prim’s Algorithm – Continued

So the overall running time is

T (n, e)

= 3n + 2 +
∑

u∈V

[O(logn) + O(deg(u) logn)]

= 3n + 2 + O



(logn)
∑

u∈V

(1 + deg(u))





= 3n + 2 + O[(logn)(n + 2e)]

= O[(log n)(n + 2e)]

= O[(log n)(n + e)]

= O[(|V | + |E|) log |V |].

27

