
Lecture 11: Kruskal’s MST Algorithm
CLRS Chapter 23

Main Topics of This Lecture

• Kruskal’s algorithm
Another, but different, greedy MST algorithm

• Introduction to UNION-FIND data structure.
Used in Kruskal’s algorithm
Will see implementation in next lecture.

1

Idea of Kruskal’s Algorithm

Build a forest.

Initially, trees of the forest are the vertices (no edges).

In each step add the cheapest edge that does not cre-
ate a cycle.

Continue until the forest is a single tree.
(Why is a single tree created?)

This is a minimum spanning tree
(we must prove this).

2

Outline by Example

a b

c

de

a b

c

de

original graph

edge weight

3 5

7

10

12

9

2

{d, c} 2
{a, e} 3
{a, d} 5
{e, d} 7
{b, c} 9
{a, b} 10
{b, d} 12

E

forest MST

Forest (V, A)

A={ }

3

Outline of Kruskal’s Algorithm

Step 0: Set A = ∅ and F = E, the set of all edges.

Step 1: Choose an edge e in F of minimum weight,
and check whether adding e to A creates a cycle.

• If “yes”, remove e from F .

• If “no”, move e from F to A.

Step 2: If F = ∅, stop and output the minimal span-
ning tree (V, A). Otherwise go to Step 1.

Remark: Will see later, after each step, (V, A) is a
subgraph of a MST.

4

Outline of Kruskal’s Algorithm

Implementation Questions:

• How does algorithm choose edge e ∈ F with min-
imum weight?

• How does algorithm check whether adding e to A

creates a cycle?

5

How to Choose the Edge of Least Weight

Question:
How does algorithm choose edge e ∈ F with mini-
mum weight?

Answer: Start by sorting edges in E in order of in-
creasing weight.
Walk through the edges in this order.
(Once edge e causes a cycle it will always cause a cycle so it

can be thrown away.)

6

How to Check for Cycles

Observation: At each step of the outlined algorithm,
(V, A) is acyclic so it is a forest.

If u and v are in the same tree, then adding edge
{u, v} to A creates a cycle.

If u and v are not in the same tree, then adding edge
{u, v} to A does not create a cycle.

Question: How to test whether u and v are in the
same tree?

High-Level Answer: Use a disjoint-set data structure
Vertices in a tree are considered to be in same set.
Test if Find-Set(u) = Find-Set(v)?

Low -Level Answer:
The UNION-FIND data structure implements this:

7

The UNION-FIND Data Structure

UNION-FIND supports three operations on collections
of disjoint sets: Let n be the size of the universe.

Create-Set(u): O(1)

Create a set containing the single element u.

Find-Set(u): O(logn)

Find the set containing the element u.

Union(u, v): O(logn)

Merge the sets respectively containing u and v

into a common set.

For now we treat UNION-FIND as a black box.
Will see implementation in next lecture.

8

Kruskal’s Algorithm: the Details

Sort E in increasing order by weight w; O(|E| log |E|)

/* After sorting E = 〈{u1, v1}, {u2, v2}, . . . , {u|E|, v|E|}〉 */

A = { };
for (each u in V) CREATE-SET(u); O(|V |)

for i from 1 to |E| do O(|E| log |E|)

if (FIND-SET(ui) != FIND-SET(vi))
{ add {ui, vi} to A;

UNION(ui, vi);
}

return(A);

Remark: With a proper implementation of UNION-FIND, Kruskal’s

algorithm has running time O(|E| log |E|).

9

Correctness of Kruskal’s Algorithm

Lemma:
Let (V, A) be a subgraph (part) of a MST of G =

(V, E), and let e = {u, v} ∈ E \ A be an edge such
that

(1) (V, A ∪ {e}) has no cycle;
(2) e has minimum weight among all edges in

E \ A such that (1) is satisfied.

Then (V, A ∪ {e}) is a subgraph of some MST con-
taining (V, A).

Corollary: Kruskal’s algorithm produces a MST.

10

Proof of the Lemma: The Idea

Idea of Proof: Let T be any MST with (V, A) as a
subgraph. Then we prove that

• either e ∈ T so (V, A∪{e}) is a subgraph of MST
T and lemma is correct or

• if e 6∈ T there is edge e′ ∈ T − A such that
W (e) = W (e′) and T ′ = T ∪ {e} − {e′} is a
tree.
Since W (T ′) = W (T) this implies T ′ is a MST
so (V, A∪{e}) is a subgraph of MST T ′ so lemma
is correct.

11

Proof of the Lemma: The idea

(V, (V,A u {u,v} A u {u,v}))

Case 1 Case 2

u

v

u

v

Graph G T T u {u,v}

T’

1
2 2

24 27

{u,v} in T {u,v} not in T

u

v

u’

v’

 path in T: u u’ v

12

Correctness of Kruskal’s Algorithm – Continued

Proof: Let T be any MST with (V, A) as a subgraph.
If e ∈ T , we are done.

Suppose that e = {u, v} 6∈ T .
There is a unique path from u to v in the MST T ,

which contains at least one edge e′ ∈ E \ A.
e′ 6= e (because e 6∈ T but e′ ∈ T).
(V, A ∪ {e′}) has no cycles

(because (V, A ∪ {e′}) is included in T .)
W (e) ≤ W (e′) (because both edges in E \ A

and assumption (2) in previous page).
Consider the new tree T ′ = (T ∪ {e}) \ {e′}.

If W (e) = W (e′), then T ′ is another minimum
spanning tree containing (V, A ∪ {e}).

If W (e) < W (e′), then
W (T ′) − W (T) = W (e) − W (e′) < 0.
Contradiction.

13

Understanding the Proof of Lemma

T

v

u

u’

v’ A

14

Understanding the Proof of Lemma

a b

c

de

a b

c

de

Original graph G

a b

c

de

a b

c

de

Spanning tree T

New spanning tree T’ T U {a, e}

after deleting {e, d}

15

