Lecture 11: Kruskal’s MST Algorithm
CLRS Chapter 23

Main Topics of This Lecture

- Kruskal’s algorithm
 Another, but different, greedy MST algorithm

- Introduction to **UNION-FIND** data structure.
 Used in Kruskal’s algorithm
 Will see implementation in next lecture.
Idea of Kruskal’s Algorithm

Build a forest.

Initially, trees of the forest are the vertices (no edges).

In each step add the cheapest edge that does not create a cycle.

Continue until the forest is a single tree. (Why is a single tree created?)

This is a minimum spanning tree (we must prove this).
Outline by Example

Original Graph

- Edge weights:
 - \(\{d, c\}\): 2
 - \(\{a, e\}\): 3
 - \(\{a, d\}\): 5
 - \(\{e, d\}\): 7
 - \(\{b, c\}\): 9
 - \(\{a, b\}\): 10
 - \(\{b, d\}\): 12

Forest

MST

\[
\text{Forest (V, A)}
\]

- \(A=\{\}
\]
Outline of Kruskal’s Algorithm

Step 0: Set $A = \emptyset$ and $F = E$, the set of all edges.

Step 1: Choose an edge e in F of minimum weight, and check whether adding e to A creates a cycle.

- If “yes”, remove e from F.
- If “no”, move e from F to A.

Step 2: If $F = \emptyset$, stop and output the minimal spanning tree (V, A). Otherwise go to Step 1.

Remark: Will see later, after each step, (V, A) is a subgraph of a MST.
Outline of Kruskal’s Algorithm

Implementation Questions:

- How does algorithm choose edge $e \in F$ with minimum weight?

- How does algorithm check whether adding e to A creates a cycle?
How to Choose the Edge of Least Weight

Question:
How does algorithm *choose* edge \(e \in F \) with minimum weight?

Answer: Start by sorting edges in \(E \) in order of increasing weight.
Walk through the edges in this order.
(Once edge \(e \) causes a cycle it will always cause a cycle so it can be thrown away.)
How to Check for Cycles

Observation: At each step of the outlined algorithm, \((V, A)\) is acyclic so it is a forest.

If \(u\) and \(v\) are in the same tree, then adding edge \(\{u, v\} \) to \(A\) creates a cycle.

If \(u\) and \(v\) are not in the same tree, then adding edge \(\{u, v\} \) to \(A\) does not create a cycle.

Question: How to test whether \(u\) and \(v\) are in the same tree?

High-Level Answer: Use a disjoint-set data structure. Vertices in a tree are considered to be in same set. Test if \(\text{Find-Set}(u) = \text{Find-Set}(v)\)?

Low-Level Answer: The \textsc{Union-Find} data structure implements this:
The UNION-FIND Data Structure

UNION-FIND supports three operations on collections of disjoint sets: Let n be the size of the universe.

Create-Set(u): $O(1)$
Create a set containing the single element u.

Find-Set(u): $O(\log n)$
Find the set containing the element u.

Union(u, v): $O(\log n)$
Merge the sets respectively containing u and v into a common set.

For now we treat UNION-FIND as a black box. Will see implementation in next lecture.
Kruskal’s Algorithm: the Details

Sort E in increasing order by weight w; \[O(|E| \log |E|) \]

/* After sorting $E = \langle \{u_1, v_1\}, \{u_2, v_2\}, \ldots, \{u_{|E|}, v_{|E|}\} \rangle */

\[A = \{ \} \];
for (each u in V) CREATE-SET(u); \[O(|V|) \]

for i from 1 to $|E|$ do \[O(|E| \log |E|) \]
 if (FIND-SET(u_i) != FIND-SET(v_i))
 \{ add \{u_i, v_i\} to A;
 UNION(u_i, v_i);
 \}
return(A);

Remark: With a proper implementation of UNION-FIND, Kruskal’s algorithm has running time $O(|E| \log |E|)$.
Lemma:
Let (V, A) be a subgraph (part) of a MST of $G = (V, E)$, and let $e = \{u, v\} \in E \setminus A$ be an edge such that

1. $(V, A \cup \{e\})$ has no cycle;
2. e has minimum weight among all edges in $E \setminus A$ such that (1) is satisfied.

Then $(V, A \cup \{e\})$ is a subgraph of some MST containing (V, A).

Corollary: Kruskal’s algorithm produces a MST.
Proof of the Lemma: The Idea

Idea of Proof: Let T be any MST with (V, A) as a subgraph. Then we prove that

• either $e \in T$ so $(V, A \cup \{e\})$ is a subgraph of MST T and lemma is correct or

• if $e \notin T$ there is edge $e' \in T - A$ such that $W(e) = W(e')$ and $T' = T \cup \{e\} - \{e'\}$ is a tree.
 Since $W(T') = W(T)$ this implies T' is a MST so $(V, A \cup \{e\})$ is a subgraph of MST T' so lemma is correct.
Proof of the Lemma: The idea

Case 1
\{u,v\} in T

Case 2
\{u,v\} not in T
Correctness of Kruskal’s Algorithm – Continued

Proof: Let T be any MST with (V, A) as a subgraph. If $e \in T$, we are done.

Suppose that $e = \{u, v\} \not\in T$.
There is a unique path from u to v in the MST T, which contains at least one edge $e' \in E \setminus A$.
$e' \neq e$ (because $e \not\in T$ but $e' \in T$).
$(V, A \cup \{e'\})$ has no cycles (because $(V, A \cup \{e'\})$ is included in T).
$W(e) \leq W(e')$ (because both edges in $E \setminus A$ and assumption (2) in previous page).
Consider the new tree $T' = (T \cup \{e\}) \setminus \{e'\}$.
If $W(e) = W(e')$, then T' is another minimum spanning tree containing $(V, A \cup \{e\})$.
If $W(e) < W(e')$, then
$W(T') - W(T) = W(e) - W(e') < 0$.
Contradiction.
Understanding the Proof of Lemma
Understanding the Proof of Lemma

Original graph G

New spanning tree T’ after deleting \{e, d\}

Spanning tree T

T U \{a, e\}