
Lecture 12: Dynamic Progamming
CLRS Chapter 15

Outline of this section

� Introduction to Dynamic programming;
a method for solving optimization problems.

� Dynamic programming vs. Divide and Conquer

� A few examples of Dynamic programming

– the 0-1 Knapsack Problem

– Chain Matrix Multiplication

– All Pairs Shortest Path

– The Floyd Warshall Algorithm: Improved All
Pairs Shortest Path
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Recalling Divide-and-Conquer

1. Partition the problem into particular subproblems.

2. Solve the subproblems.

3. Combine the solutions to solve the original one.

Remark: In the examples we saw the subproblems
were usually independent, i.e. they did not call the
same subsubproblems. If the subsubproblems were
not independent, then D&C could be resolving many
of the same problems many times. Thus, it does more
work than necessary!

Dynamic programming (DP) solves every subsubprob-
lem exactly once, and is therefore more efficient in
those cases where the subsubproblems are not in-
depndent.
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The Intuition behind Dynamic Programming

Dynamic programming is a method for solving
optimization problems.

The idea: Compute the solutions to the subsub-problems
once and store the solutions in a table, so that they
can be reused (repeatedly) later.

Remark: We trade space for time.
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0-1 Knapsack Problem

Informal Description: We have � precomputed data
files that we want to store, and

�
bytes of storage

available.
File � has two parameters:

size ��� (bytes)
time ��� (minutes); time needed to recompute File �	�

Our goal is to use storage space to minimize recom-
putation time; we want to find a subset of files to store
such that

� The files have combined size at most
�

.
� The total recomputation time of the stored files is as
large as possible.
We can not store parts of files, it is the whole file or
nothing. (This is why it is called 0-1.)

How should we select the files?
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0-1 Knapsack Problem

Formal description:
Given

� � �
, and two � -tuples of positive numbers

�
����� ���	� � � �
� ���� and

�
� ��� � � � � ��� ������

we wish to determine the subset� � ��� ����� � � ��� ��� (of files to store) that

maximizes
� ��!

���"�

subject to
� ��!

���$# �
�

Remark: This is an optimization problem. The Brute
Force solution is to try all � � possible subsets

�
.

Question:Is there a better way?
Yes. Dynamic Programming!
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General Schema of a DP Solution

Step1: Structure: Characterize the structure of an
optimal solution by showing that it can be decom-
posed into optimal subproblems

Step2: Recursively define the value of an optimal
solution by expressing it in terms of optimal so-
lutions for smaller problems (usually using �

���

and/or � ��� ).

Step 3: Bottom-up computation: Compute the value
of an optimal solution in a bottom-up fashion by
using a table structure.

Step 4: Construction of optimal solution: Construct
an optimal solution from computed information.
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Remarks on the Dynamic Programming Approach

� Steps 1-3 form the basis of a dynamic-programming
solution to a problem.

� Step 4 can be omitted if only the value of an opti-
mal solution is required.
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Developing a DP Algorithm for Knapsack

Step 1: Decompose the problem into smaller
problems.

We construct an array � � � � � � � � � � � �
.

For
� # � # � , and

� # � # �
, the entry� � � � � �

will store the maximum (combined)
computing time of any subset of files

� � ����� � � ��� � �
of (combined) size at most � .

That is��� ���	��
� � ��� ���� ������� � �
! � � � � �!�#"#"$"#� �&%'� ����� � ��( � )�*+ "

If we can compute all the entries of this array, then
the array entry � � � � � �

will contain the solution
to our problem.

Note: In what follows we will say that
�

is a solu-
tion for � � � � �

if
� � ��� � � � � � �
� � � and , - ��! � - #

� and that
�

is an optimal solution for � � � � �
if

�
is a solution and , - ��! � - . � � � � � �

�

8



Developing a DP Algorithm for Knapsack

Step 2: Recursively define the value of an optimal
solution in terms of solutions to smaller problems.

Initial Settings: Set� � � � � � . �
for

� # � # �
, no item� � � � � � . � � for � � �

, illegal

Recursive Step: Use

� � � � � � . � ����� � � � � � � � � � � ��� � � � � � � � � � �
���

for
� # � # � ,

� # � # �
.
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Correctness of the Method for Computing � � � � � �
Lemma: For

� # � # � ,
� # � # �

,� � � � � � . � ����� � � � � � � � � � ��� � � � � � � � � � ���
� �
�

Proof: Intuitively, the lemma is correct because if ! is an optimal
solution for

� ��� ��
 then either File � is not in ! or File � is not in ! .

Formally, we will start by proving that� � ���&� 
�� � ����� � � ��� � �	��
 � ���	� � � �
� � �	� � � � 
 � "
First we build a solution with ��� !�"
Let ! be an optimal solution for

� ��� � �	��
�" This means that, ����� � � � ��� ��� � �&� 
 , ! � � � � �!�#"#"#"#� ��� � % and , ����� � � ( � "
The last two statements mean that ! is a solution for

� ���&� 
 so� � ���&��
�� � � �
� � �	� 
 .
Now build a solution with � � !�"
Let ! be an optimal solution for

� ��� � � � � � 
�" This means
that , �����

� � � � � � ��� � � � � � � 
 , !�� � ��� � �!�#"#"#"#� ��� � % and, �����
� � � ( ��� � � " Now set ! � ! ��� � �&%�" Then ! � ��� � �!�#"#"#"#� �&%

and , ���#� � ��( � so ! is a solution for
� ���	� 
�" Furthermore����� � � � � � � �����

�
� � � � � � � � �
� � �	� � � � 


so
� � ��� ��
�� � � � � � ��� � �	� � � � 
�"
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Now we prove� � � � � � # � � ��� � � � � � � � � � � � � � � � � � � � � � �
� �
�

Let
�

be an optimal solution for � � � � �
�

That is, , - ��! � - . � � � � � �
,

� � � � � � � � � ��� � � and, - ��! � - # � � Again, there are two cases. Either
� �� �

or � � �
.

If � �� �
then

�
is a solution for � � � � � � �

so� � � � � � . - ��!
� - # � � � � � � � �

�

If � � �
then set

� � . � � �
� � � Notice that, - ��!�� � - # � � � - so

� �
is a solution for � � � � � � �

� �
�
. This means that , - ��! � � - # � � � � � � � � � , and� � � � � � . - ��!

� - . � � � - ��!��
� - # ��� � � � � � � � � � ��� � �

Combining the two we see that in both cases� � � � � � # � � ��� � � � � � � � � � ��� � � � � � � � � � � �
� �
�
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In our proof we were a bit sloppy about indices.
Note that if � �

�
� , then ��� � � � � � � �	� � ���

� . � �
so the lemma is always correct.
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Developing a DP Algorithm for Knapsack

Step 3: Bottom-up computation of � � � � � �
(using iteration, not recursion).

Bottom: � � � � � � . �
for all

� # � # �
.

Bottom-up computation: Computing the table using

� � � � � � . � � ��� � � � � � � � � � � � � � � � � � � � � � �
���

row by row.

1

n

2

0 0 0 0 0... ...

...

bottom

up

i= 0

V[i,w] w=0 1 2 3 ... ... W
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Example of the Bottom-up computation

Let
� . � �

and

� 1 2 3 4
��� 10 40 30 50
��� 5 4 6 3� � ��� ��
 � 1 2 3 4 5 6 7 8 9 10

� � � 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 10 10 10 10 10 10
2 0 0 0 0 40 40 40 40 40 50 50
3 0 0 0 0 40 40 40 40 40 50 70
4 0 0 0 50 50 50 50 90 90 90 90

Remarks:

� The final output is
� ��� � ��� 
 � ��� .

� The method described does not tell which subset gives the
optimal solution. (It is � �!� � % in this example).
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The Dynamic Programming Algorithm

KnapSack(
� � � � � ��� )�

for ( � � � to � )
� � � �	��
 � � ;

for ( �� � to � )
for ( � � � to � )

if ( � � � 
 ( � )� � ���&��
� � �'� � � � �
� � �	��
 � � � � 
 � � � �
� � �	� � � � � 
 
&% ;
else� � ���&��
� ��� �
� � �	��
 ;

return
� � � ��� 
 ;�

Time complexity: Clearly, � � � � �
.
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Constructing the Optimal Solution

� The algorithm for computing � � � � � �
described in

the previous slide does not record which subset
of items gives the optimal solution.

� To compute the actual subset, we can add an
auxiliary boolean array ������� � � � � �

which is 1 if we
decide to take the � -th file in � � � � � �

and 0 other-
wise.

Question: How do we use all the values ������� � � � � �
to

determine the subset
�

of files having the maximum
computing time?
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Constructing the Optimal Solution

Question: How do we use the values ������� � � � � �
to

determine the subset
�

of items having the maximum
computing time?

If keep[ � � � ] is 1, then � � �
. We can now repeat

this argument for keep[ � � � � � � � � ].
If keep[ � � � ] is 0, the � �� �

and we repeat the argu-
ment for keep[ � � � � � ].

Therefore, the following partial program will output the
elements of

�
:

� . �
;

for ( � . � downto 1)
if (keep � � � � � . . �

)�

output i;
� . � � � � � � ;�
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The Complete Algorithm for the Knapsack Problem

KnapSack(
� � � � � ��� )�

for ( � � � to � )
� � �!�	� 
� � ;

for ( �� � to � )
for ( � � � to � )

if (( � � � 
 ( � ) and (
� � � 
 � � � �
� � �	� � � � � 
 
�� � � ��� � �	��
 ))� ��� ���	��
� � � � 
 � � � ��� � �	� � � � � 
 
 ;

keep
� ��� � 
� � ;�

else� ��� ���	��
� � � �
� � �	��
 ;
keep

� ��� � 
� � ;�
� � � ;
for ( �� � downto 1)

if (keep
� ��� � 
� � � )�

output i;� � � � � � � 
 ;�
return

� � � ��� 
 ;�
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Dynamic Programming vs. Divide-and-Conquer

The Dynamic Programming algorithm developed runs
in � � � � �

time.
We started by deriving a recurrence relation for solv-
ing the problem

� � � � � � . �
� � � � � � . � ����� � � � � � � � � � � � � � � � � � � � � � �

� �
Question: why can’t we simply write a top-down divide-
and-conquer algorithm based on this recurrence?
Answer: we could, but it could run in time as bad as

� � � � � since it might have to recompute the same val-
ues many times.

Dynamic programming saves us from having to re-
compute previously calculated subsolutions!
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Final Comment

Divide-and-Conquer works Top-Down.

Dynamic programming works Bottom-Up.
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