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Outline of this Lecture

• Recalling matrix multiplication.

• The chain matrix multiplication problem.

• A dynamic programming algorithm for chain ma-
trix multiplication.
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Recalling Matrix Multiplication

Matrix: An n × m matrix A = [a[i, j]] is a two-
dimensional array

A =











a[1,1] a[1,2] · · · a[1, m − 1] a[1, m]
a[2,1] a[2,2] · · · a[2, m − 1] a[2, m]
... ... ... ...
a[n,1] a[n,2] · · · a[n, m − 1] a[n, m]











,

which has n rows and m columns.

Example: The following is a 4 × 5 matrix:










12 8 9 7 6
7 6 89 56 2
5 5 6 9 10
8 6 0 −8 −1











.
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Recalling Matrix Multiplication

The product C = AB of a p × q matrix A and a q × r

matrix B is a p × r matrix given by

c[i, j] =
q

∑

k=1

a[i, k]b[k, j]

for 1 ≤ i ≤ p and 1 ≤ j ≤ r.

Example: If

A =







1 8 9
7 6 −1
5 5 6






, B =







1 8
7 6
5 5






,

then

C = AB =







102 101
44 87
70 100






.
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Remarks on Matrix Multiplication

• If AB is defined, BA may not be defined.

• Quite possible that AB 6= BA.

• Multiplication is recursively defined by

A1A2A3 · · ·As−1As

= A1(A2(A3 · · · (As−1As))).

• Matrix multiplication is associative , e.g.,

A1A2A3 = (A1A2)A3 = A1(A2A3),

so parenthenization does not change result.
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Direct Matrix multiplication AB

Given a p×q matrix A and a q×r matrix B, the direct
way of multiplying C = AB is to compute each

c[i, j] =
q

∑

k=1

a[i, k]b[k, j]

for 1 ≤ i ≤ p and 1 ≤ j ≤ r.

Complexity of Direct Matrix multiplication:

Note that C has pr entries and each entry takes Θ(q)

time to compute so the total procedure takes Θ(pqr)

time.
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Direct Matrix multiplication of ABC

Given a p × q matrix A, a q × r matrix B and a r × s

matrix C, then ABC can be computed in two ways
(AB)C and A(BC):

The number of multiplications needed are:

mult[(AB)C] = pqr + prs,

mult[A(BC)] = qrs + pqs.

When p = 5, q = 4, r = 6 and s = 2, then

mult[(AB)C] = 180,

mult[A(BC)] = 88.

A big difference!

Implication: The multiplication “sequence”
(parenthesization) is important!!
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The Chain Matrix Multiplication Problem

Given
dimensions p0, p1, . . . , pn

corresponding to matrix sequence A1, A2, . . ., An

where Ai has dimension pi−1 × pi,
determine the “multiplication sequence” that minimizes
the number of scalar multiplications in computing
A1A2 · · ·An. That is, determine how to parenthisize
the multiplications.

A1A2A3A4 = (A1A2)(A3A4)

= A1(A2(A3A4)) = A1((A2A3)A4)

= ((A1A2)A3)(A4) = (A1(A2A3))(A4)

Exhaustive search: Ω(4n/n3/2).

Question: Any better approach? Yes – DP
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Developing a Dynamic Programming Algorithm

Step 1: Determine the structure of an optimal solution
(in this case, a parenthesization).

Decompose the problem into subproblems: For
each pair 1 ≤ i ≤ j ≤ n, determine the multiplication
sequence for Ai..j = AiAi+1 · · ·Aj that minimizes
the number of multiplications.

Clearly, Ai..j is a pi−1 × pj matrix.

Original Problem: determine sequence of multiplica-
tion for A1..n.
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Developing a Dynamic Programming Algorithm

Step 1: Determine the structure of an optimal solution
(in this case, a parenthesization).

High-Level Parenthesization for Ai..j

For any optimal multiplication sequence, at the last
step you are multiplying two matrices Ai..k and Ak+1..j

for some k. That is,

Ai..j = (Ai · · ·Ak)(Ak+1 · · ·Aj) = Ai..kAk+1..j.

Example

A3..6 = (A3(A4A5))(A6) = A3..5A6..6.

Here k = 5.
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Developing a Dynamic Programming Algorithm

Step 1 – Continued: Thus the problem of determin-
ing the optimal sequence of multiplications is broken
down into 2 questions:

• How do we decide where to split the chain
(what is k)?

(Search all possible values of k)

• How do we parenthesize the subchains
Ai..k and Ak+1..j?

(Problem has optimal substructure property that
Ai..k and Ak+1..j must be optimal so we can ap-
ply the same procedure recursively)
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Developing a Dynamic Programming Algorithm

Step 1 – Continued:

Optimal Substructure Property: If final “optimal” so-
lution of Ai..j involves splitting into Ai..k and Ak+1..j

at final step then parenthesization of Ai..k and Ak+1..j

in final optimal solution must also be optimal for the
subproblems “standing alone”:

If parenthisization of Ai..k was not optimal we could
replace it by a better parenthesization and get a cheaper
final solution, leading to a contradiction.

Similarly, if parenthisization of Ak+1..j was not op-
timal we could replace it by a better parenthesization
and get a cheaper final solution, also leading to a con-
tradiction.
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Developing a Dynamic Programming Algorithm

Step 2: Recursively define the value of an optimal
solution.

As with the 0-1 knapsack problem, we will store the
solutions to the subproblems in an array.

For 1 ≤ i ≤ j ≤ n, let m[i, j] denote the minimum
number of multiplications needed to compute Ai..j.
The optimum cost can be described by the following
recursive definition.
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Developing a Dynamic Programming Algorithm

Step 2: Recursively define the value of an optimal
solution.

m[i, j] =

{

0 i = j,
mini≤k<j (m[i, k] + m[k + 1, j] + pi−1pkpj) i < j

Proof: Any optimal sequence of multiplication for Ai..j

is equivalent to some choice of splitting

Ai..j = Ai..kAk+1..j

for some k, where the sequences of multiplications for
Ai..k and Ak+1..j also are optimal. Hence

m[i, j] = m[i, k] + m[k + 1, j] + pi−1pkpj.
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Developing a Dynamic Programming Algorithm

Step 2 – Continued: We know that, for some k

m[i, j] = m[i, k] + m[k + 1, j] + pi−1pkpj.

We don’t know what k is, though
But, there are only j − i possible values of k so we
can check them all and find the one which returns a
smallest cost.

Therefore

m[i, j] =

{

0 i = j,
mini≤k<j (m[i, k] + m[k + 1, j] + pi−1pkpj) i < j
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Developing a Dynamic Programming Algorithm

Step 3: Compute the value of an optimal solution in a
bottom-up fashion.

Our Table: m[1..n,1..n].
m[i, j] only defined for i ≤ j.

The important point is that when we use the equation

m[i, j] = min
i≤k<j

(m[i, k] + m[k + 1, j] + pi−1pkpj)

to calculate m[i, j] we must have already evaluated m[i, k] and
m[k + 1, j].

Note that k − i < j − i and j − (k + 1) < j − i so, to ensure
that m[i, j] is evaluated after m[i, k] and m[k + 1, j] we simply
let ` = 1,2, . . . , n − 1 and calculate all the terms of the form
m[i, i + `], i = 1, . . . n − ` before we calculate the terms of the
form m[i, i + ` + 1], i = 1, . . . n − ` − 1. That is, we calculate
in the order

m[1,2], m[2,3], m[3,4], . . . , m[n−3, n−2], m[n−2, n−1], m[n−1, n]

m[1,3], m[2,4], m[3,5], . . . , m[n − 3, n − 1], m[n − 2, n]

m[1,4], m[2,5], m[3,6], . . . , m[n − 3, n]

...

m[1, n − 1], m[2, n]

m[1, n]
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Dynamic Programming Design Warning!!

When designing a dynamic programming algorithm
there are two parts:

1. Finding an appropriate optimal substructure prop-
erty and corresponding recurrence relation on ta-
ble items. Example:

m[i, j] = min
i≤k<j

(

m[i, k] + m[k + 1, j] + pi−1pkpj

)

2. Filling in the table properly.
This requires finding an ordering of the table el-
ements so that when a table item is calculated
using the recurrence relation, all the table values
needed by the recurrence relation have already
been calculated.

In our example this means that by the time m[i, j]

is calculated all of the values m[i, k] and m[k +

1, j] were already calculated.
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Example for the Bottom-Up Computation

Example: Given a chain of four matrices A1, A2, A3

and A4, with p0 = 5, p1 = 4, p2 = 6, p3 = 2 and
p4 = 7. Find m[1,4].

S0: Initialization
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m[i,j]

5 4 6 2 7

A1 A2 A3 A4

p0 p1 p2 p3 p4

0 0 0 0

ij
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Example – Continued

Stp 1: Computing m[1,2] By definition

m[1,2] = min
1≤k<2

(m[1, k] + m[k + 1,2] + p0pkp2)

= m[1,1] + m[2,2] + p0p1p2 = 120.
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A1 A2 A3 A4
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0 0 0 0
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Example – Continued

Stp 2: Computing m[2,3] By definition

m[2,3] = min
2≤k<3

(m[2, k] + m[k + 1,3] + p1pkp3)

= m[2,2] + m[3,3] + p1p2p3 = 48.
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5 4 6 2 7

A1 A2 A3 A4

p0 p1 p2 p3 p4

0 0 0 0

ij

120 48
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Example – Continued

Stp3: Computing m[3,4] By definition

m[3,4] = min
3≤k<4

(m[3, k] + m[k + 1,4] + p2pkp4)

= m[3,3] + m[4,4] + p2p3p4 = 84.
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0 0 0 0
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120 48 84
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Example – Continued

Stp4: Computing m[1,3] By definition

m[1,3] = min
1≤k<3

(m[1, k] + m[k + 1,3] + p0pkp3)

= min

{

m[1,1] + m[2,3] + p0p1p3
m[1,2] + m[3,3] + p0p2p3

}

= 88.

�
�

�
�

�
�

�
�

�
�

�
�

�
��

@
@

@
@

@
@

@
@

@
@

@
@

@
@@

�
�

�
�

�
�

�
�

�
�

�
�

�
��

@
@

@
@

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

��

�
�

�
�

@
@

@
@

@
@

@
@

@
@

@
@

@
@@

@
@

@
@

@
@

@
@

@
@

@

@
@

@
@

@
@

@@

6 6 6 66

4

3

2

1

1

2

3

4

m[i,j]
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0 0 0 0

ij
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88
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Example – Continued

Stp5: Computing m[2,4] By definition

m[2,4] = min
2≤k<4

(m[2, k] + m[k + 1,4] + p1pkp4)

= min

{

m[2,2] + m[3,4] + p1p2p4
m[2,3] + m[4,4] + p1p3p4

}

= 104.
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0 0 0 0
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22



Example – Continued

St6: Computing m[1,4] By definition

m[1,4] = min
1≤k<4

(m[1, k] + m[k + 1,4] + p0pkp4)

= min











m[1,1] + m[2,4] + p0p1p4
m[1,2] + m[3,4] + p0p2p4
m[1,3] + m[4,4] + p0p3p4











= 158.
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0 0 0 0
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158

We are done!
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Developing a Dynamic Programming Algorithm

Step 4: Construct an optimal solution from computed
information – extract the actual sequence.

Idea: Maintain an array s[1..n,1..n], where s[i, j] de-
notes k for the optimal splitting in computing Ai..j =

Ai..kAk+1..j. The array s[1..n,1..n] can be used re-
cursively to recover the multiplication sequence.

How to Recover the Multiplication Sequence?

s[1, n] (A1 · · ·As[1,n])(As[1,n]+1 · · ·An)

s[1, s[1, n]] (A1 · · ·As[1,s[1,n]])(As[1,s[1,n]]+1 · · ·As[1,n])

s[s[1, n] + 1, n] (As[1,n]+1 · · ·As[s[1,n]+1,n])×
(As[s[1,n]+1,n]+1 · · ·An)

... ...

Do this recursively until the multiplication sequence is
determined.
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Developing a Dynamic Programming Algorithm

Step 4: Construct an optimal solution from computed
information – extract the actual sequence.

Example of Finding the Multiplication Sequence:
Consider n = 6. Assume that the array s[1..6,1..6]

has been computed. The multiplication sequence is
recovered as follows.

s[1,6] = 3 (A1A2A3)(A4A5A6)
s[1,3] = 1 (A1(A2A3))
s[4,6] = 5 ((A4A5)A6)

Hence the final multiplication sequence is

(A1(A2A3))((A4A5)A6).
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The Dynamic Programming Algorithm

Matrix-Chain(p,n)
{ for (i = 1 to n) m[i, i] = 0;

for (l = 2 to n)
{

for (i = 1 to n − l + 1)
{

j = i + l − 1;
m[i, j] = ∞;
for (k = i to j − 1)
{

q = m[i, k] + m[k + 1, j] + p[i − 1] ∗ p[k] ∗ p[j];
if (q < m[i, j])
{

m[i, j] = q;
s[i, j] = k;

}
}

}
}
return m and s; (Optimum in m[1, n])

}

Complexity: The loops are nested three deep.

Each loop index takes on ≤ n values.

Hence the time complexity is O(n3). Space complexity Θ(n2).
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Constructing an Optimal Solution: Compute A1..n

The actual multiplication code uses the s[i, j] value to
determine how to split the current sequence. Assume
that the matrices are stored in an array of matrices
A[1..n], and that s[i, j] is global to this recursive pro-
cedure. The procedure returns a matrix.

Mult(A, s, i, j)
{

if (i < j)
{

X = Mult(A, s, i, s[i, j]);
X is now Ai · · ·Ak, where k is s[i, j]

Y = Mult(A, s, s[i, j] + 1, j);
Y is now Ak+1 · · ·Aj

return X ∗ Y ; multiply matrices X and Y

}
else return A[i];

}

To compute A1A2 · · ·An, call Mult(A, s,1, n).
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Constructing an Optimal Solution: Compute A1..n

Example of Constructing an Optimal Solution:
Compute A1..6.

Consider the example earlier, where n = 6. Assume
that the array s[1..6,1..6] has been computed. The
multiplication sequence is recovered as follows.

Mult(A, s,1,6), s[1,6] = 3, (A1A2A3)(A4A5A6)
Mult(A, s,1,3), s[1,3] = 1, ((A1)(A2A3))(A4A5A6)
Mult(A, s,4,6), s[4,6] = 5, ((A1)(A2A3))((A4A5)(A6))
Mult(A, s,2,3), s[2,3] = 2, ((A1)((A2)(A3)))((A4A5)(A6))
Mult(A, s,4,5), s[4,5] = 4, ((A1)((A2)(A3)))(((A4)(A5))(A6))

Hence the product is computed as follows

(A1(A2A3))((A4A5)A6).

28


