Lecture 13: Chain Matrix Multiplication
CLRS Section 15.2
Revised April 17, 2003

Outline of this Lecture

e Recalling matrix multiplication.

e The chain matrix multiplication problem.

e A dynamic programming algorithm for chain ma-
trix multiplication.

Recalling Matrix Multiplication

Matrix: An n X m matrix A = [a[z, j]] is a two-
dimensional array

[all,1] a[l,2] --- a[l,m—1] al[l,m] |
A — .a[2, 1] .a[2, 2] .- .a[2, m — 1] .a[2, m]
afn,1] aln,2] - aln,m—1] afn,m]

which has n rows and m columns.

Example: The following is a 4 x 5 matrix:

(128 9 7 6]
7 6 89 56 2
55 6 9 10
86 0 -8 -1

Recalling Matrix Multiplication

The product C' = ABofap x gmatrix Aandag x r
matrix B Is a p x r matrix given by

q

cli,jl =) ali, k]b[k,]

k=1
forl <:<pand1l <j3<r,.

Example: If
1 8 O 1 8]
A=|7 6 -1|, B=|7 6|,
' 55 6 ' 5 5|
then
[102 101 |
C = AB = 44 87

70 100

Remarks on Matrix Multiplication

If AB is defined, BA may not be defined.

Quite possible that AB = BA.

Multiplication is recursively defined by

A1ApAz - Ag_1As
= A1(A2(A3 - (As_145))).

Matrix multiplication is associative , e.qg.,
A1A2A3 = (A1A2) Az = A1(A2A3),

so parenthenization does not change result.

Direct Matrix multiplication AB

Given a p X ¢ matrix A and a g X » matrix B, the direct
way of multiplying C' = AB is to compute each

q

cli,jl =) ali, k]blk,]

k=1
forl <:<pand1l<j<r.

Complexity of Direct Matrix multiplication:

Note that C has pr entries and each entry takes ©(q)
time to compute so the total procedure takes © (pqr)
time.

Direct Matrix multiplication of ABC

Givenap X gmatrix A,ag X rmatrix Bandar X s
matrix C', then ABC can be computed in two ways
(AB)C and A(BC):

The number of multiplications needed are:

mult[(AB)C] pqr 4+ prs,
mult[A(BC)] = qrs—+ pgs.

Whenp =5,q9g =4,r = 6 and s = 2, then

mult[(AB)C] = 180,
mult[A(BC)] = 88.

A big difference!

Implication: The multiplication “sequence”
(parenthesization) is important!!

The Chain Matrix Multiplication Problem

Given
dimensions pg, p1,. .., Pn
corresponding to matrix sequence A4, Ao, ..., An

where A; has dimension p;_1 X p;,
determine the “multiplication sequence” that minimizes
the number of scalar multiplications in computing
A1A>--- Ap. That is, determine how to parenthisize
the multiplications.

A1A2A3A4 = (A1A2)(A3Ay)
A1(A2(A3A4)) = A1((A2A3)Ay)
((A1A42)A3)(As) = (A1(A2A3))(As)

Exhaustive search: Q(4"/n3/2).

Question: Any better approach? Yes — DP

Developing a Dynamic Programming Algorithm

Step 1: Determine the structure of an optimal solution
(in this case, a parenthesization).

Decompose the problem into subproblems: For
each pair 1 <1 < j < n, determine the multiplication
sequence for A; ; = A;A;41---A; that minimizes
the number of multiplications.

Clearly, A; jisap;_1 X p; matrix.

Original Problem: determine sequence of multiplica-
tion for A1 ,,.

Developing a Dynamic Programming Algorithm

Step 1: Determine the structure of an optimal solution
(in this case, a parenthesization).

High-Level Parenthesization for A; ;

For any optimal multiplication sequence, at the last
step you are multiplying two matrices A; pand A4
for some k. That is,

A j=(Ap A (Apgr - Aj) = Aj g Akt 4

Example

A3z .6 = (A3(AsA45))(As) = A3 .546. 6.
Here k = 5.

Developing a Dynamic Programming Algorithm

Step 1 — Continued: Thus the problem of determin-
Ing the optimal sequence of multiplications is broken
down into 2 questions:

e How do we decide where to split the chain
(what is k)?

(Search all possible values of k)

e How do we parenthesize the subchains
Aj pand Agyq 57

(Problem has optimal substructure property that
A; rand Ay q ; mustbe optimal so we can ap-
ply the same procedure recursively)

10

Developing a Dynamic Programming Algorithm

Step 1 — Continued:

Optimal Substructure Property: If final “optimal” so-
lution of A;_; involves splitting into A; j and Agyq
atfinal step then parenthesizationof A; pand Ay 4 ;
In final optimal solution must also be optimal for the
subproblems “standing alone”:

If parenthisization of A; ;. was not optimal we could
replace it by a better parenthesization and get a cheaper
final solution, leading to a contradiction.

Similarly, if parenthisization of Ay ; was not op-
timal we could replace it by a better parenthesization
and get a cheaper final solution, also leading to a con-
tradiction.

11

Developing a Dynamic Programming Algorithm

Step 2: Recursively define the value of an optimal
solution.

As with the 0-1 knapsack problem, we will store the
solutions to the subproblems in an array.

Forl < i < j < n, let m[i,] denote the minimum
number of multiplications needed to compute A;_ ;.
The optimum cost can be described by the following
recursive definition.

12

Developing a Dynamic Programming Algorithm

Step 2: Recursively define the value of an optimal
solution.

(o0 i=3
m[Z,]] _ { mini§k<j (m[z, k] + m[k + 1,]] +pi—1pk:pj> 1 <]

Proof: Any optimal sequence of multiplication for A;_;
IS equivalent to some choice of splitting

Aj j = A kAk+1.5

for some k, where the sequences of multiplications for
A; pand Agy 4 ; also are optimal. Hence

mli, j] = mli, k] +mlk + 1, j] + pi—1pkp;-

13

Developing a Dynamic Programming Algorithm

Step 2 — Continued: We know that, for some k

mli, j] = mli, k] +mlk + 1, j] + pi—1pkp;-

We don’t know what k is, though

But, there are only 5 — ¢ possible values of £ so we
can check them all and find the one which returns a
smallest cost.

Therefore

m[z,]] o { mini§k<j (’I’I’L[Z,k‘,] + m[k + 1,]] +pi—1pk:pj) 1 <]

14

Developing a Dynamic Programming Algorithm

Step 3: Compute the value of an optimal solution in a
bottom-up fashion.

Our Table: m[1..n,1..n].
m[z, 5] only defi ned for 7 < j.

The important point is that when we use the equation

to calculate m[i, 7] we must have already evaluated m/|i, k] and
m[k + 1, j].

Notethatk —i < j—7andj — (k+ 1) < 5 — i S0, to ensure
that m[z, 7] is evaluated after m[z, k] and m[k + 1, j] we simply
let / = 1,2,...,n — 1 and calculate all the terms of the form
mli, i+ £],7 = 1,...n — £ before we calculate the terms of the
formml[i, i+ ¢+ 1],i=1,...n — ¢ — 1. That s, we calculate
in the order

m[1,2],m[2,3],m[3,4],...,m[n—3,n—2],m[n—2,n—1],m[n —1,n]
m[1,3],m[2,4],m[3,5],...,m[n —3,n — 1], m[n — 2, n]
m[1,4],m[2,5],m[3,6],...,m[n — 3,n]

m[l,n — 1], m[2,n]
m[1,n]

15

Dynamic Programming Design Warning!!

When designing a dynamic programming algorithm
there are two parts:

1. Finding an appropriate optimal substructure prop-
erty and corresponding recurrence relation on ta-
ble items. Example:

mli,j] = min (mli, k] +mlk + 1,41 + pi—1pip;)

2. Filling in the table properly.
This requires finding an ordering of the table el-
ements so that when a table item is calculated
using the recurrence relation, all the table values
needed by the recurrence relation have already
been calculated.

In our example this means that by the time m/[s, 5]
is calculated all of the values m[i, k] and m[k +
1, 7] were already calculated.

16

Example for the Bottom-Up Computation

Example: Given a chain of four matrices A1, Ao, A3
and Az, with pg = 5, p;1 = 4, pp = 6, p3 = 2 and
pg = 1. Find m[1,4].

SO: Initialization

17

Example — Continued

Stp 1: Computing m[1, 2] By definition

m([1,2] = 1%‘22(m[1, k] +ml[k 4+ 1,2] 4+ poprp2)

= m[1,1] +m[2,2] 4+ pop1p> = 120.

18

Example — Continued

Stp 2: Computing m[2, 3] By definition

m([2,3] = 2@223(m[2, k] +ml[k 4+ 1,3] 4+ p1pip3)

= m[2,2] +m[3,3] + p1pop3 = 48.

19

Example — Continued

Stp3: Computing m[3, 4] By definition

m([3,4] = 3@224(m[3, k] +ml[k 4+ 1,4] 4+ poprps)

= m|3, 3] + m[4, 4] + pop3ps = 84.

20

Example — Continued

Stp4: Computing m[1, 3] By definition

m[1,3] = 1%‘23(m[1, k] +ml[k 4+ 1, 3] 4+ poprp3)

— min m[17 1] _I_ m[27 3] +p0p1p3
m[1,2] + m[3, 3] + popopr3

21

Example — Continued

Stp5: Computing m[2, 4] By definition

m([2,4] = 2@224(m[2, k] +ml[k 4+ 1,4] 4+ p1ipp4)

— min m[27 2] _I_ m[37 4] + P1P2P4
m[2,3] + m[4,4] + p1papa
= 104.

22

Example — Continued

St6: Computing m[1, 4] By definition

m([l,4] = 12;24(77%[1, k] + m[k + 1,4] 4+ popipa)

m[1,1] + m[2, 4] + pop1pa
min < m(1,2] + m[3, 4] + popopa

m[1,3] +m[4, 4] + popapa
= 158.

We are done!
23

Developing a Dynamic Programming Algorithm

Step 4. Construct an optimal solution from computed
iInformation — extract the actual sequence.

ldea: Maintain an array s[1..n, 1..n], where s[z, j] de-
notes k for the optimal splitting in computing A; ; =
A; g Ag+1.4- The array s[1..n,1..n] can be used re-
cursively to recover the multiplication sequence.

How to Recover the Multiplication Sequence?
S[la n] (Al T As[l,n])(As[l,n]—l—l T An)

S[la 8[17 TL]] (Al T As[l,s[l,n]])(As[l,S[l,n]]+1 T As[l,n])

S[8[17 n] + 1, n] (As[l,n]—l—l T ‘As[s[l,n]—l—l,n])><
(As[s[l,n]—l—l,n]—l—l T An)

Do this recursively until the multiplication sequence is
determined.

24

Developing a Dynamic Programming Algorithm

Step 4: Construct an optimal solution from computed
Information — extract the actual sequence.

Example of Finding the Multiplication Sequence:
Consider n = 6. Assume that the array s[1..6, 1..6]
has been computed. The multiplication sequence is
recovered as follows.

s[1,6] =3 (A1A2A3)(AsA5A¢)
s[1,3] =1 (A1(A243))
s[4,6] =5 ((A4A5)Ap)

Hence the final multiplication sequence is

(A1(A2A43))((A445)Ap).

25

The Dynamic Programming Algorithm

Matrix-Chain(p, n)
{ for (i =1ton)mli,i =O0;
for (I = 2ton)
{
forG=1ton—-1+41)
{
j=1+1-—1;
ml[i, j] = oo;
for(k=1:t05 — 1)
{
q = ml[i, k] + m[k + 1,5] + pli — 1] = p[k] * p[4];
if (g < mli, 5])

mli, j] = q;
sli, j] = k;
}
}

}
J o
return m and s; (Optimum in m[1,n])

}

Complexity: The loops are nested three deep.
Each loop index takes on < n values.

Hence the time complexity is O(n3). Space complexity ©(n?).

26

Constructing an Optimal Solution: Compute A7 ,,

The actual multiplication code uses the s|i, j] value to
determine how to split the current sequence. Assume
that the matrices are stored in an array of matrices
A[l..n], and that s[%, j] is global to this recursive pro-
cedure. The procedure returns a matrix.

MUlt(A, s, i, 5)
{

if (i < §)

{

X = Mult(A, s, 1,s|,7]);

X isnow A;--- A, where k is s[i, j]
Y = Mult(A,s,sli, 7]+ 1,7);

Y IS now Ak—l—l .. A]
return X = Y; multiply matrices X and Y

}

else return Ali];

}

To compute A1 A>--- Ay, call Mult(A, s, 1, n).

27

Constructing an Optimal Solution: Compute A ,,

Example of Constructing an Optimal Solution:
Compute A1 6.

Consider the example earlier, where n = 6. Assume

that the array s[1..6, 1..6] has been computed. The
multiplication sequence IS recovered as follows.

MUIt(A7 s, 1, 6)7 3[17 6] = 3, (A1A2A3)(A4A5A6)

MUIt(A787 173)7 8[173] — 17 ((Al)(A2A3))(A4A5A6>
MUIt(A78747 6)7 8[476] — 57 ((Al)(A2A3))((A4A5)(A6))
MUIt(A75727 3)7 8[273] — 27 ((Al)((AQ)(A3)))((A4A5)(A6))
Mult(A, s, 4,5), s[4,5] = 4, ((A1)((A2)(A43)))(((A4)(A5))(46))

Hence the product is computed as follows

(A1(A2A3))((A445)Ap).

28

