Lecture 13: Chain Matrix Multiplication
CLRS Section 15.2
Revised April 17, 2003

Outline of this Lecture

- Recalling matrix multiplication.

- The chain matrix multiplication problem.

- A dynamic programming algorithm for chain matrix multiplication.
Recalling Matrix Multiplication

Matrix: An $n \times m$ matrix $A = [a[i, j]]$ is a two-dimensional array

$$A = \begin{bmatrix} a[1, 1] & a[1, 2] & \cdots & a[1, m - 1] & a[1, m] \\ a[2, 1] & a[2, 2] & \cdots & a[2, m - 1] & a[2, m] \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a[n, 1] & a[n, 2] & \cdots & a[n, m - 1] & a[n, m] \end{bmatrix},$$

which has n rows and m columns.

Example: The following is a 4×5 matrix:

$$\begin{bmatrix} 12 & 8 & 9 & 7 & 6 \\ 7 & 6 & 8 & 9 & 56 \\ 5 & 5 & 6 & 9 & 10 \\ 8 & 6 & 0 & -8 & -1 \end{bmatrix}.$$
Recalling Matrix Multiplication

The product $C = AB$ of a $p \times q$ matrix A and a $q \times r$ matrix B is a $p \times r$ matrix given by

$$c[i, j] = \sum_{k=1}^{q} a[i, k] b[k, j]$$

for $1 \leq i \leq p$ and $1 \leq j \leq r$.

Example: If

$$A = \begin{bmatrix} 1 & 8 & 9 \\ 7 & 6 & -1 \\ 5 & 5 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 8 \\ 7 & 6 \\ 5 & 5 \end{bmatrix},$$

then

$$C = AB = \begin{bmatrix} 102 & 101 \\ 44 & 87 \\ 70 & 100 \end{bmatrix}.$$
Remarks on Matrix Multiplication

- If AB is defined, BA may not be defined.

- Quite possible that $AB \neq BA$.

- Multiplication is recursively defined by

$$A_1A_2A_3 \cdots A_{s-1}A_s$$

$$= A_1(A_2(A_3 \cdots (A_{s-1}A_s)))$$.

- Matrix multiplication is associative, e.g.,

$$A_1A_2A_3 = (A_1A_2)A_3 = A_1(A_2A_3),$$

so parenthenization does not change result.
Direct Matrix multiplication AB

Given a $p \times q$ matrix A and a $q \times r$ matrix B, the direct way of multiplying $C = AB$ is to compute each

$$c[i, j] = \sum_{k=1}^{q} a[i, k]b[k, j]$$

for $1 \leq i \leq p$ and $1 \leq j \leq r$.

Complexity of Direct Matrix multiplication:

Note that C has pr entries and each entry takes $\Theta(q)$ time to compute so the total procedure takes $\Theta(pqr)$ time.
Direct Matrix multiplication of ABC

Given a $p \times q$ matrix A, a $q \times r$ matrix B and a $r \times s$ matrix C, then ABC can be computed in two ways $(AB)C$ and $A(BC)$:

The number of multiplications needed are:

$$\text{mult}[(AB)C] = pqr +prs,$$
$$\text{mult}[A(BC)] = qrs + pqs.$$

When $p = 5$, $q = 4$, $r = 6$ and $s = 2$, then

$$\text{mult}[(AB)C] = 180,$$
$$\text{mult}[A(BC)] = 88.$$

A big difference!

Implication: The multiplication “sequence” (parenthesization) is important!!
The Chain Matrix Multiplication Problem

Given

dimensions p_0, p_1, \ldots, p_n
corresponding to matrix sequence A_1, A_2, \ldots, A_n
where A_i has dimension $p_{i-1} \times p_i$,
determine the “multiplication sequence” that minimizes
the number of scalar multiplications in computing
$A_1A_2 \cdots A_n$. That is, determine how to parenthesize
the multiplications.

$A_1A_2A_3A_4 = (A_1A_2)(A_3A_4) \\
= A_1(A_2(A_3A_4)) = A_1((A_2A_3)A_4) \\
= ((A_1A_2)A_3)(A_4) = (A_1(A_2A_3))(A_4)$

Exhaustive search: $\Omega(4^n/n^{3/2})$.

Question: Any better approach? Yes – DP
Developing a Dynamic Programming Algorithm

Step 1: Determine the structure of an optimal solution (in this case, a parenthesization).

Decompose the problem into subproblems: For each pair $1 \leq i \leq j \leq n$, determine the multiplication sequence for $A_{i..j} = A_iA_{i+1} \cdots A_j$ that minimizes the number of multiplications.

Clearly, $A_{i..j}$ is a $p_{i-1} \times p_j$ matrix.

Original Problem: determine sequence of multiplication for $A_{1..n}$.
Developing a Dynamic Programming Algorithm

Step 1: Determine the structure of an optimal solution (in this case, a parenthesization).

High-Level Parenthesization for $A_{i..j}$
For any optimal multiplication sequence, at the last step you are multiplying two matrices $A_{i..k}$ and $A_{k+1..j}$ for some k. That is,

$$A_{i..j} = (A_i \cdots A_k)(A_{k+1} \cdots A_j) = A_{i..k}A_{k+1..j}.$$

Example

$$A_{3..6} = (A_3(A_4A_5))(A_6) = A_{3..5}A_{6..6}.$$

Here $k = 5$.
Developing a Dynamic Programming Algorithm

Step 1 – Continued: Thus the problem of determining the optimal sequence of multiplications is broken down into 2 questions:

- How do we decide where to split the chain (what is k)?

 (Search all possible values of k)

- How do we parenthesize the subchains $A_{i..k}$ and $A_{k+1..j}$?

 (Problem has optimal substructure property that $A_{i..k}$ and $A_{k+1..j}$ must be optimal so we can apply the same procedure recursively)
Developing a Dynamic Programming Algorithm

Step 1 – Continued:

Optimal Substructure Property: If final “optimal” solution of $A_{i..j}$ involves splitting into $A_{i..k}$ and $A_{k+1..j}$ at final step then parenthesization of $A_{i..k}$ and $A_{k+1..j}$ in final optimal solution must also be optimal for the subproblems “standing alone”:

If parenthisization of $A_{i..k}$ was not optimal we could replace it by a better parenthesization and get a cheaper final solution, leading to a contradiction.

Similarly, if parenthisization of $A_{k+1..j}$ was not optimal we could replace it by a better parenthesization and get a cheaper final solution, also leading to a contradiction.
Developing a Dynamic Programming Algorithm

Step 2: Recursively define the value of an optimal solution.

As with the 0-1 knapsack problem, we will store the solutions to the subproblems in an array.

For $1 \leq i \leq j \leq n$, let $m[i, j]$ denote the minimum number of multiplications needed to compute $A_{i..j}$. The optimum cost can be described by the following recursive definition.
Developing a Dynamic Programming Algorithm

Step 2: Recursively define the value of an optimal solution.

\[m[i, j] = \begin{cases}
0 & i = j, \\
\min_{i \leq k < j} (m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j) & i < j
\end{cases} \]

Proof: Any optimal sequence of multiplication for \(A_{i..j} \) is equivalent to some choice of splitting

\[A_{i..j} = A_{i..k}A_{k+1..j} \]

for some \(k \), where the sequences of multiplications for \(A_{i..k} \) and \(A_{k+1..j} \) also are optimal. Hence

\[m[i, j] = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j. \]
Developing a Dynamic Programming Algorithm

Step 2 – Continued: We know that, for some k

$$m[i, j] = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j.$$

We don’t know what k is, though
But, there are only $j - i$ possible values of k so we can check them all and find the one which returns a smallest cost.

Therefore

$$m[i, j] = \begin{cases} 0 & i = j, \\ \min_{i \leq k < j} (m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j) & i < j \end{cases}$$
Developing a Dynamic Programming Algorithm

Step 3: Compute the value of an optimal solution in a bottom-up fashion.

Our Table: $m[1..n, 1..n]$. $m[i, j]$ only defined for $i \leq j$.

The important point is that when we use the equation

$$m[i, j] = \min_{i \leq k < j} (m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j)$$

to calculate $m[i, j]$ we must have already evaluated $m[i, k]$ and $m[k + 1, j]$.

Note that $k - i < j - i$ and $j - (k + 1) < j - i$ so, to ensure that $m[i, j]$ is evaluated after $m[i, k]$ and $m[k + 1, j]$ we simply let $\ell = 1, 2, \ldots, n - 1$ and calculate all the terms of the form $m[i, i + \ell], i = 1, \ldots n - \ell$ before we calculate the terms of the form $m[i, i + \ell + 1], i = 1, \ldots n - \ell - 1$. That is, we calculate in the order

$m[1, 2], m[2, 3], m[3, 4], \ldots, m[n - 3, n - 2], m[n - 2, n - 1], m[n - 1, n]$

$m[1, 3], m[2, 4], m[3, 5], \ldots, m[n - 3, n - 1], m[n - 2, n]$

$m[1, 4], m[2, 5], m[3, 6], \ldots, m[n - 3, n]$

\vdots

$m[1, n - 1], m[2, n]$

$m[1, n]$
When designing a dynamic programming algorithm there are two parts:

1. Finding an appropriate **optimal substructure property** and corresponding recurrence relation on table items. Example:

 \[m[i, j] = \min_{i \leq k < j} \left(m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j \right) \]

2. **Filling in the table properly.**
 This requires finding an ordering of the table elements so that when a table item is calculated using the recurrence relation, all the table values needed by the recurrence relation have already been calculated.

 In our example this means that by the time \(m[i, j] \) is calculated all of the values \(m[i, k] \) and \(m[k + 1, j] \) were already calculated.
Example for the Bottom-Up Computation

Example: Given a chain of four matrices A_1, A_2, A_3 and A_4, with $p_0 = 5, p_1 = 4, p_2 = 6, p_3 = 2$ and $p_4 = 7$. Find $m[1, 4]$.

S0: Initialization

\[
\begin{array}{c|c|c|c|c|c|c}
 & \multicolumn{5}{c|}{m[i,j]} \\
\hline
 & | & | & | & | & \\
\hline
j & 2 & 3 & 4 & 1 & m[i,j] \\
\hline
i & 1 & 0 & 0 & 0 & 0 \\
\hline
5 & 4 & 6 & 2 & 7 & \\
\hline
A_1 & A_2 & A_3 & A_4 & \\
\hline
p_0 & p_1 & p_2 & p_3 & p_4 \\
\hline
\end{array}
\]
Example – Continued

Stp 1: Computing $m[1, 2]$ By definition

$$m[1, 2] = \min_{1 \leq k < 2} (m[1, k] + m[k + 1, 2] + p_0 p_k p_2)$$

$$= m[1, 1] + m[2, 2] + p_0 p_1 p_2 = 120.$$
Example – Continued

Stp 2: Computing $m[2, 3]$ By definition

$m[2, 3] = \min_{2 \leq k < 3} (m[2, k] + m[k + 1, 3] + p_1 p_k p_3)$

Example – Continued

Stp3: Computing $m[3, 4]$ By definition

$$m[3, 4] = \min_{3 \leq k < 4} (m[3, k] + m[k + 1, 4] + p_2p_kp_4)$$

Example – Continued

Stp4: Computing $m[1, 3]$ By definition

$$m[1, 3] = \min_{1 \leq k < 3} (m[1, k] + m[k + 1, 3] + p_0 p_k p_3)$$

$$= \min \left\{ \begin{array}{l}
 m[1, 1] + m[2, 3] + p_0 p_1 p_3 \\
 m[1, 2] + m[3, 3] + p_0 p_2 p_3
\end{array} \right\}$$

$$= 88.$$
Example – Continued

Stp5: Computing $m[2, 4]$ By definition

$$m[2, 4] = \min_{2 \leq k < 4} (m[2, k] + m[k + 1, 4] + p_1p_kp_4)$$

$$= \min \left\{ \begin{array}{l} m[2, 2] + m[3, 4] + p_1p_2p_4 \\ m[2, 3] + m[4, 4] + p_1p_3p_4 \end{array} \right\}$$

$$= 104.$$
St6: Computing $m[1, 4]$ By definition

$$m[1, 4] = \min_{1 \leq k < 4} (m[1, k] + m[k + 1, 4] + p_0p_kp_4)$$

$$= \min \left\{ \begin{array}{c}
m[1, 1] + m[2, 4] + p_0p_1p_4 \\
m[1, 2] + m[3, 4] + p_0p_2p_4 \\
m[1, 3] + m[4, 4] + p_0p_3p_4 \\
\end{array} \right\}$$

$$= 158.$$

We are done!
Developing a Dynamic Programming Algorithm

Step 4: Construct an optimal solution from computed information – extract the actual sequence.

Idea: Maintain an array $s[1..n, 1..n]$, where $s[i, j]$ denotes k for the optimal splitting in computing $A_{i..j} = A_{i..k}A_{k+1..j}$. The array $s[1..n, 1..n]$ can be used recursively to recover the multiplication sequence.

How to Recover the Multiplication Sequence?

\[
\begin{align*}
 s[1, n] & : (A_1 \cdots A_{s[1,n]})(A_{s[1,n]+1} \cdots A_n) \\
 s[1, s[1, n]] & : (A_1 \cdots A_{s[1,s[1,n]]})(A_{s[1,s[1,n]]+1} \cdots A_{s[1,n]}) \\
 s[s[1, n] + 1, n] & : (A_{s[1,n]+1} \cdots A_{s[s[1,n]+1,n]})(A_{s[s[1,n]+1,n]+1} \cdots A_n)
\end{align*}
\]

\[\vdots\]

Do this recursively until the multiplication sequence is determined.
Step 4: Construct an optimal solution from computed information – extract the actual sequence.

Example of Finding the Multiplication Sequence:
Consider $n = 6$. Assume that the array $s[1..6, 1..6]$ has been computed. The multiplication sequence is recovered as follows.

\[
\begin{align*}
s[1, 6] &= 3 \ (A_1A_2A_3)(A_4A_5A_6) \\
s[1, 3] &= 1 \ (A_1(A_2A_3)) \\
s[4, 6] &= 5 \ ((A_4A_5)A_6)
\end{align*}
\]

Hence the final multiplication sequence is

\[
(A_1(A_2A_3))((A_4A_5)A_6).
\]
The Dynamic Programming Algorithm

Matrix-Chain\((p, n)\)
\[
\{ \text{for } (i = 1 \text{ to } n) \ m[i, i] = 0; \\
\text{for } (l = 2 \text{ to } n) \\
\{ \\
\text{for } (i = 1 \text{ to } n - l + 1) \\
\{ \\
\quad j = i + l - 1; \\
\quad m[i, j] = \infty; \\
\quad \text{for } (k = i \text{ to } j - 1) \\
\{ \\
\quad \quad q = m[i, k] + m[k + 1, j] + p[i - 1] \cdot p[k] \cdot p[j]; \\
\quad \quad \text{if } (q < m[i, j]) \\
\quad \quad \{ \\
\quad \quad \quad m[i, j] = q; \\
\quad \quad \quad s[i, j] = k; \\
\quad \quad \} \\
\quad \} \\
\} \\
\}
\}
return m and s; (Optimum in m[1, n])
\}

Complexity: The loops are nested three deep.
Each loop index takes on \(\leq n\) values.
Hence the time complexity is \(O(n^3)\). Space complexity \(\Theta(n^2)\).
Constructing an Optimal Solution: Compute $A_{1..n}$

The actual multiplication code uses the $s[i, j]$ value to determine how to split the current sequence. Assume that the matrices are stored in an array of matrices $A[1..n]$, and that $s[i, j]$ is global to this recursive procedure. The procedure returns a matrix.

```c
Mult(A, s, i, j)
{
  if (i < j)
  {
    X = Mult(A, s, i, s[i, j]);
    X is now $A_i \cdots A_k$, where $k$ is $s[i, j]$
    Y = Mult(A, s, s[i, j] + 1, j);
    Y is now $A_{k+1} \cdots A_j$
    return $X \times Y$; multiply matrices $X$ and $Y$
  }
  else return $A[i]$;
}
```

To compute $A_1 A_2 \cdots A_n$, call Mult($A, s, 1, n$).
Example of Constructing an Optimal Solution:

Compute $A_{1..6}$.

Consider the example earlier, where $n = 6$. Assume that the array $s[1..6, 1..6]$ has been computed. The multiplication sequence is recovered as follows.

\[\text{Mult}(A, s, 1, 6), s[1, 6] = 3, (A_1A_2A_3)(A_4A_5A_6) \]
\[\text{Mult}(A, s, 1, 3), s[1, 3] = 1, ((A_1)(A_2A_3))(A_4A_5A_6) \]
\[\text{Mult}(A, s, 4, 6), s[4, 6] = 5, ((A_1)(A_2A_3))((A_4A_5)(A_6)) \]
\[\text{Mult}(A, s, 2, 3), s[2, 3] = 2, ((A_1)((A_2)(A_3)))(A_4A_5)(A_6) \]
\[\text{Mult}(A, s, 4, 5), s[4, 5] = 4, ((A_1)((A_2)(A_3)))(A_4)((A_5)(A_6)) \]

Hence the product is computed as follows

\[(A_1(A_2A_3))((A_4A_5)A_6). \]