
Lecture 14: All-Pairs Shortest Paths

Revised May 1, 2003

CLRS Section 25.1

Outline of this Lecture

• Introduction of the all-pairs shortest path problem.

• First solution using Dijkstra’s algorithm.
Assumes no negative weight edges
Θ

(

|V |3 log |V |
)

.

Needs priority queues

• A (first) dynamic programming solution.
Only assumes no negative weight cycles.
First version is Θ

(

|V |4
)

.

Repeated squaring reduces to Θ
(

|V |3 log |V |
)

.

No special data structures needed.

1

The All-Pairs Shortest Paths Problem

Given a weighted digraph G = (V, E) with weight
function w : E → R, (R is the set of real numbers),
determine the length of the shortest path (i.e., dis-
tance) between all pairs of vertices in G. Here we
assume that there are no cycles with zero or negative
cost.

a b

cd

e

20

12 5
4

17

3
83

−20

5

10

4 4
4

a b

cd

e

without negative cost cycle with negative cost cycle

6

2

Solution 1: Using Dijkstra’s Algorithm

If there are no negative cost edges apply Dijkstra’s al-
gorithm to each vertex (as the source) of the digraph.

• Recall that D’s algorithm runs in Θ((n+e) logn).

This gives a

Θ(n(n + e) logn) = Θ(n2 logn + ne logn)

time algorithm, where n = |V | and e = |E|.

• If the digraph is dense, this is an Θ(n3 logn)algorithm.

• With more advanced (complicated) data structures
D’s algorithm runs in Θ(n logn+e)time yielding
a Θ(n2 logn + ne) final algorithm. For dense
graphs this is Θ(n3) time.

3

Solution 2: Dynamic Programming

(1) How do we decompose the all-pairs shortest paths
problem into subproblems

(2) How do we express the optimal solution of a
subproblem in terms of optimal solutions to some
subsubproblems?

(3) How do we use the recursive relation from (2) to
compute the optimal solution in a bottom-up
fashion?

(4) How do we construct all the shortest paths?

4

Solution 2: Input and Output Formats

To simplify the notation, we assume that V = {1,2, . . . , n}.

Assume that the graph is represented by an n × n

matrix with the weights of the edges:

wij =

0 if i = j,
w(i, j) if i 6= j and (i, j) ∈ E,
∞ if i 6= j and (i, j) /∈ E.

Output Format: an n×n matrix D = [dij] where dij

is the length of the shortest path from vertex i to j.

5

Step 1: How to Decompose the Original Problem

• Subproblems with smaller sizes should be easier
to solve.

• An optimal solution to a subproblem should be ex-
pressed in terms of the optimal solutions to sub-
problems with smaller sizes.

These are guidelines ONLY.

6

Step 1: Decompose in a Natural Way

• Define d
(m)
ij to be the length of the shortest path

from i to j that contains at most m edges.
Let D(m) be the n × n matrix [d

(m)
ij] .

• d
(n−1)
ij is the true distance from i to j (see next

page for a proof this conclusion).

• Subproblems: compute D(m) for m = 1, · · · , n− 1.

Question: Which D(m) is easiest to compute?

7

d
(n−1)
ij = True Distance from i to j

Proof: We prove that any shortest path P from i to j

contains at most n − 1 edges.

First note that since all cycles have positive weight,
a shortest path can have no cycles (if there were a
cycle, we could remove it and lower the length of the
path).

A path without cycles can have length at most n − 1

(since a longer path must contain some vertex twice,
that is, contain a cycle).

8

A Recursive Formula

Consider a shortest path from i to j of length d
(m)
ij .

��
��

��
��

��
��

��
��

��
��

��
��

��
��

- - - -- - -i j

Case 1: at most m − 1 edges

...

Case 2: exactly m edges

i k
wkj

shortest path shortest path

d(m−1)
ik

j...

d(m−1)
ij

Case 1: It has at most m − 1 edges.
Then d

(m)
ij = d

(m−1)
ij = d

(m−1)
ij + wjj.

Case 2: It has m edges. Let k be the vertex before j

on a shortest path.
Then d

(m)
ij = d

(m−1)
ik + wkj.

Combining the two cases,

d
(m)
ij = min

1≤k≤n

{

d
(m−1)
ik + wkj

}

.

9

Step 3: Bottom-up Computation of D(n−1)

• Bottom: D(1) =
[

wij

]

, the weight matrix.

• Compute D(m) from D(m−1), for m = 2, ..., n− 1,

using

d
(m)
ij = min

1≤k≤n

{

d
(m−1)
ik + wkj

}

.

10

Example: Bottom-up Computation of D(n−1)

Example

3

4

7

4

1 2

34

8 11

D(1) = [wij] is just the weight matrix:

D(1) =

0 3 8 ∞
∞ 0 4 11
∞ ∞ 0 7
4 ∞ ∞ 0

11

Example: Computing D(2) from D(1)

d
(2)
ij = min

1≤k≤4

{

d
(1)
ik + wkj

}

.

3

4

7

4

1 2

34

8 11

With D(1) given earlier and the recursive formula,

D(2) =

0 3 7 14
15 0 4 11
11 ∞ 0 7
4 7 12 0

12

Example: Computing D(3) from D(2)

d
(3)
ij = min

1≤k≤4

{

d
(2)
ik + wkj

}

3

4

7

4

1 2

34

8 11

With D(2) given earlier and the recursive formula,

D(3) =

0 3 7 14
15 0 4 11
11 14 0 7
4 7 11 0

D(3) gives the distances between any pair of vertices.

13

The Algorithm for Computing D(n−1)

for m = 1 to n − 1

for i = 1 to n

for j = 1 to n

{

min = ∞;
for k = 1 to n

{

new = d
(m−1)
ik + wkj;

if (new < min) min = new;
}

d
(m)
ij = min;

}

14

Comments on Solution 2

• Algorithm uses Θ(n3) space; how can this be
reduced down to Θ(n2)?

• How can we extract the actual shortest paths from
the solution?

• Running time O(n4), much worse than the solu-
tion using Dijkstra’s algorithm. Can we improve
this?

15

Repeated Squaring

Q: Suppose we are given a number x and asked to
calculate x2i

. How many multiplications are needed?

A: Only (i − 1)! Calculate

x2 = x·x, x4 = x2·x2, . . . , x2i
= x2i−1

·x2i−1

We saw that all shortest paths have distance < n.

In particular, this implies that D

(

2dlog2 ne
)

= D(n−1).

We can calculate D

(

2dlog2 ne
)

using “repeated squar-
ing” to find

D(2), D(4), D(8), . . . , D

(

2dlog2 ne
)

16

We use the recurrence relation:

• Bottom: D(1) =
[

wij

]

, the weight matrix.

• For s, t ≥ 1 compute D(s+t) using

d
(s+t)
ij = min

1≤k≤n

{

d
(s)
ik + d

(s)
kj

}

.

For proof of this recurrence relation see textbook (very
similar to recurrence relation we proved earlier this
lecture).

Given this relation we can calculate D
(

2i
)

from D
(

2i−1
)

in O(n3) time. We can therefore calculate all of

D(2), D(4), D(8), . . . , D

(

2dlog2 ne
)

= D(n)

in O(n3 logn) time, improving our running time.

17

