Lecture 14: All-Pairs Shortest Paths

Revised May 1, 2003 CLRS Section 25.1

Outline of this Lecture

- Introduction of the all-pairs shortest path problem.
- First solution using Dijkstra's algorithm. Assumes no negative weight edges
 ⊖ (|V|³ log |V|). Needs priority queues
- A (first) dynamic programming solution.
 Only assumes no negative weight cycles.
 First version is ⊖ (|V|⁴).
 Repeated squaring reduces to ⊖ (|V|³ log |V|).

No special data structures needed.

The All-Pairs Shortest Paths Problem

Given a weighted digraph G = (V, E) with weight function $w : E \to \mathbf{R}$, (*R* is the set of real numbers), determine the length of the shortest path (i.e., distance) between all pairs of vertices in *G*. Here we assume that there are no cycles with zero or negative cost.

without negative cost cycle

with negative cost cycle

Solution 1: Using Dijkstra's Algorithm

If there are no negative cost edges apply Dijkstra's algorithm to each vertex (as the source) of the digraph.

Recall that D's algorithm runs in ⊖((n+e) log n).
 This gives a

 $\Theta(n(n+e)\log n) = \Theta(n^2\log n + ne\log n)$

time algorithm, where n = |V| and e = |E|.

- If the digraph is dense, this is an $\Theta(n^3 \log n)$ algorithm.
- With more advanced (complicated) data structures
 D's algorithm runs in ⊖(n log n + e)time yielding
 a ⊖(n² log n + ne) final algorithm. For dense graphs this is ⊖(n³) time.

Solution 2: Dynamic Programming

- (1) How do we decompose the all-pairs shortest paths problem into subproblems
- (2) How do we express the optimal solution of a subproblem in terms of optimal solutions to some subsubproblems?
- (3) How do we use the recursive relation from (2) to compute the optimal solution in a bottom-up fashion?
- (4) How do we construct all the shortest paths?

Solution 2: Input and Output Formats

To simplify the notation, we assume that $V = \{1, 2, ..., n\}$.

Assume that the graph is represented by an $n \times n$ matrix with the weights of the edges:

$$w_{ij} = \left\{egin{array}{ll} 0 & ext{if } i = j, \ w(i,j) & ext{if } i
eq j ext{ and } (i,j) \in E, \ \infty & ext{if } i
eq j ext{ and } (i,j)
eq E. \end{array}
ight.$$

Output Format: an $n \times n$ matrix $D = [d_{ij}]$ where d_{ij} is the length of the shortest path from vertex *i* to *j*.

Step 1: How to Decompose the Original Problem

- Subproblems with smaller sizes should be easier to solve.
- An optimal solution to a subproblem should be expressed in terms of the optimal solutions to subproblems with smaller sizes.

These are guidelines ONLY.

Step 1: Decompose in a Natural Way

- Define $d_{ij}^{(m)}$ to be the length of the shortest path from *i* to *j* that contains at most *m* edges. Let $D^{(m)}$ be the $n \times n$ matrix $[d_{ij}^{(m)}]$.
- $d_{ij}^{(n-1)}$ is the true distance from *i* to *j* (see next page for a proof this conclusion).
- Subproblems: compute $D^{(m)}$ for $m = 1, \dots, n-1$.

Question: Which $D^{(m)}$ is easiest to compute?

Proof: We prove that any shortest path *P* from *i* to *j* contains at most n - 1 edges.

First note that since all cycles have positive weight, a shortest path can have no cycles (if there were a cycle, we could remove it and lower the length of the path).

A path without cycles can have length at most n - 1 (since a longer path must contain some vertex twice, that is, contain a cycle).

A Recursive Formula

Consider a shortest path from *i* to *j* of length $d_{ij}^{(m)}$.

Case 1: It has at most m - 1 edges. Then $d_{ij}^{(m)} = d_{ij}^{(m-1)} = d_{ij}^{(m-1)} + w_{jj}$. Case 2: It has m edges. Let k be the vertex before j on a shortest path. Then $d_{ij}^{(m)} = d_{ik}^{(m-1)} + w_{kj}$.

Combining the two cases,

$$d_{ij}^{(m)} = \min_{1 \le k \le n} \left\{ d_{ik}^{(m-1)} + w_{kj} \right\}.$$

Step 3: Bottom-up Computation of $D^{(n-1)}$

- Bottom: $D^{(1)} = [w_{ij}]$, the weight matrix.
- Compute $D^{(m)}$ from $D^{(m-1)}$, for m = 2, ..., n-1, using

$$d_{ij}^{(m)} = \min_{1 \le k \le n} \left\{ d_{ik}^{(m-1)} + w_{kj} \right\}.$$

Example: Bottom-up Computation of $D^{(n-1)}$

Example

 $D^{(1)} = [w_{ij}]$ is just the weight matrix:

$$D^{(1)} = \begin{bmatrix} 0 & 3 & 8 & \infty \\ \infty & 0 & 4 & 11 \\ \infty & \infty & 0 & 7 \\ 4 & \infty & \infty & 0 \end{bmatrix}$$

Example: Computing $D^{(2)}$ from $D^{(1)}$

$$d_{ij}^{(2)} = \min_{1 \le k \le 4} \left\{ d_{ik}^{(1)} + w_{kj} \right\}.$$

With $D^{(1)}$ given earlier and the recursive formula,

$$D^{(2)} = \begin{bmatrix} 0 & 3 & 7 & 14 \\ 15 & 0 & 4 & 11 \\ 11 & \infty & 0 & 7 \\ 4 & 7 & 12 & 0 \end{bmatrix}$$

Example: Computing $D^{(3)}$ from $D^{(2)}$

$$d_{ij}^{(3)} = \min_{1 \le k \le 4} \left\{ d_{ik}^{(2)} + w_{kj} \right\}$$

With $D^{(2)}$ given earlier and the recursive formula,

$$D^{(3)} = \begin{bmatrix} 0 & 3 & 7 & 14 \\ 15 & 0 & 4 & 11 \\ 11 & 14 & 0 & 7 \\ 4 & 7 & 11 & 0 \end{bmatrix}$$

 $D^{(3)}$ gives the distances between any pair of vertices.

The Algorithm for Computing $D^{(n-1)}$

for
$$m = 1$$
 to $n - 1$
for $i = 1$ to n
for $j = 1$ to n
{
 $min = \infty;$
for $k = 1$ to n
{
 $new = d_{ik}^{(m-1)} + w_{kj};$
if $(new < min) min = new;$
}
 $d_{ij}^{(m)} = min;$
}

Comments on Solution 2

- Algorithm uses $\Theta(n^3)$ space; how can this be reduced down to $\Theta(n^2)$?
- How can we extract the actual shortest paths from the solution?
- Running time O(n⁴), much worse than the solution using Dijkstra's algorithm. Can we improve this?

Repeated Squaring

Q: Suppose we are given a number x and asked to calculate $x^{2^{i}}$. How many multiplications are needed?

A: Only (i - 1)! Calculate

 $x^{2} = x \cdot x, \quad x^{4} = x^{2} \cdot x^{2}, \quad \dots, \quad x^{2^{i}} = x^{2^{i-1}} \cdot x^{2^{i-1}}$

We saw that all shortest paths have distance < n. In particular, this implies that $D^{\left(2^{\lceil \log_2 n \rceil}\right)} = D^{(n-1)}$.

We can calculate $D^{(2^{\lceil \log_2 n \rceil})}$ using "repeated squaring" to find

$$D^{(2)}, D^{(4)}, D^{(8)}, \dots, D^{(2^{\lceil \log_2 n \rceil})}$$

We use the recurrence relation:

- Bottom: $D^{(1)} = [w_{ij}]$, the weight matrix.
- For $s, t \ge 1$ compute $D^{(s+t)}$ using $d_{ij}^{(s+t)} = \min_{1 \le k \le n} \left\{ d_{ik}^{(s)} + d_{kj}^{(s)} \right\}.$

For proof of this recurrence relation see textbook (very similar to recurrence relation we proved earlier this lecture).

Given this relation we can calculate $D^{(2^i)}$ from $D^{(2^{i-1})}$ in $O(n^3)$ time. We can therefore calculate all of

$$D^{(2)}, D^{(4)}, D^{(8)}, \dots, D^{\left(2^{\lceil \log_2 n \rceil}\right)} = D^{(n)}$$

in $O(n^3 \log n)$ time, improving our running time.