
Lecture 19: NP-Completeness 1

Revised Sun May 25, 2003

Outline of this Lecture

• Polynomial-time reductions.
CLRS pp.984-5

• The class NPC.
CLRS p. 986

• Proving that problems are NPC.
SAT, CLIQUE, INDEPENDENT SET, VERTEX COVER
CLRS pp. 995-1007

• Optimization vs. Decision problems

1

Reductions between Decision Problems

What is Reduction?
Let L1 and L2 be two decision problems.

Suppose algorithm A2 solves L2. That is, if y is an
input for L2 then algorithm A2 will answer Yes or No
depending upon whether y ∈ L2 or not.

The idea is to find a transformation f from L1 to L2

so that the algorithm A2 can be part of an algorithm
A1 to solve L1.

Transform
f

algorithmf(x)
input
for L2for L1

input
x yes/no

answer
for L2
on f(x)

yes/no
answer
for L1
on x

Algorithm for L1

for L2

2

Polynomial-Time Reductions

Definition: A Polynomial-Time Reduction from L1 to
L2 is a transformation f with the following properties:

• f transforms
an input x for L1 into an input f(x) for L2 s.t.

f(x) is a yes-input for L2

if and only if
x is a yes-input for L1.

• f(x) is computable in polynomial time (in size(x)).

If such an f exists, we say that
L1 is polynomial-time reducible to L2,

and write L1 ≤P L2.

3

Polynomial-Time Reductions

Question: What can we do with a polynomial time
reduction f : L1 → L2?

Answer: Given an algorithm A2 for the decision prob-
lem L2, we can develop an algorithm A1 to solve L1.

In particular (proof on next slide)
if A2 is a polynomial time algorithm for L2 and L1 ≤P L2

then we can construct a polynomial time algorithm for
L1.

Transform
f

algorithmf(x)
input
for L2for L1

input
x yes/no

answer
for L2
on f(x)

yes/no
answer
for L1
on x

Algorithm for L1

for L2

4

Polynomial-Time Reduction f : L1 → L2

Theorem:
If L1 ≤P L2 and L2 ∈ P , then L1 ∈ P .

Proof: L2 ∈ P means that we have a polynomial-
time algorithm A2 for L2. Since L1 ≤P L2, we have
a polynomial-time transformation f mapping input x

for L1 to an input for L2. Combining these, we get the
following polynomial-time algorithm for solving L1:

(1) take input x for L1 and compute f(x);

(2) run A2 on input f(x), and return the answer found
(for L2 on f(x)) as the answer for L1 on x.

Each of Steps (1) and (2) takes polynomial time. So
the combined algorithm takes polynomial time. Hence
L1 ∈ P .

5

Warning

We have just seen

Theorem:
If L1 ≤P L2 and L2 ∈ P , then L1 ∈ P .

Note that this does not imply that
If L1 ≤P L2 and L1 ∈ P , then L2 ∈ P .
This statement is not true.

6

Reduction between Decision Problems

Lemma (Transitivity of the relation ≤P):
If L1 ≤P L2 and L2 ≤P L3, then L1 ≤P L3.

Proof: Since L1 ≤P L2, there is a polynomial-time
reduction f1 from L1 to L2.
Similarly, since L2 ≤P L3 there is a polynomial-time
reduction f2 from L2 to L3.

Note that f1(x) can be calculated in time polynomial
in size(x).
In particular this implies that size(f1(x)) is polyno-
mial in size(x).
f(x) = f2(f1(x)) can therefore be calculated in time
polynomial in size(x).

Furthermore x is a yes-input for L1 if and only if f(x)
is a yes-input for L3(why). Thus the combined trans-
formation defined by

f(x) = f2(f1(x))

is a polynomial-time reduction from L1 to L3.
Hence L1 ≤P L3.

7

Example of Polynomial-Time Reduction

CYC: Does an undirected graph G have a cycle?

TRIPLE: Does a triple (n, e, t) of nonnegative inte-
gers satisfy e 6= n − t?

Reduction f : We define f to be

f : CYC(G) → TRIPLE(n, e, t),

f : G 7→ (n, e, t),

where n, e and t are the number of vertices, edges
and connected components of G respectively.

We will show that
1) G has a cycle if and only if f(G) ∈ TRIPLE.

2) f(G) can be calculated in time polynomial in
size(G) = n + e.

This proves that

CYC ≤P TRIPLE.

8

Example Continued

G has a cycle if and only if f(G) ∈ TRIPLE

follows from

Lemma: A graph G has no cycles if and only if e =

n − t, where n, e, and t are the number of vertices,
edges, and connected components respectively.

Proof: First, if G is connected, then t = 1 and G has
no cycles if and only if it is a tree. For a tree, e = n−1.

Suppose G has t components, G1, G2, . . . , Gt, where
Gi has ni vertices and ei edges. G does n then ei =

ni − 1 by the first part of the proof. Hence

e =
t∑

i=1

ei =
t∑

i=1

(ni − 1) = n − t.

9

Example Continued

To show that f(G) can be calculated in time polyno-
mial in size(G) we need to solve

Problem: Design a polynomial time algorithm that,
given undirected graph G = (V, E), computes the
number of connected components of G.

Question: How do you design an efficient algorithm
for this problem?

Possible solutions: Modify BFS or DFS, adding a
counter.The next page gaves an O(|E| + |V |) time
algorithm

10

Example Continued

One solution:
A modified DFS that runs in time O(n + e):

COMP(G)
{ for each u in V

color[u]=W;
number=0;
for each u in V

if(color[u]==W)
{ number=number+1;

DFSVisit(u);
}

return(number);
}

DFSVisit(u)
{ color[u]=G;

for each v in adj[u]
if(color[v]==W)

DFSVisit(v);
color[u]=B;

}

11

Example Continued

Recall that we defined

f : CYC(G) → TRIPLE(n, e, t),

f : G 7→ (n, e, t),

where n, e and t are the number of vertices, edges
and connected components of G respectively.

Using the algorithm on the previous slide we see that
we can calculate t in time polynomial in size(G). Since
we can also calculate e and n in polynomial time we
can calculate f(G) in polynomial time.

Recall too that we saw G has a cycle if and only if
f(G) ∈ TRIPLE so G is a yes-input for CYC if and
only if f(G) is a yes-input for TRIPLE.

Combining these two facts shows that f is a Polynomial-
Time Reduction from CYC to TRIPLE or

CYC ≤P TRIPLE

12

Finally: The Class NP-Complete (NPC)

We have finally reached our goal of introducing

Definition: The class NPC of NP-complete prob-
lems consists of all decision problems L such that

(a) L ∈ NP;

(b) for every L′ ∈ NP, L′ ≤P L.

Intuitively, NPC consists of all the hardest problems
in NP.

Note: it is not obvious that there exist any such problems at all.

There are an infinite number of problems in NP. How can we

prove that some problem is at least as hard as all of them?

We will see later that there are actually many such problems.

13

NP-Completeness and Its Properties

The major reason we are interested in NP-Completeness
is the following theorem which states that either all
NP-Complete problems are polynomial time solvable
or all NP-Complete problemsare not polynomial time
solvable.

Theorem: Suppose that L is NPC.

• If there is a polynomial-time algorithm for L, then
there is a polynomial-time algorithm for every L′ ∈

NP.

Proof: By the theorem on Page 5.

• If there is no polynomial-time algorithm for L, then
there is no polynomial-time algorithm for any L′ ∈

NPC.

Proof: By the previous conclusion.

14

The Classes P , NP, co-NP, and NPC

Proposition: P ⊆ NP.
Simple proof omitted

Question 1: Is NPC ⊆ NP?
Yes, by definition!

Question 2: Is P = NP?
Open problem! Probably very hard
It is generally believed that P 6= NP.
Proving this (or the opposite) would win you the
US$1,000,000 Clay Prize.

Question 3: Is NP = co−NP?
Open problem! Probably also very hard
Note: if NP 6= co−NP, then P 6= NP (why?).

15

Proving that problem L is NPC-Complete

1. Show L ∈ NP.

2. Show that L′ ≤P L for a suitable L′ ∈ NPC.

Question 1: How do we get one problem in NPC to
start with?
Answer: We need to prove, from scratch that one
problem is in NPC.

Question 2: Which problem is ”suitable”?
Answer: There is no general procedure to determine
this. You have to be knowledgeable, clever and (some-
times) lucky.

16

Proving that problems are NPC-Complete

In the rest of this lecture we will discuss some specific
NP-Complete problems.

1. SATand 3-CNF − SAT.
We will assume that they are NP-Complete. (From
textbook)

2. DCLIQUE:
by showing 3 − CNF − SAT ≤P DCLIQUE

The reduction used is very unexpected!

3. Decision Vertex Cover DVC:
by showing DCLIQUE ≤P DVC

The reduction used is very natural.

4. Decision Independent Set (DIS):
by showing DVC ≤P IS

The reduction used is very natural.

17

The Satisfiability Problem is NPC

Cook (1971): SAT ∈ NPC.

Remark: For a proof, see pp. 997-998 of the text-
book.

Remark: Since Cook showed that SAT ∈ NPC,
thousands of problems have been shown to be in NPC

using the reduction approach described earlier.

Remark: With a little more work we can also show
that 3−CNF − SAT ∈ NPC as well. pp. 998-1002.

Note: For the purposes of this course you only need to know the

validity of the two facts above but do not need to know how to

prove they are correct.

18

Problem: CLIQUE

Clique: A clique in an undirected graph G = (V, E)

is a subset V ′ ⊆ V of vertices such that each pair
u, v ∈ V ′ is connected by an edge (u, v) ∈ E. In
other words, a clique is a complete subgraph of G (a
vertex is a clique of size 1, an edge a clique of size 2).

1 2

3

4

5

Find a clique with 4 vertices

CLIQUE: Find a clique of maximum size in a graph.

19

NPC Problem: DCLIQUE

The Decision Clique Problem (DCLIQUE): Given an
undirected graph G and an integer k, determine whether
G has a clique with k vertices.

1 2

3

4

5

Find a clique with 4 vertices

Theorem: DCLIQUE ∈ NPC.

Proof: We need to show two things.
(a) That DCLIQUE ∈ NP and
(b) That there is some L ∈ NPC such that

L ≤P DCLIQUE.

20

Proof that DCLIQUE ∈ NPC

Theorem: DCLIQUE ∈ NPC.

Proof: We need to show two things.
(a) That DCLIQUE ∈ NP and
(b) That there is some L ∈ NPC such that

L ≤P DCLIQUE.

Proving (a) is easy. A certificate will be a set of ver-
tices V ′ ⊆ V, |V ′| = k that is a possible clique. To
check that V ′ is a clique all that is needed is to check
that all edges (u, v) with u 6= v, u, v ∈ V ′, are in
E. This can be done in time O(|V |2) if the edges are
kept in an adjacency matrix (and even if they are kept
in an adjacency list – how?).

To prove (b) we will show that
3 − CNF − SAT ≤P DCLIQUE.

This will be the hard part.
We will do this by building a ‘gadget’ that allows a re-
duction from the 3−CNF − SAT problem (on logical
formulas) to the DCLIQUE problem (on graphs).

21

Proof that DCLIQUE ∈ NPC (cont)

Recall (from Lecture 18) that the input to 3−CNF − SAT

is a logical formula φ of the form

φ = C1 ∧ C2 ∧ · · · ∧ Cn

where each Ci is of the form

Ci = yi,1 ∨ yi,2 ∨ yi,3

where each yi,j is a variable or the negation of a vari-
able.

As an example
C1 = (x1 ∨ ¬x2 ∨ ¬x3) , C2 = (¬x1 ∨ x2 ∨ x3) , C3 = (x1 ∨ x2 ∨ x3)

We will define a polynomial transformation f

from 3 − CNF − SAT to DCLIQUE

f : φ 7→ (G, k)

that builds a graph G and integer k such that
(G, k) is a Yes-input to DCLIQUE if and only if φ is
a Yes-input to 3 − CNF − SAT, i.e, φ is satisfiable.

22

Proof that DCLIQUE ∈ NPC (cont)

Suppose that φ is a 3 − CNF − SAT formula with n

clauses, i.e., φ = C1 ∧ C2 ∧ · · · ∧ Cn. We start by
setting k = n.

We now construct graph G = (V, E).

(I) For each clause Ci = yi,1∨ yi,2∨ yi,3 we create 3

vertices, vi
1, vi

2, vi
3, in V so G has 3n verices. We will

label these vertices with the corresponding variable or
variable negation that they represent. (Note that many
vertices might share the same label)

(II) We create an edge between vertices vi
j and vi′

j′ if
and only if the following two conditions hold:
(a) vi

j and vi′

j′ are in different triples, i.e., i 6= i′, and

(b) vi
j is not the negation of vi′

j′.

On the next slide we will see an example of this con-
struction

23

Proof that DCLIQUE ∈ NPC (cont)

Here is a formula φ = C1 ∧ C2 ∧ C3 and its corre-
sponding graph:

C1 = (x1 ∨ ¬x2 ∨ ¬x3) , C2 = (¬x1 ∨ x2 ∨ x3) , C3 = (x1 ∨ x2 ∨ x3)

32

1

CC

C

1X X3X2

X1 1X

2X

3X 3X

2X

Note that the assignment X3 = T, X2 = F satisfies
φ (independent of the value of X1). This corresponds
to the clique of size 3 comprising the ¬x2 node in C1,
the x3 node in C2 and the x3 node in C3.

So φ is satisfiable and G has a 3-clique.

24

Proof that DCLIQUE ∈ NPC (cont)

Theorem: A 3 − CNF formula φ with k clauses is
satisfiable if and only if f(φ) = (G, k) is a Yes-input
to DCLIQUE.

For the proof of this statement see page 1004 in CLRS.

Note that the graph G has 3k vertices and at most
3k(3k − 1)/2 edges and can be built in O(k2) time
so f is a Polynomial-time reduction.

We have therefore just proven that

3 − CNF ≤P DCLIQUE.

Since we already know that 3 − CNF ∈ NPC and
have seen that DCLIQUE ∈ NP we have just proven
that DCLIQUE ∈ NPC.

25

Problem: VC

Vertex Cover: A vertex cover of G is a set of vertices
such that every edge in G is incident to at least one of
these vertices.

a

b

c
d

e
f

Find a vertex cover of G
of size two

The Vertex Cover Problem (VC): Given a graph G,
find a vertex cover of G of minimum size.

26

NPC Problem: DVC

The Decision Vertex Cover Problem (DVC): Given
a graph G and integer k, determine whether G has a
vertex cover with k vertices.

a

b

c
d

e
f

Find a vertex cover of G
of size two

Theorem: DVC ∈ NPC.

Proof: In Lecture 18 (slide 43), we showed that DVC
∈ NP.

We show that DCLIQUE ≤P DVC. The conclusion
then follows from the fact that DCLIQUE ∈ NPC.
A proof of DCLIQUE ≤P DVC will be given in the next
three slides.

27

DVC ∈ NPC: Complement of a Graph

The complement of a graph G = (V, E) is defined
by G = (V, E), where

E = {(u, v) | u, v ∈ V, u 6= v, (u, v) 6∈ E}.

a

b

c

f

d

e a

b

c

d

e

f

Graph G Complement of G

28

DVC ∈ NPC: Vertex Cover Lemma

Lemma: A graph G has a vertex cover of size k if and
only if the complement graph G has a clique of size
|V | − k.

Proof: Let V ′ be a vertex cover in G and let V ′′ = V \

V ′. If u and v are distinct vertices in V ′′, then they are
not connected by an edge in E and so (u, v) ∈ E ′.
Hence V ′′ are the vertices of a clique in Ḡ.
Similarly, if V ′′ is a clique in Ḡ, then V ′ = V \ V ′′ is a
vertex cover in G.

a

b

c

f

d

e a

b

c

d

e

f

Graph G Complement of G

29

Proof: DVC ∈ NPC

Proof of DCLIQUE ≤P DVC:
Let k = |V | − k. We define a transformation f from
DCLIQUE to DVC:

f : (G, k) 7→ (G, k)

• f can be computed (that is, G and k can be de-
termined) in time O(|V |2) time .

• f is a reduction, i.e., (G, k) is a Yes-input for
DCLIQUE if and only if f(G, k) is a Yes-input for
DVC (by the Lemma in the previous slide).

Hence f is a polynomial-time reduction from DCLIQUE
to DVC.

Remark: In this very special case f is also invertible and polynomial-

time reduction from DVC to DCLIQUE as well.

30

Problem: Independent Set

Definition: An independent set is a subset I of ver-
tices in an undirected graph G such that no pair of
vertices in I is joined by an edge of G.

I

I

I

31

NPC Problem: Decision Independent Set (DIS)

Optimization Problem: Given an undirected graph
G, find an independent set of maximum size.

Decision Problem (DIS): Given an undirected graph
G and an integer k, does G contain an independent
set consisting of k vertices?

Theorem: DVC ∈ NPC.

Proof: It is very easy to see that DIS ∈ NP. A cer-
tificate is a set of vertices S ⊆ V and, in O(|S|2) =

O(|V |2) time we can check whether or not S is an
independent set. In the next slide we will see that
DCLIQUE ≤P DIS, completing the proof.

I

I

I

32

DIS ∈ NPC

Lemma: A graph G has an independent set of size k
if and only if the complement graph G has a clique of
size k.

Proof: Let S ⊆ V be an independent set in G. If
u and v are distinct vertices in S, then they are not
connected by an edge in E and so (u, v) ∈ E′. Hence
S are the vertices of a clique in Ḡ.
Similarly, if S is a clique in Ḡ, then S is an independent
set in G.

We can now define a transformation from DCLIQUE
to DIS:

f : (G, k) 7→ (G, k)

From the Lemma above we have that (G, k) is a Yes-
input to DCLIQUE if and only if f(G, k) is a Yes-input
to DIS. Since f can be calculated in polynomial time
we have just shown that DCLIQUE ≤P DIS and
completed the proof that DIS ∈ NPC.

33

Decision versus Optimization Problems

The theory of NP-Completeness revolves around de-
cision problems. It was set up this way because it’s
easier to compare the difficulty of decision problems
than that of optimization problems.

At first glance, this might seem unhelpful since we
usually don’t care at all about decision problems. We’re
interested in finding an optimal solution to our problem
(the optimization version) not whether such a solution
exists (decision version).

In reality, though, being able to solve a decision prob-
lem in polynomial time will often permit us to solve
the corresponding optimization problem in polynomial
time (using a polynomial number of calls to the deci-
sion problem). So, discussing the difficulty of decision
problems is often really equivalent to discussing the
difficulty of optimization problems.

In the next two slides we see an example of this phenomenon

for VERTEX COVER by showing that having a polynomial algo-

rithm for Decision Vertex Cover (DVC) would yield a polynomial

algorithm for finding a minimal Vertex Cover.

34

Decision versus Optimization Problems (cont)

Here are the two problems and third related one

VC: Given undirected graph G find a minimal size ver-
tex cover.
DVC: Given undirected graph G and k, is there a ver-
tex cover of size k?
MVC: Given an undirected graph G, find the size of a
minimal vertex cover.

Suppose that DV C(G, k) returns Yes if G has a ver-
tex cover of size k and No, otherwise.

Consider the following algorithm for solving MVC:

k = 0;
while (not DVC(G, k)) k = k + 1;
return(k);

Note that MVC calls DV C at most |V | times so, if
there is a polynomial time algorithm for DVC, then our
algorithm for MVC is also polynomial.

35

Decision versus Optimization Problems (cont)

Here is an algorithm for calculating V C(G) that uses
the algorithm for MVC on the previous page. First set
k = MV C(G) and then run V C(G, k) which is de-
fined by

V C(G, t) find VC of size t
{ check all vertices in G to find first vertex u such that

MV C(Gu) == t − 1;
such a vertex exists, why?

Output u;
if (t > 1)

V C(Gu, t − 1);
}

(Show why this algorithm works).

Note that this algorithm calls MVC at most |V |2 times
so, if MVC is polynomial in size(G), then so is V C.
We already saw that if DVC is polynomial in size(G)

so is MV C, so we’ve just shown that if we can solve
DV C in polynomial time, we can solve V C in polyno-
mial time.

36

NP-Hard Problems

A problem L is NP-hard if some problem in NPC

can be polynomially reduced to it (but L does not need
to be in NP).

In general, the Optimization versions of NP-Complete
problems are NP-Hard.

For example, recall
VC: Given undirected graph G find a minimal size ver-
tex cover.
DVC: Given undirected graph G and k, is there a ver-
tex cover of size k?

If we can solve the optimization problem VC we can
easily solve the decision problem DVC. Simply run VC
on graph G and find a minimal vertex cover S. Now,
given (G, k), solve DV C(G, k) by checking whether
k ≥ |S|. If k ≥ |S| answer Yes, if not, answer No.

37

