Selection Example

Goal: to pick the $20^{\text {th }}$ number from 45

Input: 45 random numbers:

99	11	41	82	25	37	11	84	98
70	78	15	13	70	10	49	29	8
35	18	99	70	77	76	81	38	14
82	29	97	77	31	54	49	11	65
22	64	79	17	77	4	89	30	58

Split the 45 into groups of 5 and sort each individually using Insertionsort.

Median of each set is in red.

22	11	15	13	25	4	11	11	8
35	18	41	17	31	10	49	29	14
70	29	79	70	70	37	49	30	58
82	64	97	77	77	54	81	38	65
99	78	99	82	77	76	89	84	98

Recursively run selection to find that median of medians is 58 .
(Implicitly) rearrange groups so those with median <58 are left of center; those with median >58 are right of center.

Notice that everything above-left of 58 is smaller than 58 and everything below-right of 58 is larger than 58 .

11	11	4	11	8	22	25	13	15
18	29	10	49	14	35	31	17	41
29	30	37	49	58	70	70	70	79
64	38	54	81	65	82	77	77	97
78	84	76	89	98	99	77	82	99

11	11	4	11	8	22	25	13	15
18	29	10	49	14	35	31	17	41
29	30	37	49	58	70	70	70	79
64	38	54	81	65	82	77	77	97
78	84	76	89	98	99	77	82	99

Run partition on full set using 58 as pivot. Find that 58 is $25^{\text {th }}$ number in set.

To find $20^{\text {th }}$ in full set it's enough to find $20^{\text {th }}$ in set of first 24 items (which we know from partition).

All numbers <58 :

$$
\begin{array}{|c|c|c|c|c}
\hline 11 & 30 & 54 & 14 & 31 \\
18 & 38 & 11 & 41 & 13 \\
29 & 4 & 49 & 22 & 17 \\
11 & 10 & 49 & 35 & 15 \\
29 & 37 & 8 & 25 & \\
\hline
\end{array}
$$

Sort in groups of 5 numbers

11	4	8	14	
11	10	11	22	13
18	30	49	25	15
29	37	49	35	17
29	38	54	41	31

Recursively run selection to find median of medians $=25$.

11		14	4	8
11	13	22	10	11
18	15	25	30	49
29	17	35	37	49
29	31	41	38	54

Partition on 25 to find that 25 is the $13^{\text {th }}$ item in the set.

The $20^{\text {th }}$ item in the set is therefore the $7^{\text {th }}$ item greater than 25.

All numbers >25.

$$
\begin{array}{|l|l|l|}
\hline 29 & 37 \\
35 & 30 & \\
31 & 49 & 54 \\
29 & 38 & \\
41 & 49 & \\
\hline
\end{array}
$$

Sort in groups of 5 numbers

$$
\begin{array}{|l|l|l|}
\hline 29 & 30 & \\
29 & 37 & \\
31 & 38 & 54 \\
35 & 49 & \\
41 & 49 & \\
\hline
\end{array}
$$

Recursively run selection to find median of medians $=38$

$$
\begin{array}{|l|l|l|}
\hline 29 & 30 & \\
29 & 37 & \\
31 & 38 & 54 \\
35 & 49 & \\
41 & 49 & \\
\hline
\end{array}
$$

Partition on 38 to find that 38 is the $7^{\text {th }}$ item in the set.

This is what we are looking for so 38 is the $20^{\text {th }}$ item in the full set. FINISHED

Review of steps

To find $20^{\text {th }}$ of 45 .
Found $25^{\text {th }}$ item.
Searched for $20^{\text {th }}$ of first 24 .
Found $13^{\text {th }}$ item.
Searched for $7^{\text {th }}$ of Nos 14-24.
Found $7^{\text {th }}$ item. Stopped.

