
Disjoint sets with union

- a fixed set U is partitioned

into disjoint subsets

- maintain these subsets

under operations

Create-Set(x)

Union(S, T)

Find-set(x)

S,T sets. x an element

N.B. No Insert, Delete,DeleteMin, FindMin

Up-trees

{ A, C, D, E, G, H, J }

Use C to denote this
set

{ B, F }

Use B to
denote this
set

No limit on number of children

C

JE

DHAG F

B

Find-set(x)
 z ← x
 loop if z = parent [z]
 then return z
 else z ← parent [z]

C

JE

DHAG F

B

Find-Set (A)

Union (C, B) two possibilities

C

JE

DHAG F

B

C

JE

DHAG

F

B C

JE

DHAG F

B

Efficiency concern:

Possible to become a long single
linked list.

1 2 3 n

n 3

1

2

1

2

3 n

Union by height

- the root of every tree holds the

height of the tree.

- merge the shorter tree into the

taller.

(make root of taller tree the parent
of root of shorter tree)

(in case of ties, make root of first
tree point to root of second)

CREATE-SET (x)
 parent [x] ← x
 height [x] ← 0

UNION (x, y)
 if height [x] > height [y]
 then parent [y] ← x
 else parent [x] ← y
 If height [x] = height [y]
 Then height [y]++

LEMMA 1. For any root x,
size(x) ≥ 2height(x)

size(x): # descendants of x,
including x

PROOF (by induction)
BASE CASE: At beginning, all
heights are 0 and each tree has
size 1.

INDUCTIVE STEP: Assume true
just before a union(x, y).
DEF: size’(x) and height’(x) after
union

CASE 1. height(x) < height(y)
Then size’(y) = size(x) + size(y)
 ≥ 2height(x)+2height(y)
 ≥ 2height(y)
 = 2height’

CASE 2. height(x) = height(y)
Then size’(y) = size(x) + size(y)
 ≥ 2height(x)+2height(y)
 = 2height(y)+1
 = 2height’(y)

CASE 3. height(x) >height(y)
same as Case 1

COROLLARY

 Every node has
 height <= lgn.

PROOF
Let h’ > lg n.
There are at most
n/2h’ < 1 nodes of height h’.

⇒ There are zero nodes with
height > lg n.

THM.
Create-Set(x) uses O(1) time
Union(x,y) uses O(1) time when
 x,y are roots of respective trees
Find-Set(x) uses O(log n) time

PROOF
Create-Set and Union are obviously
O(1) time.

Find operation is O(h) where h is
the max height of any tree.

By corollary, h = lg n .
⇒ Find-Set(x) uses O(log n) time

Note:
Union(x,y) used by Kruskal’s
algorithm is actually the
combination of three
commands:

A = Find-Set(x)
B = Find-Set(y)
Union(A,B)

And therefore requires
O(log n) time.

Note:
It is possible to improve the Union-
Find data-structure so that it works
even faster but that is beyond scope
of this course. See CLRS for details.

Recall that running time of Kruskal’s
algorithm is dominated by the
 O(|E| log |E|)
sorting first stage so improving
Union-Find won’t speed up
Kruskal’s algorithm.

