
Disjoint sets with union 
 
- a fixed set U is partitioned 

into disjoint subsets 
 
- maintain these subsets 

under operations 
 
Create-Set(x)  
 
Union(S, T) 
 
Find-set(x) 

 
S,T sets.  x an element 
 
N.B. No Insert, Delete,DeleteMin, FindMin 



Up-trees 
 

 
 
 
 
 
 
 
{ A, C, D, E, G, H, J } 
 
Use C to denote this 
set 
 

 
 
 
 
 
 
 
{ B, F } 
 
Use B to 
denote this 
set

 
No limit on number of children 
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Find-set(x) 
  z ← x 
  loop  if  z = parent [z] 
    then return z 
    else z ← parent [z] 
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Find-Set (A) 
 
 
 
 
 
 
 
 
Union (C, B)    two possibilities 
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Efficiency concern: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Possible to become a long single 
linked list. 
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Union by height 
 
- the root of every tree holds the 

height of the tree. 
 
- merge the shorter tree into the 

taller. 
 
(make root of taller tree the parent 
of root of shorter tree ) 
 
(in case of ties, make root of first 
tree point to root of second ) 

 
 



 
 
CREATE-SET (x) 
  parent [x] ← x 
  height [x] ← 0 
 
 
 
UNION (x, y) 
 if height [x] > height [y] 
  then parent [y] ← x 
  else parent [x] ← y 
   If height [x] = height [y] 
    Then height [y]++ 



LEMMA 1. For any root x,                     
size(x) ≥ 2height(x) 
 
size(x): # descendants of x, 
including x 
 

PROOF (by induction) 
BASE CASE: At beginning, all 
heights are 0 and each tree has 
size 1. 
 

INDUCTIVE STEP:  Assume true 
just before a union(x, y). 
DEF: size’(x) and height’(x) after 
union 



CASE 1. height(x) < height(y) 
Then size’(y) = size(x) + size(y) 
      ≥ 2height(x)+2height(y) 
      ≥ 2height(y) 
      = 2height’ 
 
 

CASE 2. height(x) = height(y) 
Then size’(y) = size(x) + size(y) 
      ≥ 2height(x)+2height(y) 
      = 2height(y)+1 
      = 2height’(y) 
 
 
 
CASE 3. height(x) >height(y) 
same as Case 1 

 
 



 
COROLLARY 

   Every node has  
             height <= lgn. 

 
 
PROOF 
Let h’ > lg n. 
There are at most  
n/2h’ < 1 nodes of height h’. 
 
⇒ There are zero nodes with 
height > lg n. 



THM. 
Create-Set(x)  uses O(1) time 
Union(x,y) uses O(1) time when 
    x,y are roots of respective trees 
Find-Set(x) uses O(log n) time 
 
PROOF 
Create-Set and Union are obviously 
O(1) time. 
 
Find operation is O(h) where h is        
the max height of any tree. 
 
By corollary, h =  lg n . 
⇒ Find-Set(x) uses O(log n) time 

 
 
 
 



 
 
Note:   
Union(x,y) used by Kruskal’s 
algorithm is actually the 
combination of three 
commands: 
 
A = Find-Set(x) 
B = Find-Set(y) 
Union(A,B) 
 
And therefore requires  
O(log n) time. 
 
 



Note:   
It is possible to improve the Union-
Find data-structure so that it works 
even faster but that is beyond scope 
of this course. See CLRS for details. 
 
Recall that running time of Kruskal’s 
algorithm is dominated by the  
                O(|E| log |E|)  
sorting first stage so improving 
Union-Find won’t speed up 
Kruskal’s algorithm. 


