COMP 271 Design and Analysis of Algorithms
2003 Spring Semester
Question Bank 1

There is some overlap between these question banks and the tutorials. Solving these
questions (and those in the tutorials) will give you good practice for the midterm. Some
of these questions (or similar ones) will definitely appear on your exam! Note that you
do not have to submit answers to these questions for grading. Your TAs will discuss
answers to selected questions in the tutorials.

Problem 1. Prove by induction. For all n > 1:

(n—1)(n+1)

ii—1)=" :

n

i=1

Problem 2. Suppose T1(n) = O(f(n)) and To(n) = O(f(n)). Which of the following

are true? Justify your answers.

(a) Ti(n) + Ta(n) = O(f ()
(b) L — o)

(¢) Ti(n) = O(Ix(n))

Problem 3. For each pair of expressions (A, B) below, indicate whether A is O, Q, or
O of B. Note that zero, one, or more of these relations may hold for a given pair;
list all correct ones. Justify your answers.

(a) A=n?+nlogn; B=n3+n?logn.
(b) A=logy/n; B=logn.

(¢) A=nlogsn; B=nlog,n.
(d) A

) A

d
(e

=27, B=2"2
= log(2"); B =log(3").

Problem 4. Give asymptotic upper bounds for 7'(n). Make your bounds as tight as
possible. You may assume that n is a power of 2.

(a)

T(n) _ T(n—2)+1 ifn>2
T(n) _ T(n/2)+1 ifn>1
T(n) _ T(n/2)+n ifn>1
T(n) _ 2.-T(n/2)+1 ifn>1

T(n) ; 2-T(n/2)+n ifn>1

T(n) = 3T<—>+n2 if n>1

Problem 5. Consider the mergesort algorithm for sorting a set of n points.

(a) Draw the recursion tree for this algorithm for n = 13.
(b) How many levels are there in the recursion tree?
(c) How many comparisons are done at each of the levels in the worst case?
(d) What is the total number of comparisons needed?
)

(e) Generalize your results for parts (b—d) for arbitrary n (you may assume that
n is a power of 2). Give your answers using the O() notation.

Problem 6. Let f(n) and g(n) be asymptotically nonnegative functions. Using the
basic definition of ©-notation, prove that max(f(n), g(n)) = ©(f(n) + g(n)).

Problem 7.

float unknown(int n)

{
if

(n <= 1)
return(1.0);

else

¥

(a)
(b)

return(unknown(n-1) + unknown(n-2));

What does the above function compute?

Executing the function for n = 6 results in the function being recursively
invoked with the argument n = 1,2,3,4, and 5. Draw a recurrence tree to
illustrate this fact. How many times is unknown (i) executed for 1 <=1i <= 57

How many additions are performed to compute unknown (6)?

Assuming that each addition takes constant time, write a recurrence relation
for the running time of unknown(n).

Show that the time to compute unknown(n) is at least as bad as Q(1.5").
(Hint: Use induction.)

Using the result of part (e), give a lower bound on the time it would take to
compute unknown(100) on a computer that can do 1 million additions per
second? (For this question, just consider additions in determining the running
time; thus you may ignore costs such as the cost of testing whether n < 1 in
the if statement.)

Can you suggest a more efficient way of computing the same function? How
long does it take your program to compute unknown(n)? Is your algorithm
faster than the above recursive program? If yes, what design idea did you
exploit to achieve this speedup?

