COMP 271 Design and Analysis of Algorithms
2003 Spring Semester
Question Bank 3

There is some overlap between these question banks and the tutorials. Solving these
questions (and those in the tutorials) will give you good practice for the midterm. Some
of these questions (or similar ones) will definitely appear on your exam! Note that you
do not have to submit answers to these questions for grading. Your TAs will discuss
answers to selected questions in the tutorials.

1. Recall that in the matrix-chain multiplication problem, we are given a sequence
Ay, Ay, ..., A, of n matrices, where A; has size p;_; X p;. The goal is to determine
the least number of scalar multiplications needed to compute the matrix chain
product, A1 A, ... A,.

(a) Let m(7,) denote the least cost of multiplying matrices A, ... A;, where j > 1.
In class we wrote a recurrence relation for m(7, j). This recurrence relation
can be directly translated into a recursive function that takes two arguments,
1 and j. Draw a recursion tree to show what recursive calls result when this
function is called with arguments ¢ = 3 and j = 6, respectively.

(b) By looking at the recursion tree of part (b), give two examples of subproblems
which are being solved more than once.

(c) Give an intuitive explanation as to why the purely recursive approach is inef-
ficient for solving this problem. (Answer in just two lines.)

(d) Dynamic programming can be used to solve this problem much faster than
the purely recursive approach. Give the basic idea of this method, clearly
explaining how it achieves this speed-up. (Answer in just two or three lines.)

2. A student in class suggested the following algorithm for the chain matrix multipli-
cation problem:

Suppose n > 2 and p; is the smallest of py,---,p,. Break the product
after A;, and recursively apply this procedure to the product 4;..4; and
Ai Ag.

Does this algorithm work (i.e, does it minimize the number of multiplications
needed)? If yes, prove your conclusion. If not, give a counter-example.

3. Consider the following purely recursive approach to solving the 0-1 Knapsack prob-
lem studied in class.

KnapSack(val, wt, n, W) {
return RecKnapSack(val, wt, n, W);

¥

RecKnapSack(val, wt, i, w) {
if (w < 0) return -INFINITY; // neg. capacity--illegal
if (i == 0) return O; // no items--no value
leave_val = RecKnapSack(val, wt, i-1, w); // if we leave item i

take_val = vall[i] + RecKnapSack(val, wt, i-1, w-wt[il); // if we take item i
return max(leave_val, take_val);

(a) Show that this approach is inefficient by proving that the worst-case running
time of KnapSack (val, wt,n,W) is at least Q(Qmm(",W))_

(b) Give an intuitive explanation as to why this algorithm is so much slower than
the one based on dynamic programming given in class?

4. In this question, you are required to solve the 0-1 Knapsack problem for fwo
knapsacks. You are given a set of n objects. The weights of the objects are
w1, Wa, ..., Ww,, and the values of the objects are vy, vs,...,v,. You are given two
knapsacks each of weight capacity C. If an object is taken, it may placed in one
knapsack or the other, but not both. All weights and values are positive integers.
Design an O(nC?) dynamic programming algorithm that determines the maximum
value of objects that can be placed into the two knapsacks. Your algorithm should
also determine the contents of each knapsack. Justify the correctness and running
time of your algorithm.

5. Give an O(n?) time dynamic programming algorithm to find the longest monotoni-
cally increasing subsequence of a sequence of n numbers (i.e, each successive number
in the subsequence is greater than or equal to its predecessor). For example, if the
input sequence is (5,24,8,17,12,45), the output should be either (5,8,12,45) or
(5,8,17,45).

6. Give an algorithm which, given sequences X and Y, determines the longest sequence
Z that is a subsequence of both X and Y. Your algorithm should run in O(n?)
time, where n = | X| + |Y].

7. The subset sum problem is: Given a set of n positive integers, S = {z1,Zs,..., T}
and an integer W determine whether there is a subset S’ C S, such that the sum
of the elements in S’ is equal to W. For example, if S = {4,2,8,9} and W = 11,
then the answer is “yes” because there is a subset S’ = {2,9} whose elements sum
to 11. Give a dynamic programming solution to the subset sum problem that runs
in O(nW) time. Justify the correctness and running time of your algorithm.

8.

9.

10.

11.

Run the Floyd-Warshall algorithm on the weighted, directed graph shown in the
figure. Show the matrix D® that results for each iteration of the outer loop.

L o 2 3
. 1 5
5

G

2 -

10| | -8

-~

4

1
|
4

3

You are given a directed graph on n vertices in which each edge has a weight ¢(u, v)
which is equal to the capacity of the edge. (For example, ¢(u, v) might represent the
communication rate along a link in a telecommunications network.) The capacity
of a path {uq, us, ..., ux) is defined to be the minimum capacity of any edge on the
path, that is min(c(uq, ug), c(ug, us), ..., c(ug_1,ux)). By convention, ¢(u,u) = oco.
For every u,v € V, define C'(u,v) to be the maximum capacity over all paths
from v to v. Give a dynamic programming algorithm that computes C'(u, v) for all
u,v € V. Your algorithm should run in O(n?®) time. You should briefly describe
your algorithm and derive its running time.

You are to play a chessboard game to move a toy car from a starting point to
a destination in at most M moves, where M is a fixed number specified in the
input. The game is to be played on a chessboard A[l..n,1..n| of n? squares. The
starting point is the square A[l,1] corresponding to the lower left corner. The
destination is A[n, n] corresponding to the upper right corner. In one move, you
can move your car from one square to either its upper neighbor or its right neighbor
or its left neighbor or its lower neighbor. Diagonal movement is disallowed and you
cannot move your toy car outside the chessboard. Each square A[i, j] is assigned
a number C[i, j] that denotes its cost. The goal is to go from A[l,1] to A[n,n]
in at most M moves while minimizing the maximum cost of any square visited.
Design a dynamic programming algorithm to solve this problem. The following
figure provides an example.

Consider the problem of neatly printing a paragraph on a printer. The input text
is a sequence of n words of lengths ¢y, /4, ..., ¢,, measured in characters. We want
to print this paragraph neatly on a number of lines that hold a maximum of M
characters each. Our criterion of “neatness” is as follows. If a given line contains
words 7 through j and we leave exactly one space between words, the number of
extra space characters at the end of the line is M — j +17 — Y7 _.¢;. We wish to
minimize the sum, over all lines except the last, of the cubes of the numbers of
extra space characters at the end of lines. Give a dynamic-programming algorithm
to print a paragraph of n words neatly on a printer. Analyze the running time and
space requirements of your algorithm.

8| 113]4/,0
20| 10/ 10
1|0 0]2]10
10/ 10| 10/15 | 10
113]0/[3]10

Figure 1: Suppose that M = 20. The solid path makes 8 moves and visits squares A[l,1],
A[2,1], A[3,1], A[3,2], A[4,2], A[5,2], A[5,3], A[5,4], A[5,5] and the maximum cost of any square
visited is 10. The dashed path makes 12 moves and visits squares A[1,1], A[2,1], A[3,1], A[4,1],
A[4,2], A[4,3], A[3,3], A[2,3], A[2,4], A[2,5], A[3,5], A[4,5], A[5,5] and the maximum cost of any
square visited is 5. Thus, one should prefer the dashed path to the solid path.

12. The president of A.-B. Corporation is planning a company party. The company
has a hierarchical structure; that is, the supervisor relation forms a tree rooted at
the president. The personnel office has ranked each employee with a conviviality
rating, which is a real number. In order to make the party fun for all attendees,
the president does not want both an employee and his or her immediate supervisor
to attend.

For each person u in the company, let c[u] denote the conviviality rating for u, and
let Sfu| denote the list of persons for which u is the immediate supervisor. If u
does not supervise anyone, then S[u] is empty.

(a) Describe an algorithm to make up the guest list. The goal should be to max-
imize the sum of the conviviality ratings of the guests. Analyze the running
time of your algorithm, as a function of the number of employees.

(b) Suppose the president insists on being invited to his own party. How will you
modify your algorithm to satisfy him?

