
COMP 271 Design and Analysis of Algorithms
2003 Spring Semester

Question Bank 5 – Selected Solutions

There is some overlap between these question banks and the tutorials. Solving these
questions (and those in the tutorials) will give you good practice for the midterm. Some
of these questions (or similar ones) will definitely appear on your exam! Note that you
do not have to submit answers to these questions for grading. Your TAs will discuss
answers to selected questions in the tutorials.

1. Suppose L ∈ P. Then, as seen in class, L ∈ P. Since P ⊆ NP we have L ∈ NP.
But, by definition, this means

L = L ∈ Co-NP.

So, we have just shown that L ∈ P implies L ∈ Co-NP or P ⊆ Co-NP.

2. We already saw in class that L ∈ P if and only if L ∈ P, i.e., P = Co-P.

But if NP 6= Co-NP we would then have

P = NP 6= Co-NP = Co-P

leading to a contradiction.

3. (i) True

(ii) False

(iii) True

(iv) False

(v) True

4. (i) No problems in NP can be solved in polynomial time. Unknown

(ii) Every NP-complete problem requires at least exponential time to be solved.
Unknown

(iii) X is in NP and X ≤P SAT. Then X is NP-complete. False:

5. Suppose that G is a graph that has a feedback vertex set of size k. The certificate
is the set V ′ of vertices that are in the feedback vertex set. To determine whether
V ′ is indeed a feedback vertex set, we need to test whether every cycle in G passes
through at least one of these vertices. Note that there are exponentially many
cycles in a graph, so testing each cycle would not run in polynomial time. Instead
we delete all the vertices of V ′ from G, along with any incident edges. Let G′

denote the resulting graph. Then we test whether G′ has a cycle, by running DFS
and checking whether the resulting tree has at least one backedge. If so, V ′ is not
a feedback edge set (since the cycle in G′ does not pass through any vertex of V ′)
and otherwise it is.

1

9. Set Cover (SC) ∈ NP

Th certificate consists of the subset C of F . Given C, we first check that C contains
k sets. This can be done in O(k) time. Note that the input size is at least k since
F contains at least k sets. Next, for each element x ∈ X, we check if x appears
in some set in C. This takes O(k|X|2) time, since each set in C has at most |X|
elements. Since both checks can be done in time polynomial in the input size, we
conclude that the set cover problem is in NP.

Vertex Cover ≤P Set Cover

Goal:

We want a polynomial time computable function, which given an instance of the
VC problem (a graph G and integer k) produces an instance of the SC problem
(a domain X, a family of sets F over X, and integer k′) such that G has a vertex
cover of size k if and only if F has a subfamily of k sets that covers X.

Transformation:

Let G(V, E) and k be an instance of the vertex cover problem. Define X = E, the
set of edges of G. For each vertex v of G we create one set Sv which contains all
the edges that are incident to v. In particular, for each v ∈ V , define

Sv = {e ∈ E | e is incident to v in G}.

Now let F =
⋃

v∈V {Sv}. Intuitively, each vertex is associated with the set of edges
it covers. Finally let k′ = k. Output (X, F, k′). Clearly this can be computed in
polynomial time.

Correctness:

If G has a vertex cover V ′ of size k, then we claim that the corresponding sets Sv for
each v ∈ V ′ form a set cover for X. The reason is that by definition of a VC, every
edge is incident to a vertex in V ′ implying that every e ∈ X is a member of the
set corresponding to a vertex in V ′. This collection of sets forms a set cover of size
k = k′. Conversely, if C = {Sv1

, Sv2
, . . . , Svk

} is a set cover for X, then every e ∈ X
is in one of these sets, implying that the corresponding vertices V ′ = {v1, v2, . . . , vk}
form a vertex cover of size k for G.

10. Set-Partition (PART) ∈ NP

First we show that partition is in NP. The certificate for the partition problem
consists of the two sublists S1 and S2. Given the sublists, in polynomial time we
can compute the sums of the elements in these lists and verify that they are equal.

Subset Sum ≤P PART

Goal:

Next we want to show that subset sum (SS) is polynomially reducible to the set-
partition problem (PART). That is, we want a polynomial time computable function
f , which given an instance of SS (a set of numbers S = {x1, x2, . . . , xn} and a target
value t) outputs an instance of PART (a set of numbers S ′ = {x′

1
, x′

2
, . . . , x′

n
}) such

2

that S has a subset summing to t if and only if S ′ can be partitioned into subsets
S1 and S2 that sum to the same value.

Transformation:

Observe that the set-partition problem is a special case of the subset sum problem
where we are trying to find a set of numbers S1 that sum to half the total sum of
the whole set. Let T be the sum of all the numbers in S.

T =
n∑

i=1

xi.

If t = T/2 then the subset sum problem is an instance of the partition problem, and
we are done. If not, then the reduction will create a new number, which if added
to any subset that sums to t, will now cause that set to sum to half the elements of
the total. The problem is that when we add this new element, we change the total
as well, so this must be done carefully.

We may assume that t ≤ T/2, since otherwise the subset sum problem is equivalent
to searching for a subset of size T − t, and then taking the complement. Create
a new element x0 = T − 2t, and call partition on this modified set. Let S ′ be S
together with this new element: S ′ = S ∪ {x0}. Clearly the transformation can be
done in polynomial time.

Correctness:

To see why this works, observe that the sum of elements in S ′ is T+T−2t = 2(T−t).
If there is a solution to the subset sum problem, then by adding in the element x0 we
get a collection of elements that sums to t+(T −2t) = T − t, but this is one half of
the total 2(T − t), and hence is a solution to the set-partition problem. Conversely,
if there is a solution to this set-partition problem, then one of the halves of the
partition contains the element x0, and the remaining elements in this half of the
partition must sum to (T − t) − (T − 2t) = t. Thus these elements (without x0)
form a solution to the subset sum problem.

Here is an example. S = {5, 6, 7, 9, 11, 13} and t = 21 is an instance of the subset
sum problem. T = 51. We create the element x0 = T − 2t = 9 and add it to
form S ′ = {5, 6, 7, 9, 9, 11, 13}. Note that there is a solution to the subset sum since
5 + 7 + 9 = 21. The total of elements in S ′ is 60, and so by including x0 we get a
solution to the partition problem 5 + 7 + 9 + 9 = 30 = 60/2.

11. Integer-Programming (IP) ∈ NP

First we show that integer-programming is in NP. The certificate is the n-vector
x with elements in the set {0, 1}. Given the certificate, it can be verified in linear
time (hence, polynomial time) that it satisfies Ax ≤ b.

3-SAT ≤P IP

Goal:

Next we want to show that 3-SAT is polynomially reducible to the integer-programming
problem (IP). That is, we want a polynomial time computable function, which given

3

an instance of 3-SAT (a set of variables Y and clauses C) outputs an instance of
IP (an m-by-n matrix A and a m-vector b) such that the clauses C are satisfiable
if and only if there is an integer n-vector x with elements in the set {0, 1} which
satisfies Ax ≤ b.

Transformation:

For each clause C we write out an inequality as follows. If the literal is variable
yi, we replace it by the variable xi; and if the literal is y

i
, we replace it by the

quantity 1 − xi. In what follows, we will call this quantity that replaces the literal
a term. Finally, the sum of these terms is set ≥ 1. For example, if the 3-SAT
instance consists of two clauses y1∨y2∨y3 and y1∨y3∨y4, then the inequalities are
x1 + (1− x2) + (1− x3) ≥ 1 and (1− x1) + x3 + x4 ≥ 1. One can obtain the matrix
A and vector b from these inqualities quite easily. The entire transformation can
be done in linear time (hence polynomial time).

Correctness:

If the clauses are satisfiable then consider the satisfying truth assignment. For each
variable yi, if yi is true, then the corresponding variable xi is assigned value 1, and
if yi is false, then the corresponding variable xi is assigned value 0. Consider any
clause c ∈ C. Clearly, the satisfying truth assignment makes at least one literal
in the clause c true. If this literal is the variable yi then xi has value 1 and the
inequality corresponding to clause c is satisfied; and if this literal is yi then xi has
value 0, and so 1− xi has value 1 and again the inequality corresponding to clause
c is satisfied. Since the argument applies to any clause c, it implies that all the
inequalities are satisfied by the above assignment.

Conversely, if all the inequalities can be satisfied then consider the assignment of
values to the variables xi that satisfies the inequalities. For each variable xi, if xi

is 1, then the corresponding variable yi is set to true, and if xi is 0, then the corre-
sponding variable yi is set to false. Consider any inequality and the corresponding
clause c ∈ C. Clearly, if the inequality is satisfied then one of the three terms must
be ≥ 1 (since all the terms are ≥ 0). If the term is of the form xi then it implies
that xi is 1 and the corresponding literal yi is true; and if the term is of the form
1− xi then it implies that xi is 0 and the corresponding literal yi is true. In either
case, the clause c is satisfied. Our argument applies to any arbitrary clause c, hence
the given clauses are satisfiable.

4

