COMP 271 Design and Analysis of Algorithms
2003 Spring Semester
Questions for Second Tutorial — 21 Feb, 2003

Problem 1. float unknown(int n)

{
if

(n <= 1)
return(1.0);

else

}

(a)
(b)

return(unknown(n-1) + unknown(n-2));

What does the above function compute?

Executing the function for n = 6 results in the function being recursively
invoked with the argument n = 1,2,3,4, and 5. Draw a recurrence tree to
illustrate this fact. How many times is unknown (i) executed for 1 <=1i <= 57

How many additions are performed to compute unknown (6)?

Assuming that each addition takes constant time, write a recurrence relation
for the running time of unknown(n).

Show that the time to compute unknown(n) is at least as bad as Q(1.5").
(Hint: Use induction.)

Using the result of part (e), give a lower bound on the time it would take to
compute unknown(100) on a computer that can do 1 million additions per
second? (For this question, just consider additions in determining the running
time; thus you may ignore costs such as the cost of testing whether n < 1 in
the if statement.)

Can you suggest a more efficient way of computing the same function? How
long does it take your program to compute unknown(n)? Is your algorithm
faster than the above recursive program? If yes, what design idea did you
exploit to achieve this speedup?

Problem 2. (modified problem 9.3-1, p192, CLRS).
Assume that you are given a “black-box” worst case linear time median finding
algorithm. Show how Quicksort can be modified to run in O(nlogn) worst case
time.

Problem 3. (problem 9.3-5, p192, CLRS).
Assume again that you are given a “black-box” worst case linear time median
finding algorithm. Give a simple linear-time algorithm that solves the selection
problem for an arbitrary order statistic. That is, given k, your algorithm should
find the k smallest item.



Problem 4.

You have just been hired as the quality-control engineer for a company that makes
coins. The coins must all have identical weight. You are given a set of n coins and
are told that at most one (possibly none) of the n coins is lighter than the others.
Your task is to develop an efficient test procedure to determine which of the n coins
is defective or report that none is defective. To do this test you have a scale. For
each measurement you place some of the coins on the left side of the scale and some
of the coins on the right side. The scale indicates either that (1) the left side is
heavier, (2) the right side is heavier or (3) both subsets have the same weight. It
does not indicate how much heavier or lighter.

(A) Design an algorithm for solving this problem that works in log, n + ¢ time, for
some constant ¢ (try to make ¢ as small as possible).
Hint: try a divide and conquer approach.

(B) Design an algorithm for solving this problem that works in logs n + ¢ time, for
some constant ¢ (try to make ¢ as small as possible).

(C) The problem now changes in that the defective coin, if it exists, may be lighter
or heavier than the other coins. Modify the algorithm from part (A) or (B)
to work in this case. How fast is your algorithm?



