
COMP 271 Design and Analysis of Algorithms

2003 Spring Semester

Questions for Sixth Tutorial – March 28, 2003.

1. Let G be a connected undirected graph with weights on the edges. Assume
that all the edge weights are distinct. Prove that the edge with the smallest
weight must be included in any minimum spanning tree of G. You have to

prove this from first principles, i.e., you are not allowed to use the Lemmas

proven in class or assume the correctness of Kuskal’s or Prim’s algorithm.

2. Let G = (V, E) be a connected undirected graph in which all edges have
weight either 1 or 2. Give an O(|V |+|E|) algorithm to compute a minimum
spanning tree of G. Justify the running time of your algorithm. (Note: You
may either present a new algorithm or just show how to modify an algorithm
taught in class.)

3. Let G = (V, E) be a weighted acyclic directed graph (DAG) with source
vertex s (that is, s has indegree 0). Give an O(|V | + |E|) algorithm for
finding all vertices that can be reached from s and a shortest path tree that
has shorstey paths from s to those vertices. It is assumed that the graph
is given using an adjacency list.

Section 24.2 in CLRS gives such an algorithm. In this problem we use
dynamic programming to develop a slightly different one.

Before starting the algorithm we first use O(|V | + |E|) time to topologi-
cally sort the vertices. After this we assume that the vertices are given as
v1, v2, . . . v|E| in topological order.

Next we run through the graph and create an in-adjacency list. That is,
for each vertex v we create a list of all vertices {u : (u, v) ∈ E}. Show that
this can be done in (|V | + |E|) time.

Let D(u) be the length of a shortest path from s to u.

Now prove the following statement:

∀v ∈ V − {s}, D(v) = min
u : (u,v)∈E

(D(u) + w(u, v)) .

Next, use this statement and a dynamic programming approach to find the
shortest path tree in O(|V | + |E|) time.

