1. Prove that $P \subseteq \text{Co-NP}$.

2. Prove that if $NP \neq \text{Co-NP}$ then $P \neq NP$.

3. For each of the following assertions, indicate whether it is True: known to be true, False: known to be false, or Unknown: unknown based on our current scientific knowledge. In each case provide a short explanation for your answer.

 (i) No problems in NP can be solved in polynomial time.
 (ii) Every NP-complete problem requires at least exponential time to be solved.
 (iii) X is in NP and $X \leq_P \text{SAT}$. Then X is NP-complete.

4. Given an undirected graph $G = (V, E)$, a feedback vertex set is a subset of vertices such that every simple cycle in G passes through one of these vertices. The feedback vertex set problem (FVS) is: Given a graph G and an integer k, does G contain a feedback vertex set of size at most k?

 Show that FVS is in NP. That is, given a graph G that has a FVS of size k, give a certificate, and show how you would use this certificate to verify the presence of a FVS of size k in polynomial time.

 (Hint: The certificate should be a set $V' \subseteq V$ with $|V'| = k$. You need to show a polynomial time algorithm that tests whether V' is a FVS or not. Note that since a graph can have exponentially many cycles you cannot just do the simple thing of checking every cycle.)

5. The set cover problem is: Given a finite set X and a collection of sets F whose elements are chosen from X, and given an integer k, does there exist a subset $C \subseteq F$ of k sets such that

 $$X = \bigcup_{S \in C} S.$$

 Prove that the set cover problem is NP-complete. (Hint: Reduce from Vertex-Cover.)