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Abstract 

In this paper, we present a new multimodal image 
registration method based on the a priori knowledge of 
the class label mappings between two segmented input 
images. A joint class histogram between the image pairs 
is estimated by assigning each bin value equal to the total 
number of occurrences of the corresponding class label 
pairs. The discrepancy between the observed and 
expected joint class histograms should be minimized when 
the transformation is optimal. Kullback-Leibler distance 
(KLD) is used to measure the difference between these 
two histograms.  

Based on the probing experimental results on a 
synthetic dataset as well as a pair of precisely registered 
3D clinical volumes, we showed that, with the knowledge 
of the expected joint class histogram, our method 
obtained longer capture range and fewer local optimal 
points as compared with the conventional Mutual 
Information (MI) based registration method. We also 
applied the proposed method to 2D-3D rigid registration 
problems between DSA and MRA volumes. Based on 
manually selected markers, we found that the accuracies 
of our method and the MI-based method are comparable. 
Moreover, our method is more computationally efficient 
than the MI-based method. 

1. Introduction 

Images acquired by different medical imaging 
modalities provide useful complementary information. 
For example, magnetic resonance (MR) images provide 
anatomical information; PET and SPECT images provide 
functional information. Multi-modal image registration is 
an important technique for integrating the complementary 
image information from different modalities by aligning 
the images. 

To correctly align two images, we need a similarity 
measure to determine how well the images match with 
each other through a hypothesized spatial 1transformation. 
Most of the similarity measures can be classified into two 
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categories: feature-based or intensity-based. In the 
following subsections, we will introduce these similarity 
measures, and discuss their advantages and disadvantages. 
In general, the intensity-based method is more accurate 
but the feature-based method is more computationally 
efficient [12]. Since accuracy is important in medical 
diagnosis, we compare our proposed method with Mutual 
Information (MI) [4],[5], which is one of the most 
commonly used intensity-based methods in medical 
image analysis. 

We present probing experimental results on a 
synthetic dataset and 3D clinical magnetic resonance 
angiograms (MRA) in Section 3 and results on clinical 
datasets consisting of MRA volumes and DSA in Section 
4. It is shown in Section 5 that the accuracies of our 
proposed method and MI-based method are comparable. 
Moreover, our method is more computationally efficient 
than the MI-based method. 

1.1. Intensity-Based Methods 

Over the past few years, many intensity-based 
similarity measures have been introduced, for example 
Euclidean distance, correlation coefficients, correlation 
ratio [11] etc. The most popular and widely used one is 
the information-theoretic similarity measure, Mutual 
Information (MI) [4],[5]. It only makes use of the 
assumption of statistical dependence between the two 
images, and has been successfully applied to many 
multi-modality combinations.  

Let 1X  and 2X  be image domains, 21: XXT →
be the rigid transformation between the two input images 
(in 3D, the rigid transformation has three translational and 
three rotational parameters), and 1I  and 2I  be the 

intensities of images 1X  and 2X  respectively. Then 

Mutual Information )),(( 21 XXTMI  is defined by 
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where TP  is the joint intensity probability density 
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function, and TI
P

1
 and TI

P
2

 are the corresponding 

marginal probability density functions given the 
hypothesized transformation. 

The value of )),(( 21 XXTMI  is expected to be 

maximized when the images 1X  and 2X  are correctly 

aligned. 

1.2. Feature-Based Methods 

The feature-based registration algorithms extract 
features such as surfaces, curves [10] or skeletons [8],[9] 
at the preprocessing steps.  

They are faster than intensity-based methods but 
comparatively less accurate [12]. Also, the extraction of 
skeletons, for example, can be sensitive to noise [13]. The 
surface or curve construction can be complicated and 
would also affect the registration accuracy. 

1.3. Related Works 

Chung et al. [1] used a pair of precisely registered or 
segmented images to build the expected joint intensity 
histogram and used Kullback-Leibler distance (KLD) 
[2],[3] to measure the discrepancy between observed and 
expected joint intensity histograms. Usually, the images 
are aligned by experienced clinicians so that the expected 
joint intensity histogram can be obtained. If manual 
alignment is not available, the expected joint intensity 
histogram will be estimated from segmented images. 

Instead of using a joint intensity histogram, we 
explore the possibility of using a joint class histogram, 
where each bin of the histogram corresponds to a class 
label. The idea of using a joint class histogram instead of 
a joint intensity histogram was inspired partly by Wyatt 
and Noble [6], who use entropies, similar to MI, as the 
similarity measure. By using a joint class histogram, we 
expect that the proposed method would be more efficient 
than the MI-based method as the number of bins is 
typically smaller. 

Although our method requires segmentation in 
preprocessing, we do not need to extract any further 
features such as surfaces, curves or skeletons as required 
by other feature-based methods. 

2. Our Registration Algorithm 

We will present some background information about 
our similarity measure in the following subsections before 
introducing our registration algorithm. 

2.1. Estimation of Joint Class Histograms 

In addition to the notations defined in Section 1.1, let 

1Φ  and 2Φ  be the sets of possible class labels of the 

two images (a class can represent an anatomical structure 
in medical images); and 111 : Φ→XL  and 

222 : Φ→XL  be the mappings from a voxel coordinate 

to its class label in images 1X  and 2X  respectively. 

Assuming that the mappings between class labels of 
two images are known, there exists a mapping relation 

21: Φ×ΦR  such that ),{( 21 llR = | there is a class label 

mapping between 1l and 2l , where }, 2211 Φ∈Φ∈ ll . This 

mapping relation incorporates domain knowledge about 
the valid correspondences among classes. 

In order to estimate the expected joint class 
histogram, for all pixels 22 Xx ∈ , we select '1x

randomly from 1X  such that RxLxL ∈))(),'(( 2211 , and 

increase the value of ))(),'(( 2211 xLxLbin  by 1. Then 

every bin value is divided by the sum of all bin values in 
order to normalize the histogram. 

Similarly, to estimate the observed class histogram, 

for all pixels 22 Xx ∈ , if 12
1 )( XxT ∈− , we then 

increase the value of ))()),((( 222
1

1 xLxTLbin −  by 1. 

Otherwise, we select '1x randomly from 1X such that 

RxLxL ∈))(),'(( 2211 , and increase the value of 

))(),'(( 2211 xLxLbin  by 1. Then, every bin value is 

divided by the sum of all bin values in order to normalize 
the histogram. 

An example of estimating the expected joint class 
histogram is shown in Figure 1. 

Here, 1Φ ={1, 2, 3} and 2Φ ={a, b}. 

If we know that 
class 1 and 2 map to class a, and 
class 3 maps to class b, 
then R = {(1, a), (2, a), (3, b)}. 
The expected joint class histogram may appear as follows: 

Classes a b 
1 0.376 0 
2 0.124 0 
3 0 0.5 

Notice that bin(a, 1) and bin(a, 2) are not necessarily equal to 
0.375 and 0.125 respectively due to random factor in 
sampling. 

Figure 1: An example of estimation of the expected joint 
class histogram. 
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2.2. Kullback-Leibler Distance as Similarity 
Measure

Kullback-Leilber distance [2],[3], which is a 
frequently used measure in the field of information 
theory, is employed to measure the difference between the 

expected joint class histogram, denoted by Ĥ , and 

observed joint class histogram, denoted by T
oH . The 

KLD between the two histograms is given by 

Φ∈ Φ∈
=

11 22 ),(ˆ
),(

log),()ˆ|(
21

21
21

l l

T
oT

o
T
o

llH

llH
llHHHKLD . (2) 

When the two images 1X  and 2X  are perfectly 

aligned, the value of KLD is expected to be minimum. 

2.3. Outline of Our Registration Algorithm 

Our registration algorithm is summarized as follows. 
On both floating and reference images, segmentation 

is performed to label each voxel/pixel (Segmentation 
methods can vary and depend on the applications, which 
is not the focus of this paper). Mappings between their 
class labels can be determined manually. The expected 

joint class histogram Ĥ  can then be estimated as 
mentioned in Section 2.1.  

During the registration process, given the current 
transformation T , we can estimate the observed joint 

class histogram T
oH , as described in Section 2.1. 

The goal is to find the optimal transformation T̂  by 
minimizing the value of KLD (Equation (2)) between the 
expected joint class histogram and observed joint class 
histogram. 

)ˆ|(minargˆ HHKLDT T
o

T
= .     (3)

This proposed KLD-based registration method is 
conceptually different from the MI-based method. It 
makes use of the a priori knowledge of the expected joint 
class histogram to guide the transformation towards the 
expected outcome. 

Powell’s method [7] is used to iteratively search for 
the minimum value of KLD along each parameter using 
Brent’s method [7]. The algorithm halts when the 
percentage change of KLD values is below a 
user-specified threshold. We set this threshold to 0.001% 
in our program. 

The flow chart of our registration algorithm is shown 
in Figure 2. 

3. Comparative Studies Between KLD and 
MI Similarity Measures 

In this section, we will compare our similarity 

measure with the Mutual Information (MI) based 
similarity measure. The first probing experiment used 
synthetic data. The second probing experiment used a pair 
of precisely registered 3D clinical datasets. 

3.1. Experiment on Synthetic Data 

We constructed two images for this experiment, as 
shown in Figure 3. Both of them were 100 x 100 pixels. 
The first image consists of 3 vertical strips, where the left 
and right strips are 40 pixels wide and the middle one is 
20 pixels wide. The intensity values of the middle strip 
are normally distributed with mean = 204 and standard 
deviation = 5, while the intensities of left and right strips 
were all zero. The second image consisted of 5 vertical 
strips. Each of them was 20 pixels wide. The intensity 
values in each strip were normally distributed with the 
same standard deviation = 5. The mean intensities of each 
strip were 20, 44, 204, 44 and 20 from left to right 
respectively.  

Figure 2: A flow chart of our registration algorithm. 

(a) (b) 

Figure 3: (a) Synthetic floating image, and (b) synthetic 
reference image. 

There are 2 classes in the floating image (Figure 3a), 
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one for middle strip (class 1) and another one for strips on 
both sides (class 2). Also, the reference image (Figure 3b) 
consists of 5 classes where each strip corresponds to one 
class. We label them as classes a, b, c, d and e from left to 
right accordingly. It is expected that class c maps to class 
1 and classes a, b, d and e map to class 2. This 
information is used as our a priori knowledge for our 
KLD-based similarity measure. 

We computed the values of KLD and MI between 
these two images at different horizontal translations 
ranging from -40 pixels to +40 pixels.  

The probing results are plotted in Figure 4, which 
reveals that the capture range of KLD (±20) is longer than 
that of MI (about ±14). The number of local optimal 
points is fewer for KLD as well. The global optimum 
occurs at null transformation for KLD but not for MI, 
which has global optimal values at -40 or 40 away from 
null transformation. 

It shows that, in this synthetic dataset, the 
KLD-based similarity measure can provide a longer 
capture range and fewer local optimal points. 

Figure 4: Probing results of KLD (left) and MI (right) 
values against changes in horizontal translation. 

3.2. Experiments on 3D Clinical Data 

We used a pair of precisely registered 3D phase 
contrast magnetic resonance image volumes (512 x 512 x 
50 voxels of 0.352mm x 0.352mm x 0.8mm) for the 
experiments. In the experiments, the floating and 
reference images were the MRA speed images and the 
tissue images respectively, which were acquired in the 
same scan. Both speed images and tissue images show the 
vascular structures clearly, thus they can be segmented 
into two classes (vessel and non-vessel) by global 
thresholding (the threshold was selected by the 
experienced clinicians so that vessels were clearly 
segmented), and the expected joint class histogram can 
then be estimated as mentioned in Section 2.1. We used 
the entire image volume for the probing experiment. The 
values of KLD and MI are plotted against the six rigid 
body transformation parameters. 

The plots of KLD and MI values (Figure 5) against 
the changes in translation in x-axis (Tx) and y-axis (Ty) 
as well as the changes in rotation about x-axis (Rx) and 
z-axis (Rz) are shown. The ranges of Tx and Ty were 

±18mm away from the null transformation, while the 
ranges of Rx and Rz were from ±30° away from null 
transformation. The global optima of all the graphs shown 
are correctly located at the null transformation. Notice 
that MI has more local optimal points than KLD for the 
changes in Ty due to the overlapping of vessels and other 
anatomical structures. 

Figure 5: Probing results of KLD (left) and MI (right) 
values, in which Tx, Ty, Rx and Rz were varied.  

The computational time of all the evaluations in the 
probing experiments presented in this subsection is 
summarized as follows. For the KLD-based method, the 
mean and standard deviation are 12.04s and 1.29s 
respectively while for the MI-based method, the mean and 
standard deviation are 15.00s and 2.26s respectively. 
Although the difference of mean computational time 
between two objective functions is only about 3 seconds, 
it is essential for the registration process because a 
registration process generally requires a lot of iterations, 
e.g., usually more than 1000 iterations. 
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4. 2D-3D Rigid Registration Using the 
Proposed Algorithm 

The proposed KLD-based method has been applied 
to 2D-3D rigid registration of DSA and MRA, in which 
the floating image was the 3D MRA volume while the 
reference image was the 2D DSA image. The outline of 
the 2D-3D registration and reasons of using the proposed 
method are given in the following subsections. 

4.1. Outline of the 2D-3D Registration 

There are several additional points to notice when 
the proposed method was applied to the specific 2D-3D 
registration problem. 

The distortion of the DSA image is corrected by 
bilinear interpolation using an accurately machined 
acrylic calibration grid with 20 x 20 embedded ball 
bearings. On each 3D MRA volume and 2D DSA image, 
a rectangular region of interest containing the main 
vessels is selected in order to shorten the computational 
time. Then, the segmentation is performed to label each 
voxel/pixel as one of the following two classes: vessel or 
non-vessel. There are only two mappings between these 
class labels: vessels map to vessels and non-vessels map 
to non-vessels. The expected joint class histogram can 
then be estimated as mentioned in Section 2.1. 

At each iteration, the ray-casting technique [14] is 
used to generate a binary projection of the segmented 
MRA volume for the current pose. The observed joint 
class histogram is based on using this projection and the 
segmented DSA image. The optimization scheme 
described in Section 2.3 is used to find the optimal 
transformation. 

4.2. Reasons for Using the Proposed Method on 
the 2D-3D Registration of DSA and MRA 
Images

i. The KLD-based method has fewer local optimal 
points than the MI-based method as shown in the 
plots in Section 3.  

ii. As segmentation is done for both MRA volume and 
DSA image in the preprocessing steps, the MIP 
required for building the joint class histogram is 
only a binary image. Therefore, during the ray 
casting process for MIP image generation, when the 
ray hits a vessel, the casting process can be stopped 
for that particular ray immediately. This technique 
speeds up the MIP generation process by about 3-4 
times which is not feasible for the MI-based 
method because whether the ray hits a vessel or not 
cannot be determined without segmentation.  

iii. KLD may be less sensitive to noise compared with 
feature-based methods using skeletons [13]. 

5. Results and Comparisons 

In this section, we demonstrate the results of the 
2D-3D rigid registration algorithm presented in Section 4 
and also compare its accuracy and computational 
efficiency with the MI-based method. 

5.1. Accuracy Study of Our Registration 
Algorithm 

We use two pairs of 3D MRA and 2D DSA datasets 
for this experiment. The dimensions and the resolutions of 
the two MRA datasets are 512 x 512 x 50 (0.293mm x 
0.293mm x 1mm) and 256 x 256 x 80 (1.25mm x 1.25mm 
x 2.4mm) respectively. 

In order to evaluate the accuracy of the registrations, 
seven and five target points were chosen by an 
experienced user using an interactive tool for cases 1 and 
2 respectively. After the optimal transformation was 
found, for every user-selected point on a DSA image, the 
registration error was defined by the Euclidean distance 
between the point and the projected corresponding 3D 
MRA point. The results of cases 1 and 2 are shown in 
Figure 6 and Figure 7 respectively. Figure 6c and Figure 
7c show the MIPs of the registered MRA volumes using 
the KLD-based method. Notice that full MIPs are shown 
here for visualization purpose only. During the 
registration, only binary projection images were generated 
and used. Segmented vascular regions of the binary 
projection image (at final alignment using the KLD-based 
method) are overlaid on the corresponding DSA (Figure 
6d and Figure 7d) and the results are promising. The 
registered images using the MI-based method are also 
shown for comparison (Figure 6f and Figure 7f). 

The summary of errors is tabulated in Table 1. It 
shows that the registration accuracy of our method is 
comparable to the MI-based method in terms of the mean 
error values. The mean error is less than 2mm, which is 
acceptable in our application. 

Case
No.

Min Error 
(mm) 

Max Error 
(mm) 

Mean Error 
(mm) 

S.D. (mm)

1 KLD 0.378417 1.60155 1.13038 0.428727 
 MI 0.843802 1.55816 1.092088 0.240371 
2 KLD 1.47155 2.1964 1.784515 0.364806 

MI 0.942206 3.42202 1.947052 1.148561 

Table 1: Results of experiments on 2D-3D registration. 

Table 2 lists the final transformation using both 
methods. Notice that the projection plane for cases 1 and 
2 is parallel to xz-plane and yz-plane respectively; 
therefore, the registration results are insensitive to the 
changes of Ty in case 1 and the changes of Tx in case 2. 
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Case
No.

 Tx Ty Tz Rx Ry Rz 

1 KLD-0.5442 25.85 29.04 2.174 3.090 -5.834 
 MI -0.1596 20.81 28.57 1.229 3.174 -7.224 
2 KLD-109.94 -19.51 106.0 0.753 -2.267 -1.660 
 MI -43.001 -14.06 105.9 -1.088 -0.524 -13.78 

Table 2: Final transformation parameters. Translations 
are in mms and rotations are in degrees. 

(a) DSA (b) Initial pose 

(c) Final result (KLD) (d) Final result (KLD) 

(e) Final result (MI) (f) Final result (MI) 

Figure 6: Results of case 1. (a) DSA image, (b) Initial 
image alignment, (c) Final image alignment by using the 
KLD-based method, MIP of the MRA volume, (d) Final 
image alignment by using the KLD-based method, MIP is 
overlaid on the DSA, (e) Final image alignment by using 
the MI-based method, MIP of the MRA volume, (f) Final 
image alignment by using MI-based method, MIP is 
overlaid on the DSA. 

(a) DSA (b) Initial pose 

(c) Final result (KLD) (d) Final result (KLD) 

(e) Final result (MI) (f) Final result (MI) 

Figure 7: Results of case 2. (a) DSA image, (b) Initial 
image alignment, (c) Final image alignment by using the 
KLD-based method, MIP of the MRA volume, (d) Final 
image alignment by using the KLD-based method, MIP is 
overlaid on the DSA, (e) Final image alignment by using 
the MI-based method, MIP of the MRA volume, (f) Final 
image alignment by using the MI-based method, MIP is 
overlaid on the DSA. 

5.2. Computational Time Study of Our 
Registration Algorithm 

According to the Equations (1) and (2), the 
computational time of evaluation of KLD is expected to 
be faster than that of MI for the following reasons: 

i. KLD does not require the calculation of marginal 
distributions, which is required by MI.  

ii. The number of bins in the histogram for the 
KLD-based method is typically less than the 
number of bins for the MI-based method. The 
reason is that the former uses the joint class 
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histogram, whereas the later uses the joint intensity 
histogram.  

iii. As mentioned in Section 4.2, for the 2D-3D 
registration problem, the generation of binary 
projection image could be faster than the generation 
of projection image with a full intensity range. 

The computational time of the registration process 
for both KLD-based and MI-based methods is listed in 
Table 3. All experiments done in this paper are carried out 
using a 1.7GHz Pentium IV PC, with 768M RAM. Based 
on the results of these two datasets, our method can run 
faster than the MI-based method by about 2-3 times. 

Case No. Methods Time (sec) 
1 KLD 115.019 
 MI 335.547 
2 KLD 86.081 
 MI 216.947 

Table 3: Comparisons of the computational time for the 
registration algorithms. 

6. Conclusions 

In this paper, we have proposed a new multi-modal 
image registration method based on the a priori
knowledge of the expected joint class histogram. The 
difference between the observed and expected joint class 
histograms is measured by using Kullback-Leibler 
distance (KLD). 

This objective function, KLD, is not only 
computationally more efficient than the MI-based 
similarity measure, but also produces comparable 
accuracy. It is particularly suitable for 2D-3D registration 
of DSA image and MRA volume. Further work will 
include a large number of datasets for validation of our 
registration algorithm. 
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