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Abstract. We present a new generic method for vascular segmenta-
tion of angiography. Angiography is used for the medical diagnosis of
arterial diseases. To facilitate an effective and efficient review of the vas-
cular information in the angiograms, segmentation is a first stage for
other post-processing routines. The method we propose uses a novel a
priori — local orientation smoothness prior — to enforce an adaptive
regularization constraint for the vascular segmentation within the Bayes’
framework. It aspires to segment a variety of angiographies and is aimed
at improving the quality of segmentation in low blood flow regions. Our
algorithm is tested on numerical phantoms and clinical datasets. The
experimental results show that our method produces better segmentati-
ons than the maximum likelihood estimation and the estimation with a
multi-level logistic Markov random field model. Furthermore, the novel
algorithm produces aneurysm segmentations comparable to the manual
segmentations obtained from an experienced consultant radiologist.

1 Introduction

Evolution in technology surrounding vascular imaging has brought radiologists
to non-invasive imaging modalities that can provide accurate 3D vascular infor-
mation quickly to a variety of patients. Vascular imaging helps the physician to
define the character and extent of a vascular disease, thereby aiding diagnosis
and prognosis. To facilitate an effective and efficient review of the vascular in-
formation in angiograms, segmentation is a first stage for other post-processing
routines or analyses, such as visualization, volumetric measurement, quantitative
comparison and image-guided surgery [1].

A variety of approaches have been proposed for vascular segmentation. For
instance, authors in [2], [3] demonstrated that the expectation maximization
(EM) algorithm and a maximum likelihood (ML) estimate can be used to seg-
ment vascular structures automatically with a proper statistical mixture model.
The use of gradient information to drive evolving contours with the level set
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method and topologically adaptable surfaces to segment vasculature in the an-
giograms has been proposed in [4], [5], [6], [7]. Region-growing approaches to
segmenting the angiograms with initial segmentations have been illustrated in
[8], [9]. Alternatively, a tubular object has been used to model vessel segment in
the angiograms explicitly for ridge transversal, multiscale analysis of vasculature
and vessel diameter estimation [10], [11]. A multiscale line enhancement filter
has been applied to segment curvilinear structures in the angiograms [12].

In a previous published work [3], we demonstrated a method to combine
speed and phase information for vascular segmentation of phase-contrast (PC)
magnetic resonance angiography1 (MRA). Since phase images are only available
in PC MRA, we introduce a novel generic framework for vascular segmentation
of a variety of angiographies. The new method depends solely on a speed image
to segment PC MRA and aspires to segment other angiographies such as time-
of-flight (TOF) MRA and 3D rotational angiography (RA).

When blood flows along a vessel, because of the blood viscosity, frictional
force slows down the flow near the vascular wall [13]. As such, the intensity
values are low at the boundary of vessels in the angiograms. The inhomogeneous
regions are a challenge if vascular segmentation is to be robust.

The method we propose uses a new smoothness prior to improve the quality
of segmentation, particularly, at the low blood flow regions. The a priori, namely
local orientation smoothness prior, exploits local orientation smoothness of the
vascular structures to enforce an adaptive regularization constraint for robust
vascular segmentation.

We expect the application of the a priori can be extended to different areas,
e.g., image restoration with edge-preserving or coherent-enhancing capability
(see [14], [15] and references therein), segmentation of non-medical images such
as radar images [16] and object extraction from video [17].

In the next section, we present the Bayes’ approach to segmenting the an-
giograms. We describe a robust method used to estimate local orientation from
the images in Section 3. The implementation issues are outlined in Section 4.
The experimental results on numerical phantoms and clinical datasets are given
in Section 5, and conclusions are drawn in Section 6.

2 Bayes’ Approach to Segmenting Angiograms

In this section, we formulate the vascular segmentation problem on the Bayes’
framework. We discuss the estimation of the global likelihood probability and
present the definition of the new a priori used to enforce an adaptive regulariza-
tion constraint for the segmentation.

2.1 Problem Formulation

A vascular segmentation problem is regarded as a process to assign labels
from a label set L = {vessel , background} to each of the voxels indexed in
1 Magnetic resonance angiography is one of most widely available vascular imaging

techniques in a clinical environment.
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S = {1, . . . , m}, where m is the total number of voxels in an angiogram y. Let
a vector x be a segmentation of the image y, each element in the vector x can
be regarded as a mapping from S to L, i.e., xi : S → L. A feasible segmentation
x is, therefore, in a Cartesian product Ωx of the m label sets L. The set Ωx is
known as a configuration space. In the Bayes’ framework, the optimal solution
is given by a feasible segmentation x∗ of the angiogram y, which maximizes a
posteriori probability p (x |y) ∝ p (y |x) p (x) over the space Ωx [18]. The like-
lihood probability p (y |x) can be application-specific. It suggests the likelihood
of a particular label assignment, based on the intensity values in the angiogram
y. Whereas, the prior probability p (x) constrains the solution contextually.

In order to have a tractable constraint, the Markov random field (MRF)
theory is used. By virtue of the Hammersley-Clifford theorem [19], the Gibbs
distribution provides us with a practical way of specifying the joint probability
— the prior probability p (x) — of an MRF. The maximum a posteriori (MAP)
estimate x∗, therefore, becomes a minimum of the summation of the likelihood
energy and prior energy functions over the configuration space Ωx,

x∗ = arg min
x∈Ωx

(
U (y |x) + U (x)

)
, (1)

where U (y |x) = − log p (y |x) is the likelihood energy function; and U (x) =∑
c∈C Vc (x) is the prior energy function, which is a sum of clique potentials

Vc (x) over all possible cliques in C ⊆ S [18].

2.2 Estimation of the Global Likelihood Probability

In practice, because of the high complexity of the random variables x and y, it
is computationally intractable to calculate the likelihood energy U (y |x) from
the negative log-likelihood, − log p (y |x). As such, we assume that the intensity
value of each voxel yi is independent and identically distributed (i.i.d.). The
calculation of the likelihood energy becomes tractable since the global likelihood
probability can be determined by local likelihood probabilities and the likelihood
energy function can be expressed as:

U (y |x) = −
∑
i∈S

log p (yi | xi). (2)

2.3 Local Orientation Smoothness Prior

The new a priori is presented in this section. It exploits local orientation smoo-
thness of the vascular structures and is used to enforce an adaptive regularization
constraint for the vascular segmentation within the Bayes’ framework. A smoo-
thness constraint has been used to solve low level vision problems. Applications
such as surface reconstruction, optical flow determination and shape extraction,
demonstrate that this generic contextual constraint is a useful a priori to a
variety of low level vision problems [18]. In the MRF framework, contextual
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constraint is expressed as the prior probability or the equivalent prior energy
function U (x) as given in Equation 1.

Because of the blood viscosity, blood flows are low at the boundary of vessels
[13]. Using speed information alone cannot give satisfactory segmentation in low
blood flow regions [3]. Therefore, in this paper, we propose a local orientation
smoothness prior, aiming at improving the quality of segmentation at the low
blood flow regions. The local orientation smoothness prior is expressed as follows:

U (x) =
∑
i∈S

∑
j∈Ni

(
1 − f (xi)

)
f (xj) g (i, j)

(
β1h1 (i, j) + β2h2 (i, j)

)
, (3)

where Ni denotes a set of voxels neighboring the voxel i with respect to a neig-
hborhood system N ⊆ S; f is a mapping function defined as follows:

f (xi) =
{

0, xi = background,
1, xi = vessel ; (4)

g (i, j) measures the geometric closeness (Euclidean distance) between voxels i
and j; h1 (i, j) and h2 (i, j) measure the linear (rank 1) and planar (rank 2)
orientation similarities at voxel i in respect of voxel j respectively; β1 and β2 are
positive weights, which need not sum to one and are used to control the influence
of orientation smoothness in the interactions between the adjacent voxels. The
idea of applying geometric closeness and similarity measures as constraints is
similar to the one exploited in the bilateral filters [20]. In other words, the
function g in Equation 3 defines the structural locality, whereas the functions h1
and h2 quantify the structural orientation smoothness.

In this paper, the geometric closeness, g, and orientation similarity measures,
h1 and h2, are Gaussian functions of the magnitude of the relative position vector
of voxel j from voxel i, ‖uij‖, and the orientation discrepancy, δ, between voxels
i and j respectively. The geometric closeness function is given as a decreasing
function g when the distance ‖uij‖ increases:

g (i, j) = exp

(
−‖uij‖2

2σ2
g

)
, (5)

where uij is the relative position vector of voxel j from voxel i and the parame-
ter σg defines the desired geometric influence between neighboring voxels. The
orientation similarity function hk is written as a decreasing function when the
orientation discrepancy δ increases:

hk (i, j) = exp
(

−δ2 (ûij , ŵk)
2σ2

h

)
, (6)

where k = 1 and k = 2 denote rank 1 and rank 2 orientation similarities respec-
tively; the discrepancy function δ is defined as follows:

δ (u, v) = 1 − ∣∣uT v
∣∣ ; (7)
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ŵ1 depicts the principal direction of a linear orientation, while ŵ2 depicts one
of the principal directions of a planar orientation2; and the parameter σh is
chosen based on the desired amount of orientation discrepancy filtering amongst
adjacent voxels.

In other words, the prior energy function in Equation 3 encourages piecewise
continuous vessel label assignment in the segmentation. Vascular piecewise con-
tinuity is constrained by geometric closeness and orientation similarity measures.
As long as voxels i and j are close enough, with similar rank 1 and/or rank 2
orientations, and the label assigned to voxel j is vessel, i.e., f (xj) = 1, it is in
favor of vessel label assignment to voxel i, i.e., f (xi) = 1. This is because we are
minimizing the energy function in Equation 1. On the other hand, if the label
assigned to voxel j is background, i.e., f (xj) = 0, the prior energy vanishes and
the label assignment to voxel i is based solely on the likelihood energy.

3 Estimating Local Orientation by Eigen Decomposition
of Orientation Tensor

Recall from Section 2 that we exploit the principal directions of linear and planar
orientations, ŵ1 and ŵ2, to constrain the segmentation with the local orientation
smoothness prior. In this section, we describe a robust method to estimate the
principal directions. The estimation is obtained by an orientation tensor rather
than a conventional Hessian matrix for the robustness to noise and performance
reasons, see Section 5.1, for the performance comparisons of the two methods.

3.1 Orientation Tensor

The use of an orientation tensor for local structure description was first presented
in Knutsson’s work [21], which was motivated by the need to find a continuous
representation of local orientation. Knutsson formulated the orientation tensor
by combining outputs from a number of directional polar separable quadrature
filters. A quadrature filter is constructed in the Fourier domain. It is a complex
valued filter in the spatial domain, which can be viewed as a pair of filters:
(1) symmetric (line filter) and (2) antisymmetric (edge filter). Further, it is
orientation-specific and is sensitive to lines and edges that are orientated at the
filter direction. In Knutsson’s formulation, the orientation tensor T in a 3D space
is defined as:

T =
6∑

k=1

qk

(
5
4
n̂kn̂T

k − 1
4
I
)

, (8)

where qk is the modulus of the complex valued response from a quadrature filter
in the direction n̂k and I is the identity tensor. For further details see [21] or
Chapter 6 in [22].
2 The orientation of a planar structure is depicted by two principal directions, which

are orthogonal to its normal vector; as a planar structure can be seen as a series of
linear structures, it is noted that, other than the vector ŵ2, ŵ1 depicts the other
principal direction of the planar structure.
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3.2 Estimating Local Orientation

Estimation of local orientation is performed via eigen decomposition of the ori-
entation tensor T at each voxel in an image [22]. To calculate the tensor T, the
image should be convolved with the six quadrature filters. After the convoluti-
ons, there are six moduli of the complex valued filter responses associated with
each voxel, qk, k = 1, 2, . . . 6. The tensor is computed as stated in Equation 8.

Let λ1, λ2 and λ3 be the eigenvalues of the tensor T in descending order
(λ1 ≥ λ2 ≥ λ3 ≥ 0) and êi (i = 1, 2, 3) are the corresponding eigenvectors
respectively. The estimation of the local orientation can be one of the three
cases as follows: (a) planar case: λ1 � λ2 � λ3, ê2 and ê3 are estimates to the
principal directions of the planar structure; (b) linear case: λ1 � λ2 � λ3, ê3 is
an estimate to the principal direction of the linear structure; and (c) isotropic
case: λ1 � λ2 � λ3, no specific orientation. Therefore, we can approximate the
principal directions of the linear and planar orientations (ŵ1 and ŵ2 in Equation
6) with the eigenvectors ê3 and ê2 respectively.

4 Implementation

The proposed algorithm, summarized in Algorithm 1, consists of three parts. We
discuss each of the three parts in Sections 4.1, 4.2 and 4.3 respectively.

Algorithm 1 Main algorithm
1: Estimate local orientation with an orientation tensor, compute ê3 and ê2 (i.e., ŵ1

and ŵ2) and the likelihood probability p (yi | xi) at each voxel
2: Initialize the algorithm with an ML estimate x0, k ⇐ 0
3: repeat
4: k ⇐ k + 1
5: for all i in the set S do
6: Ev ⇐ − log p (yi | vessel)
7: Eb ⇐∑

j∈Ni
f
(
xk−1

j

)
g (i, j)

(
β1h1 (i, j)+β2h2 (i, j)

)
− log p (yi | background)

8: if Ev > Eb then
9: xk

i ⇐ background
10: else
11: xk

i ⇐ vessel
12: until convergence
13: Return the final segmentation xk

4.1 Estimating Local Orientation

To estimate the local orientation with an orientation tensor, as outlined in Sec-
tion 3, six quadrature filters of a window size 5 × 5 × 5, relative bandwidth B
equals 2 and center frequency ρ equals π

2
√

2
are used (relative bandwidth B and
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(a) (b)

Fig. 1. Horizontal pipe phantom with a parabolic flow profile. (a) Cross section ortho-
gonal to the pipe orientation, (b) central cross section along the pipe orientation

center frequency ρ control the characteristics of the quadrature filters, see [22]
for further details). The 3D image is convolved with the filters to obtain six
moduli of complex valued responses at each voxel. Then the orientation tensor
is computed as given in Equation 8. The eigen decomposition of the orientation
tensor is performed and the two vectors ê3 and ê2, which depict the principal
directions of the linear and planar orientations, are obtained at each voxel.

4.2 Likelihood Estimation and Algorithm Initialization

As discussed in Section 2.1, the likelihood estimation can be application-specific.
In this work, we use statistical mixture models to estimate the likelihood probabi-
lities of the numerical phantoms and clinical datasets under the i.i.d. assumption
(details are given in Sections 5.2 and 5.3 respectively).

To initialize the algorithm, an ML estimate is used. Given the likelihood
probabilities are known, the initial segmentation x0 is obtained as follows:

x0 =
{

arg max
xi∈L

p (yi | xi) | ∀i ∈ S
}

. (9)

4.3 Solution by Iterated Conditional Modes

We use iterated conditional modes (ICM) [23] to solve the minimization problem
in Equation 1 with deterministic local search for the following reasons: (1) the
formulations of the likelihood energy and prior energy functions are entirely
based on local information, see Sections 2.2 and 2.3 for details respectively; (2)
our initial estimate of the truth segmentation can be very close to the optimal
solution; and (3) the ICM optimization algorithm gives fast convergence to the
solution and is simple to implement, which make it more attractive to time-
critical medical applications than other optimization algorithms.

5 Validation, Sensitivity Analyses, and Experiments

In this section, the local orientation estimation (described in Section 3) is vali-
dated. Furthermore, sensitivity of the proposed algorithm is studied and expe-
riments on numerical phantoms and clinical datasets are presented.
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Fig. 2. Orientation discrepancies between the estimated and the truth flow iso-surface
normals. (a) Without noise; (b) with noise, the orientation tensor approach only

5.1 Validation of Local Orientation Estimation

As mentioned in Section 3, using an orientation tensor is not the only approach
to estimating local orientation. A Hessian matrix (defined as in [12]) can also
be used for the estimation (see [10], [11]). In this section, we have conducted
experiments to compare the performance of the two approaches.

A numerical horizontal pipe phantom with a parabolic flow profile3 (peak
flow magnitude equals 255) in a volume of size 100 × 21 × 21 voxels has been
built. The diameter of the pipe is 9 voxels, which is the average diameter of the
major brain vessels in the clinical datasets. Figure 1 shows the noiseless pipe
phantom.

We have compared the performance of the orientation tensor and Hessian
matrix approaches (hereafter referred to as ”OT” and ”HESSIAN” respectively)
on the noiseless phantom. Comparison is based on the orientation discrepancy
(function δ in Equation 7) between the estimated and the truth flow iso-surface
normals4. In OT, a 5 × 5 × 5 filter window with relative bandwidth B equals 2
and center frequency ρ equals π

2
√

2
has been used; a 3 × 3 Gaussian kernel with

σ = 1 has been employed for tensor averaging (for further details, see Chapter 6
in [22]). While a 5 × 5 × 5 Gaussian smoothing kernel with σ = 5

3 and a central
finite difference approximation have been used in HESSIAN. Figure 2(a) shows
the comparison between the two approaches. It is evident that OT gives a close-
to-prefect orientation estimation. Conversely, owing to the use of second order
derivatives and finite difference approximations, HESSIAN produces less than
satisfactory results.

Furthermore, OT has been evaluated at different levels of additive white
Gaussian noise. Signal-to-noise ratio (SNR) is defined as the ratio of the peak
intensity value to the sample standard deviation of the noise. Figure 2(b) shows
the discrepancy measures amongst SNR 2, 5 and 10 (on average, SNR is found
to be about 5 in the clinical datasets). It is noted that OT is robust to noise.
It gives, on average, a discrepancy value 0.05, i.e., 18◦ deviation from the truth
flow iso-surface normals, even in the phantom corrupted by severe noise.
3 A parabolic flow model is the simplest model to study blood flow in vessels [13].
4 We may think of the axis-symmetric flow in the pipe phantom as the sliding of a

series of concentric tubes of fluid [13]. The flow iso-surface normals are referred to
as the surface normals of these tubes.
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(a) Surface model (b) Slice image (c) Color inverted (d) SNR 5

(e) Truth (f) ML estimation (g) Our algorithm (h) MLL model

Fig. 3. Pipe phantom (radius equals 5 voxels) with the centerline aligned with a cubic
B-spline curve in a 3D space. (a) 3D surface model, (b) a portion of a slice image, (c)
color inverted slice image, (d) slice image with SNR equals 5, (e) truth segmentation,
(f) ML estimation, (g) our estimation, (h) estimation with a MLL MRF model

5.2 Sensitivity Analyses and Experiments on Numerical Phantoms

There are four free parameters in the proposed algorithm, they are: σg in Equa-
tion 5, σh in Equation 6, β1 and β2 in Equation 3. The parameters σg and σh de-
fine the desired geometric influence and amount of orientation discrepancy filte-
ring amongst neighboring voxels respectively. Whereas, the two positive weights
β1 and β2 control the influence of orientation smoothness in the interactions
between the adjacent voxels.

Plausible values of the parameters σg and σh are suggested in this paragraph.
To compromise between computational speed and robustness of the algorithm,
a 3 × 3 × 3 neighborhood system is used in the ICM algorithm. This leads to
a justifiable choice to set σg = 1. For the orientation discrepancy filtering, we
suggest σh = 0.2, this implies the algorithm has a 95% cut-off at discrepancy
measure equals 2σh = 0.4. In other words, the algorithm filters out neighboring
voxels that are located outside the capture range of the filter, ±53◦ deviation
from the estimated orientations, ŵ1 and ŵ2.

To understand the relationships between the two positive weights β1 and
β2 and the sensitivity of the algorithm towards different object sizes and noise
levels, a numerical phantom with a parabolic flow profile has been built. It is a
pipe with the centerline aligned with a cubic B-spline curve in a 3D space. The
phantom volume size is 128 × 128 × 128 voxels. Figure 3(a) shows the phantom
as a 3D surface model.

The relationships between β1 and β2 with pipes, corrupted by additive white
Gaussian noise, in different radii, 5, 2 and 1 voxel(s) (in the clinical datasets,
vessel radius ranges from 1 voxel to 5 voxels) are shown in Figures 4(a), 4(b)
and 4(c) respectively5. The SNR of the pipe phantoms is 5. SNR is defined
as in Section 5.1. The vertical axis of the graphs shows the Jaccard similarity
coefficient (JSC) between the estimated and the truth segmentations. JSC is
defined as the ratio of the intersection volume to the union volume of the two
5 A Gaussian-uniform mixture model is used to estimate the likelihood probabilities.
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Fig. 4. Graphs from sensitivity analyses. (a)-(c) Relationship between β1 and β2, and
(d) noise sensitivity of the algorithm with pipes in different radii

(a) Slice image (b) ML estimation (c) Our algorithm (d) MLL model

(e) MIP image (f) ML estimation (g) Our algorithm (h) Manual

Fig. 5. PC MRA dataset 1. (a) A slice image from the dataset; segmentation with (b)
the ML estimation, (c) our algorithm, (d) the estimation with an MLL MRF model; (e)
maximum intensity projection (MIP) image; volume rendered image of (f) segmentation
with the ML estimation, (g) segmentation with our algorithm, (h) manual segmentation
of the subregion that contains an aneurysm

given segmentations [24]. It is a similarity measure that maintains a balance
between the sensitivity and specificity, and is used to quantify the accuracy of
an estimated segmentation. JSC gives value 1 if the estimated segmentation
equals the truth segmentation.

From the figures, it is noted that β1 and β2 complement each other. As
the radius of the pipe decreases, β1 contributes more to a better estimation; to
recapitulate, β1 controls the influence of the linear orientation smoothness in the
interactions amongst neighboring voxels.

Figure 4(d) shows the noise sensitivity analysis of the algorithm with pipes
in different radii. The weights β1 and β2 are set to the values that give maximum
JSC as shown in Figures 4(a)–(c) for different pipe radii. It is shown that the
algorithm is robust to noise over a wide range of object sizes. For small objects,
i.e. 1 voxel in radius, the algorithm can give a satisfactory estimation if SNR
≥ 5 (The average SNR in the clinical datasets is found to be 5).

Figures 3(f), 3(g) and 3(h) show the segmentations obtained with the ML
estimation, our algorithm and the estimation with a multi-level logistic (MLL)
MRF model respectively. It is indicated that our algorithm produces satisfactory
segmentation of the pipe (JSC = 0.88) contrary to the ML estimation (JSC
= 0.29) and the estimation with the MLL MRF model (JSC = 0.26).
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(a) Slice image (b) ML estimation (c) Our algorithm (d) MLL model

(e) MIP image (f) ML estimation (g) Our algorithm (h) Manual

Fig. 6. PC MRA dataset 2. Figure arrangement is identical to Figure 5

5.3 Experiments on Clinical Datasets

The proposed segmentation algorithm has been applied to two clinical datasets.
They were obtained from the Department of Diagnostic Radiology and Organ
Imaging at the Prince of Wales Hospital, Hong Kong. The two PC MRA in-
tracranial scans were acquired from a Siemens 1.5T Sonata imager. The data
volume is 256 × 176 × 30 voxels with a voxel size of 0.9 × 0.9 × 1.5mm3.

The experimental results are shown in Figures 5 and 6. It is evident that
parts of the vascular structures in the low blood flow regions, i.e., the boundary
of vessels and the aneurysms6 (indicated by the arrows), are left out in the
segmentations produced by the ML estimation and the estimation with the MLL
MRF model. On the contrary, our algorithm gives satisfactory segmentations in
those regions.

Furthermore, our method produces aneurysm segmentations comparable to
the manual segmentations obtained from a local consultant radiologist who has
> 15 years’ clinical experience in endovascular neurosurgery (on average, JSC
= 0.73 for our algorithm versus JSC = 0.41 for the ML estimation7). See Figures
5(h) and 6(h) for the volume rendered images8 of the manual segmentations for
comparisons. It is observed that there is a large improvement in segmentation
using our algorithm, especially for the vessels with low intensity values.

One may find that a few small vessels are left out in the segmentations
produced by our algorithm showed in Figures 5(g) and 6(g). According to the
radiologists’ feedback, the segmentations obtained with our algorithm are good
enough for clinical applications. Small vessels with diameter < 3 voxels are not
their current primary interest in this work.

In the experiments, the same set of parameter values is used for the segmen-
tations of different clinical datasets. The parameter values are: σg = 1, σh = 0.2
and β1 = β2 = 3.5. The Maxwell-Gaussian-uniform (MGU) mixture model is

6 An aneurysm is an abnormal local dilatation of blood vessel.
7 The JSC values are computed within the subregions that contain the aneurysms

with the manual segmentations treated as the truth segmentations.
8 Volume rendering is performed using the Visualization Toolkit (www.vtk.org).
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employed to estimate the likelihood probabilities as suggested in [3]. On aver-
age, the algorithm takes 42s, needs < 20 iterations to converge and consumes
< 100MB of memory to segment the two PC MRA datasets on a 2.66GHz PC.

6 Conclusions

We have presented a new generic method for vascular segmentation of angiogra-
phy. Our method uses a novel smoothness prior that exploits local orientation
smoothness of the vascular structures to improve the quality of segmentation
at low blood flow regions. The a priori is expressed as a function of geometric
closeness and orientation similarity measures. Furthermore, we have described a
method to estimate the local orientation with an orientation tensor. The expe-
rimental results have indicated that the method is more robust than that with
a conventional Hessian matrix, and is capable of a more accurate orientation
estimation.

Our algorithm has been applied to the numerical phantoms and clinical da-
tasets. The experimental results have shown that the new method produces seg-
mentations better than the maximum likelihood estimation and the estimation
with the multi-level logistic Markov random field model. Moreover, the aneurysm
segmentations obtained with our method are comparable to the manual segmen-
tations produced by an experienced consultant radiologist.

In this work, we have demonstrated an application of the local orientation
smoothness prior to medical image segmentation. We expect the use of the a
priori to be applicable to different areas such as image restoration with edge-
preserving or coherent-enhancing capability, non-medical image segmentation
and object extraction from video.
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