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ABSTRACT

Non-rigid image registration is widely used in medical im-

age analysis and image processing. It remains a challeng-

ing research problem due to its smoothness requirement and

high degree of freedoms in the deformation process. In [1], a

method is proposed to solve non-rigid image registration via

graph-cuts algorithm by modeling the registration process as

a discrete labeling problem. A displacement label (vector) is

assigned to each pixel in the source image to indicate the cor-

responding position in the floating image. The whole system

is then optimized by using the graph-cuts algorithm via alpha-

expansions [2]. As the initial point is not required for the

graph-cuts algorithm, the method proposed by [1] is a single-

level registration. In this paper, rather single-level, we enable

multi-level non-rigid image registration using graph-cuts by

passing the deformation field of the current resolution level

to the successive finer one. By applying the proposed multi-

level registration method, the number of labels used in each

level is greatly reduced due to lower image resolution being

used in coarser levels. Therefore, the speed of the registration

process is improved. We compare our results with the origi-

nal single-level version, DEMONS and FFD. It is found that

our method improves the speed of non-rigid image registra-

tion by 50% and meanwhile maintains similar robustness and

registration accuracy with the single-level version.

Index Terms— Non-rigid image registration, multi-level

graph cuts.

1. INTRODUCTION

Non-rigid Image registration is a challenging problem because

of the requirement of smoothness and high degree of free-

doms, and is widely used in medical image analysis, e.g. [3]

shows the extensive use of non-rigid image registration. The

goal of image registration is to find an optimal transformation

T ∗ such that each pixel of the source image I can be spa-

tially matched, which is measured by a dissimilarity function

C(I, T (J)), to a pixel of the floating image J . In formula,

that is:

T ∗ = arg min
T

C(I, T (J)). (1)

Image registration can be broadly classified into two main

categories, rigid and non-rigid, according to the nature of

transformation T . Transformation in rigid image registration

is constrained to rigid transformation, which is a global trans-

formation consists of a rotation and followed by a translation,

whereas no common model is used for transformation in non-

rigid image registration. Without the penalty term, all pix-

els in non-rigid image registration are allowed to transform

freely. Thus, penalty term is added as a constrain to keep

the transformation smooth. This is the main reason that non-

rigid image registration is challenging as we should strike a

balance between high degree of freedom and smoothness of

transformation in the image deformation process.

As the transformation T in Eq. 1 allows any points in J
to be mapped to any points in I regardless of the smoothness

of the deformation field. Here, a penalty term S(T ) should be

included to the Eq. 1 in order to pose smoothness constrain

on T ,

T ∗ = arg min
T

(C(I, T (J)) + λS(T )), (2)

where λ is a positive constant that governs the strength of the

penalty.

Finding the optimal transformation for non-rigid image

registration can be modeled as a labeling problem. In [1], it is

modeled as a labeling problem, which is optimized by using

graph-cuts via alpha-expansions [2]. Eq. 2 is reformulated as,

D∗ = arg min
D

(C(I(X), J(X + D)) + λS(D)), (3)

where D is a deformation vector field representing the trans-

formation T , I and J are the source image and the floating

image respectively, X is continuous spatial domain of both

images, C denotes dissimilarity function and S is a smooth-

ness function. Integrated absolute difference is used as dis-

similarity function C and the first derivative terms are used as

the smoothness function S. As X is discretized into pixels,

Eq. 3 becomes

D∗ = arg min
D

(
∑
x∈X

||I(x) − J(x + D(x))||

+λ
∑

(x,y)∈N

||D(x) − D(y)||), (4)
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where (x, y) ∈ N iff x and y are adjacent pixels. This for-

mula in an energy form has been already described in [4, 2]

which can be solved by using graph-cuts. The next step is

to convert the optimization into a labeling problem. A dis-

cretized window W = {0,±s,±2s, . . . ,±ws}d is applied,

which is obtained by discretize the continuous dimension-d
region [−ws,ws]d, such that D(x) ∈ W , where s is the sam-

pling period. Thus, the labeling problem can be solved by

using graph-cuts and alpha-expansions [2]. (Please refer to

[1] for details.)

In [1], a single-level non-rigid image registration method

was proposed. The main reason is that graph-cuts can mini-

mize the energy function and give global minimum or a local

minimum in a strong sense without initialization. Therefore,

single-level registration is enough as optimization in any level

is independent to other levels. In this paper, we propose a

multi-level non-rigid image registration by passing the defor-

mation vector field across resolution levels. With multi-level

registration, the number of labels used in each registration

level is greatly reduced due to the fact that lower image reso-

lution levels are used and the deformation vector field will be

scaled to meet the image resolution in the next finer level. The

experimental results show that the speed of the image registra-

tion process is remarkably improved, and similar robustness

and registration accuracy are maintained as compared with

the single-level image registration. The next section describes

the way to pass the deformation vector field across resolution

levels in order to achieve multi-level non-rigid image regis-

tration using graph-cuts. Section 3 shows the experimental

results of the proposed method and compares the results with

the single-level version, DEMONS [5] and Free Form Defor-

mations Based Method (FFD) [6]. Finally, section 4 summa-

rizes the results.

2. METHODOLOGY

Let n ∈ [0, 1, . . . , L] be the registration levels, where L + 1
is total number of resolution levels and 0 is the coarsest level,

and Dn be the deformation vector field in registration level n.

Thus, Eq. 4 is refined as:

D∗
n = arg min

Dn

(
∑

x∈Xn

||In(x) − Jn(x + Dn(x))||

+λ
∑

(x,y)∈N

||Dn(x) − Dn(y)||), (5)

where In and Jn are the source image and the floating image

used in level n respectively, Xn is continuous spatial domain

of both In and Jn, and Dn(x) is the deformation vector as-

signed to pixel x ∈ Xn.

We use Gaussian pyramid (course-to-fine) for multi-level

registration and images are successively refined by decreas-

ing the spacing by a scale factor r. Starting from the coars-

est level, each registration level obtains an optimized solution

D∗
n for the labeling problem by using graph-cuts via alpha-

expansions [2]. The next step is to pass D∗
n to level n+1 and

use it to initialize Dn+1. As the result, the whole process ends

in the original level and D∗
L is the final solution for the whole

registration. Since each pixel is assigned a deformation vec-

tor, the size of Dn depends on the image resolution in level

n. Due to the difference in image resolution used in differ-

ent registration levels, the sizes of deformation vector fields

in different levels are not the same. Therefore, D∗
n should be

re-scaled to fit Dn+1 before it is passed to the next resolution

level. Empty cells of re-scaled D∗
n are calculated by aver-

aging deformation vectors of adjacent pixels. The resulting

deformation field is used to initialize Dn+1 by multiplying

r to each vector of the resulting deformation field. We can

combine and formulate the re-scaling process and initializa-

tion process as:

∀x ∈ Xn+1,

Dn+1(x) =

{
rD∗

n(x/r) :Case I,∑
y∈Y Dn+1(y)

|Y | :Case II,
(6)

where Y represents all pixels adjacent to x and |Y | denotes

the number of pixels in Y . Case I and Case II are conditions

representing the re-scaling process and initialization process

respectively. They are defined as:

Case I: If all coordinates of x are divisible by r,

Case II: Otherwise.

All cells of Dn+1 which belong to Case I are handled be-

fore Case II. We multiply the scale factor r in Case I due

to the difference in image resolutions. Images used in level

n, In and Jn, are down-sampled from images used in level

n + 1, In+1 and Jn+1, by the scale factor r. Thus, if a pixel

i of source image is mapped to pixel x of floating image in

level n, then, in level n+1, the corresponding pixel of source

image should be mapped to pixel rx of floating image. Ob-

servably, it is equivalent to multiplying the corresponding de-

formation vector by r. In order to keep the smoothness of the

deformation field, the missing cells of Dn+1 are initialized by

averaging vectors assigned to its adjacent pixels.

Since down-sampled images are used in lower registration

level, the number of labels can be reduced in order to speed up

the whole registration process. As the result, the size of the

discretized window W = {0,±s,±2s, . . . ,±ws}d, which

controls the maximum displacement of deformation vectors,

is significantly reduced by the scale factor r. Then, the set

of labels for optimized solution D∗
n in each level is obtained

from the resulting discretized window. The computation time

needed to solve the multi-label problem by using graph-cuts

via alpha-expansion [2] mainly depends on the number of la-

bels. As such, reducing number of labels at each level can

greatly improve the speed of the registration process. Un-

like single-level version of non-rigid image registration using

graph-cuts which works in one optimization process, multi-

level version divides the registration into several levels. Each
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level n is optimized by graph-cuts and the resulting defor-

mation vector field D∗
n is passed to the next finer level after

re-scaling. Together with the initialization of Dn+1 and lower

resolution images are used in coarser levels, number of labels

used in each level can be reduced. Meanwhile, it is valuable

to note that labels used in the original level also is reduced as

the last coarser level can deal with pixels of far displacement

and hence speed up the whole registration process.

3. EXPERIMENTAL RESULTS

We followed the experimental settings of [1], i.e., image pairs,

which are intensity normalized to be within 0 and 255, used

in all experiments are assumed affinely pre-registered. More-

over, implementations of FFD and DEMONS used in experi-

ments were obtained from ITK [7] where 15×15 control point

grid was used in FFD. Implementation of grph-cuts algorithm

are obtained from the source codes provided by Kolmogorov

& Zabih [4]. For single-level non-rigid registration using

graph-cuts (denoted as single-level GC later), we used λ =
0.05×255 and W = {0,±1,±2, . . . ,±15}2. In our method,

we used λ = 0.05 × 255, W = {0,±1,±2, . . . ,±8}2 for

all levels, scale factor r = 2 and 4 registration levels. Thus,

deformation labels(vectors) assigned to pixels were chosen

from 31 × 31 window for single-level or 17 × 17 window

for all levels of multi-level. Source image used in our exper-

iments were obtained from BrainWeb [8], the source image

and its segmented images are shown in Fig.1. Five floating

images were obtained by applying different artificial defor-

mations (Case A to E) to the source image which are shown

in the left column of Fig.2. All experiments were performed

on an Intel 2.13 GHz dual-core CPU with 1 GB RAM.

Columns 2-5 of Fig.2 show the registration results of Case

A-E of our method, single-level GC, DEMONS and FFD re-

spectively. It is observed that our method and single-level GC

are successful in all cases whereas DEMONS fails in Case

C-E and FFD failed in Case B and D. The failures of Case C-

E of DEMONS are due to the fact that it allows high-degree

of freedom and uses local intensity gradient to optimize the

movement of pixels. Therefore, if some area of brain tissue

of the source image is mapped to the background of floating

image (or reverse), like Case C-E, the optimization process

may be trapped in a local minima as some pixels are driven

towards wrong directions. Although our method and single-

level GC also allow high-degree of freedom, they are able

to handle such cases. The reason is that graph-cuts assign

an label(vector) to each pixel, i.e., movement of pixel, in an

alpha-expansion in a global manner.

Unlike our method, single-level GC and DEMONS, FFD

use hard constrain on the movement of pixels. Only control

points in FFD can be moved freely, and the displacements of

all other pixels are calculated from its neighborhood control

points via some interpolation functions like B-spline. As this

low-degree of freedom, FFD cannot model complicated or

high frequency deformation like Case B and D. DEMONS is

Our Method Single-Level % Reduced

Case A 526s 1128s 53.37%

Case B 502s 1121s 55.22%

Case C 567s 1200s 52.75%

Case D 569s 1215s 53.17%

Case E 530s 1237s 57.15%

Average 538.8s 1180.2s 54.33%

Table 1. Computational times for one registration of 5 differ-

ent artificial deformation cases.

successful in Case B due to the high degree of freedom. Since

high degree of freedom and global manner optimization, our

method and single-level GC are successful in all cases.

With the helps of passing the deformation field, our method

enables multi-level non-rigid registration, significantly reduces

the number of labels used in each registration level, including

the original level, such that speeds up the whole registration

process. Table 1 lists and compares the computation times of

Case A-E of our method and single-level GC. It shows that

our method can reduce more than 50% of the computation

time meanwhile maintain similar robustness and registration

accuracy with the single-level GC.

4. CONCLUSION

In this paper, we have proposed a new method to pass the

deformation field across resolution levels in order to enable

multi-level non-rigid registration using graph-cuts. Experi-

mental results show that our method inherits high degree of

freedom and global optimization from the single-level ver-

sion, and also is robust to different challenging deformation

cases. Meanwhile, our newly proposed multi-level registra-

tion method can reduce the number of labels used in each

level especially the original level. As such, the registration

time can be reduced by 50%. The future research directions

include the extension of our approach to 3D and applying

more advance metrics, like mutual information, to our method.
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Source Image WM GM CSF

Fig. 1. Source and its segmented images obtained from BrainWeb used in our experiments.
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Floating Our Method Single-Level DEMONS FFD

Fig. 2. Results of 5 different artificial deformation cases.
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