
Proceedings of the 1998 IEEE 
intemational Conference on Robotics & Automation 

Leuven, Belgium May 1998 

Integrating Dependent Sensory Data 

Albert C.S. Chung, Helen C. Shen, 
Department of Computer Science 

The Hong Kong University of Science & Technology 
Clear Water Bay, Kowloon 

Hong Kong. 

Abstract 

In sensory data fusion and integration considera- 
tion, sensor independence i s  a common assumption. 
In this paper, we demonstrated the impact of includ- 
ing dependent information in sensory data combina- 
tion process. The team consensus approach based on 
information entropy can improve the measurement ac- 
curacy remarkably. The major benefits of the approach 
are (a)  the simple linear combination of the weighted 
initial local estimates for  each sensor; and (b) the low 
order bivariate likelihood functions which can be rep- 
resented easily. A comparison of the team consensus 
approach with the Bayesian approach is presented. 

1 Introduction 

Sensory Data Dependence gives an additional piece 
of information about the interactions between the sen- 
sor observations. Consideration of dependence in the 
process of data combination is expected to give a 
higher quality of information. Hence, the information- 
theoretic entropy, which is a common tool to measure 
the randomness of a given data set, is used to measure 
and describe the nature of interactions among sensory 
data. If the interaction between two sensors can re- 
duce the uncertainty level, then the observation of one 
sensor is positively relevant to  another sensor. 0th- 
erwise, it is considered as negatively relevant. This 
situation should be carefully handled in the combina- 
tion process. 

It is well known that combining sensory data has 
two major advantages: redundancy and complemen- 
tarity [l]. Redundancy means not only is the sen- 
sory data duplicated, the correlation among sensors 
are also positive in terms of estimation errors. Pos- 
itive error correlation implies that when the estima- 
tion error of one of the redundant sensors increases, 
the estimation errors of other redundant sensors also 
increase and vice versa. Complementarity means not 
only does each sensory data have an unique part of 
the observation domain, the correlation among sensors 

are also negative in terms of estimation errors. Nega- 
tive error correlation implies that when the estimation 
error of one of the complementary sensors decreases, 
the estimation errors of other complementary sensors 
increase and vice versa. Hence, estimating error cor- 
relation gives a new and alternative definition to the 
sensor type. 

In this paper, we begin by introducing entropy as 
a measure of uncertainty among the data set, Xi, ob- 
served by sensor i. The initial local estimates ui of 
each sensor, based on the sensor observations, likeli- 
hood functions and entropy values, are derived and 
then combined by the Markovian decision process 
cooperatively to form a team of dependent sensors. 
When two sensors are detected to be negatively rele- 
vant, they are then re-set to be independent to main- 
tain the uncertainty level. The proposed approach is 
demonstrated by a team of two negative correlated 
sensors, namely a sonar sensor and a b/w CCD cam- 
era. 

2 Team Consensus Approach with De- 
pendence 

Suppose that there are m individual sensors observ- 
ing a random variable e(€ 0). Individual and joint 
posterior distributions are given by 

pij(eizi,zj) 0: ..(e) x z(zi,zjle) (1) 

where random variables xi and xj are the observations 
of sensors i and j about 8, .(e) is a common prior dis- 
tribution, and Z(zil0) and Z(zi, zjl0) are the univariate 
and bivariate likelihood function given 8. 

2.1 Entropy Measure 

Entropy, which was introduced by Shannon [2] in 
1948, has long been used to measure the probabilistic 
uncertainty of a random variable. Its value is directly 
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proportional to the degree of uncertainty (or random- 
ness) of the measured variable; the smaller the uncer- 
tainty, the smaller the entropy. 

Self-Entropy, which [3] measures how uncertain a 
sensor is about its own observation xi, is defined as 

hili(”i) = - cPi(olz i )  l0gPdelxi) (2) 

Conditional Entropy, which [3] measures how un- 
certain sensor i is about the joint observations xi and 
xj given that observation of Sensor xj  is unknown, is 
defined as 

hilj(Xi) = - 

2.2 Combining Sensory Data 

Markov Chain has been used as a decision process 
to combine data because of two major reasons: (a) 
it is stated [5] that the consensus estimate is a linear 
combination of the weighted individual local estimates 
which greatly simplifies the computation process; and 
(b) weight (or transition probability) assigned by one 
Sensor State to another sensor State is intuitively re- 
lated only to the bivariate likelihood functions. Higher 
order functions are not necessary. Because of these 
reasons, the Markovian decision process is employed 
and briefly described as below. (see [4] for details) 

Let ui be an initial local estimate of sensor i based 
XjEXj  6 6 6  on some observations, the likelihood- functions of xi 

and xj, and entropy values. Let Uo be an initial 

mates (ul,. . . , u , ) ~ ,  T denoting transposition, and 
o k  be a state vector at ,p iteration. Let be the 
transition matrix. Its nonnegative element wij is the 
weight (or transition probability) assigned by sensor 

e60 

P(zjlzi) c P i j ( e l x i , z j )  10gPij(elzi,xj) 

(3) 

given xi. It shows that given X i ,  hilj is simply the 
expected value of self-entropy of their joint observa- 
tions. When the observation of sensor j is explicitly 
known, Equation (3) reduces to 

where P(Xjlzi) is the conditional distribution of X j  state vector of the initial individual expected esti- 

hilj(Xi,Xj) = - CPij(BlXi,Zj) logPij(elxi,q) 
RE0 

The conditional entropy manifests profoundly the 
dependence between sensors i and j. It is used to cap- 
ture the essence of observation relevance exchanged 
between sensor i and j. For example, if sensor j ’ s  
observation is irrelevant to sensor i, the posterior dis- 
tribution pij  will be equal to pi which makes sensor i’s 
conditional entropy equal to its self entropy. In other 
words, sensor j’s observation does not help sensor i 
to improve its state of uncertainty. Another exam- 
ple, if sensor j ’ s  observation is positively relevant to 
sensor i, then we expect that hilj to be smaller than 
hili, which means that this observation contributes to 
reducing the uncertainty of sensor i .  Otherwise, the 
observation is negatively relevant, sensor i should at 
least maintain its uncertainty level. The properties of 
self entropy and conditional entropy are summarised 
as follows: 

0 hilj is not necessarily equal to hjli, 

0 if the self-entropy hili is equal to the conditional 
entropy hilj, then observations are irrelevant (or 
independent); and 

0 if the self-entropy hili is larger than the condi- 
tional entropy hi(j, then observations are posi- 
tively relevant; and 

0 if the self-entropy hip is smaller than the condi- 
tional entropy hil j ,  then observations are nega- 
tively relevant. 

state i to sensor state j and has the p5operties that 
E;, wij = 1 and 0 5 W i j  5 1. Let K: be a vector 
of stationary transition probabilities ( ~ 1 , .  . . , K , ) ~ ,  

where K E ~  = 1 and 0 5 I E ~  5 1. Markov chain 
recursively coybines and updates the individual sen- 
sor states of U k - l ,  

ok = Wok-’ k 2 1 

which is equivalent to 

.?p = WkCO, (4) 

and, as k trends to infinity, 6‘ converges to a consen- 
sus value U * ,  

m 

i=l 

where 
WTE = E. 

( 5 )  

It is observed that, from Equations (4,5), I E ~  is large 
if and only if wji is large for j = 1 , .  . . , m. Weights 
lying in the same column of the transition matrix, W ,  
contribute positively to K$.  This means sensor i will 
have greater inference on the consensus value U* if 
and only if the weights (or transition probabilities) 
assigned to sensor i are large. Equation (5 )  reveals 
that the consensus estimate are the linear combina- 
tion of the initial local estimates. Equation (6) can 
be viewed as the eigenvector problem with eigenvalue 
equal to one. Therefore, Q, for i = 1, .. .,m, can 
easily be found by a variety of methods for solving 
eigenvector problems even though m is large. 
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2.3 Weight Assignment 

This section deals with how appropriate weights are 
to be assigned based on self-entropy and conditional 
entropy. Consider a state transition from sensor state 
i to sensor state j with weight wij. If this transition 
is treated as an information flow, then sensor j will 
definitely gain information about sensor i. Sensor j 
can in turn compute its conditional entropy hjli based 
on sensor i’s observation. A greater weight should be 
assigned to  this transition if the calculated conditional 
entropy hjli is small. This implies that the weight 
(or transition probability) is inversely proportional to 
the conditional entropy. The same discussion applies 
to the self-entropy. The larger the self-entropy, the 
smaller the corresponding weight. If hjli is smaller 
than hili, then w;j is larger than wii. This relationship 
is formulated as follows: 

1 
hn . 

3 1% 
wijoc-  for i,j=1, ..., m 

where the weight assigned to sensor j by sensor i de- 
pends inversely on the Conditional entropy of sensor 
j based on sensor i’s observation, and n can be ad- 
justed to reflect this dependence. The greater the n, 
the smaller the entropy and the larger the weight. It 
is then written in matrix form, 

Since CL, wij = 1, it follows that the weight is given 
bY 

1 

wij = for i,j = 1 ,  ..., m. (7) 
h@m,l h;li 

2.4 Properties of Weights 

It is observed that weight wzj is a function of self- 
entropy and conditional-entropy, in which they are 
functions of univariate and bivariate likelihood func- 
tions respectively. It is worthwhile to note that only 
the univariate and bivariate likelihood distributions 
are needed throughout the decision process. However, 
in the Bayesian model, which will be discussed later, 
higher order distributions are necessary. 

Much attention should be paid to the cases when 
hilj diminishes to zero. For non-zero hilj, Equation (7) 

works perfectly. It should be noted that when sensor i 
is absolutely certain about its observation (hili = 0)  or 
joint observation (hilj = 0 ) ,  the entire corresponding 
column in the transition matrix wij will then be set 
to one for i = 1 , .  . . ,m. When more than one sensor 
happens to be absolutely certain, normalization across 
the transition matrix row is necessary. 

2.5 Local Estimate 

Equation (5) shows that global consensus estimate 
is a weighted sum of local estimates. In turn, the lo- 
cal estimate is an estimation of sensor i about 6 based 
on (a) the information about the joint observation zi 
and xj which is represented by a posterior distribu- 
tion, pij(OIxi,zj); and (b) the entropy of the joint ob- 
servation zi and z j .  It is given by 

m 

for i = 1 , .  . . , m, where wij is defined by Equation (7). 
It is noted that pij(Olxi,zj) is set to p i j (6 l z i )  when 
hili 2 hilj because the uncertainty level should at least 
be maintained in the case of negative relevance. 

3 Experimental Results 

This section demonstrates the proposed t e w  con- 
sensus approach by considering a team of one b/w 
CCD camera and a sonar sensor. Their observations 
are represented by two random variables: z1 and 22 
respectively. The quantity observed is the distance be- 
tween sensors and object. The distance is represented 
by a random variable 6. 

The aim of integration is to complement the weak- 
nesses of sonar sensors and CCD cameras when they 
are estimating the object distance alone. In the ex- 
periment, the sonar sensor and the CCD camera are 
mounted on the gripper of a robot arm. Both sensors 
contribute to the decision process and finally reach a 
consensus, which is the estimated distance between 
the gripper and the object. The team consensus esti- 
mate U* can then be fed into the robot controller for 
the next step of action. 

In our experiment, a commercial sonar sensor is 
used. It has a limitation on the range of measurement 
from 0.49m to 12m, within 1 % of error. For objects 
closer than 0.49m, it gives readings with large error. 
Thus, we use a b/w CCD camera which is usually for 
object recognition rather than distance measure, to 
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compensate the inadequacy of the sonar sensor. By 
considering the size of a small black circle placed on 
the object, the CCD camera can estimate the distance 
of the object observed. This is achieved by measuring 
the length of the diameter of the circle observed, i.e. 
the number of pixels along the diameter in the image. 
The closer the object, the larger the number of pixels 
in the image. The change in the size of the circle 
is significantly large as the gripper moves closer to 
the object. Whereas, the change in the size of the 
circle is small as the camera moves farther away from 
the object resulting in larger estimation error of the 
distance between object and gripper. In turn, this can 
be corrected by the sonar sensor's observation. 

Let E[6Jlzi] and MSEi be the individual expected 
distance and mean square error for CCD camera de- 
tection (i = l )  and sonar sensor detection (i = 2). 
They are given by 

E[6lzi] = Spi(6lzi), and 
ece 

where 8 is the true distance, XI is the number of pix- 
els observed by the camera and 2 2  is the observed 
distance by the sonar sensor. 

If the errors of CCD camera and sonar sensor are 
measured by 

The correlation between el and e2 is derived by 

Eel Ee,(el - e-d(e2 - e-2)p(el,e2) COV(e1,ea) = 
g e l  

where e-l and e> are the error means; and a2,and U:, 

are the error variances. It is shown from the experi- 
ment that COV(e1, e2) is negative. This reveals that 
the estimation errors are negatively correlated. There- 
fore, this team of two sensors compensate each other 
in the sense that for measuring distances less than 
0.49m, the CCD camera can be expected to give better 
estimates and vice versa. We shall then estimate the 
consensus value U* by the team consensus approach 
and finally compare with the Bayesian approach. 

3.1 CCD Camera Detection 

The actual distances between 28cm to 100cm were 
observed by the camera. Figure 1 gives the mean 
square error of the distances observed. As expected, 
this sensor gives better estimates for distances below 
49cm. 

..- 
I 

Figure 1: CCD Camera Detection 

Figure 2: Sonar Sensor Detection 

3.2 Sonar Sensor Detection 

Distances between 28cm to lOOcm were "observed" 
by the sonar sensor. Similar to the CCD camera. Fig- 
ure 2 gives the mean square error of the distance ob- 
served. It should be noted that for distances ranging 
between 49cm to 100cm, very good estimates are ob- 
served, whereas error, which is very large and is not 
shown, increases dramatically when the distance falls 
below 49cm, the limitation of the sonar sensor given 
by the manufacturer of the sensor. 

3.3 Team Consensus Approach assuming 
independence 

Team consensus approach is first implemented as- 
suming the independent relationship. (see [4] for de- 
tails). The result is then compared with that of de- 
pendent relationship. 

Figure 3: Team Consensus Approach assuming inde- 
pendence 

In Figure 3, the application of team consensus ap- 
proach shows that, the mean square error is smaller 
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than that provided by any single sensor. This demon- 
strates that the team consensus approach can improve 
the measurement accuracy, as compared with the per- 
formance of each individual sensor. 

However, the experiment gives an insight into the 
disadvantage of the approach with the assumption of 
independent relationship [4]. Since the consensus esti- 
mate is the linear combination of the individual esti- 
mates based on its own observation in which weights 
are constant and predetermined, consensus estimate is 
obviously bounded by min{ui} and maz{ui}. 

Detection (28cm N 100cm) 
Bayesian Network Alone 

TCA with Bayesian Network 

3.4 Team Consensus Approach assuming 
dependence 

MSE 
0.008409 
0.008011 

With the consideration of observation dependence, 
Figure 4 and Table 1 show that the mean square error 
is further reduced when compared with the perfor- 
mances without the dependence relationship and each 
individual sensor. Performance is greatly improved in 
the mid-range (49 N 73cm) because sonar sensor's ob- 
servation is corrected by the dependence relationship 
with the CCD camera. 

Figure 4: Team Consensus Approach with Depen- 
dence 

TCA (Independence) 0.014266 
TCA (With DeDendence) 0.008052 

Table 1: Mean Square Error (MSE) of individual de- 
tection and Team Consensus Approach (TCA) 

3.5 Bayesian Approach 

Bayesian approach has been used extensively in the 
area of data fusion. It relies heavily on the conditional 
posterior distributions among the random variables in- 
volved and Bayesian combination rule which is given 
by, for 2 sensors, 

Jw1.1, .21 = ePij(e1.1, .2) (8) 
e m  

where, by Equation (l), pij(421,52) in turn depends 
on the prior function, .(e), and bivariate likelihood 
function, Z(zi, zjle). 

3.6 Bayesian Network Alone 

Figure 5:  Bayesian Network Detection 

Figure 5 reveals that the mean square error of the 
Bayesian approach shares the same error bound (0 N 

0.04cm) with the team consensus approach. 

3.7 Bayesian Network as the (m+ l) th sen- 
sor 

The discussion of the team consensus approach so 
far does not impose any form of restrictions on the 
nature of sensors. In the abstract level, sensor is just 
viewed as an estimator in which it can assign a prob- 
ability distribution or assessment to  reflect its state of 
information. It is possible to include Bayesian Net- 
work as a "logical sensor" in a pool of m sensors. The 
Bayesian expected distance and self-entropy are gen- 
eralized from Equations (8,2) and given by 

E [ ~ , + ~ I  = qelzl , .  . . , E,] ,  and 

hm+llm+1(.m+l) = 

- C P m + l ( e I . l , .  . . >.m)logPm+l(el . l , .  . . , .m).  
ece 

Since Bayesian Network is treated as an independent 
"sensor", the conditional entropies are then equal to 
its corresponding self-entropy, i.e. h,+l li = h,+l 1,+1 

and hilm+l = hili. 

Figure 6 and Table 2 show that the team consensus 
approach and Bayesian Network can collaboratively 
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perform detection to achieve a better estimation. A 
crucial issue, as stressed above, in including Bayesian 
Network as the (m + l ) th sensor is the complexity 
of manipulating a higher order multivariate likelihood 
function, 2(81q,. . . ,xm). 

Figure 6:  Team Consensus Approach with Bayesian 
Network as the (m + l ) th  sensor 

3.8 Summary of the results 

Team consensus approach is established to incor- 
porate the uncertainties of a single observation and 
joint observations into the Markovian decision pro- 
cess such that the interdependence between sensors 
can be reflected effectively during the data combina- 
tion process. The performance of the approach, as 
shown in Figure 4, when compared with the individual 
sensors in terms of mean square error, demonstrates 
its strength in improving measurement accuracy for 
a group of negatively correlated sensors. It provides 
strong evidence to the generalization of the technique 
to a pool of m sensors. It also shows that the aggre- 
gation of negatively correlated sensors is constructive. 

An important advantage of the technique is its sim- 
plicity in terms of data structure and computation. A 
maximum of up to second order of likelihood function 
is necessary for m sensors by which it can greatly sim- 
plify the data structure to represent the interrelation- 
ships among sensors, and accelerate the computation 
of sensory weights. 

The Bayesian approach is a general and optimal 
tool for all decision problems. The experiment shows 
that the team consensus approach illustrated in Fig- 
ure 5 gives satisfactory mean square error when it is 
compared with the Bayesian approach. Moreover, we 
have included experimentally the Bayesian Network in 
the sensor team and viewed it as the third “virtual” 
sensor. The results, Figure 6 and Table 1, 2, show 
that the inclusion of the Bayesian sensor can improve 
the overall estimation accuracy. The main motivation 
to aggregate physical and logical sensors is that the 
physical constraints and mathematical limitations of 
the “sensors” can be relieved and compensated by ap- 
propriately choosing sensor and its model. 

4 Conclusion and Future Research 

This paper shows the significant impact of includ- 
ing dependent information in sensory data combina- 
tion process. As proved by the experimental results, 
the addition of dependent relationships is useful in the 
sense that the team consensus approach with depen- 
dence can remarkably improve the measurement ac- 
curacy, when compared with individual sensors. The 
major benefits of the approach are, as stated above, 
(a) the simple linear combination of the weighted ini- 
tial local estimates for each sensor; and (b) the low 
order bivariate likelihood functions which can be eas- 
ily represented. The disadvantage is that, owing to 
the limited order of likelihood functions, dependence 
information may not be ‘fully’ represented as in the 
Bayesian Approach, in which data set interactions can 
be completely modelled by the higher order likelihood 
functions. However, in terms of computation efficiency 
and data representation simplicity, team consensus ap- 
proach is still attractive to implement. 

Future research will be (a) the application of team 
consensus approach with dependence in a larger scale 
(m > 2) sensor system; and (b) the adaptive weight 
assignment because the weights should spontaneously 
reflect the environmental changes 
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