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ABSTRACT
Three-dimensional rotational angiography (3D-RA) is a relatively
new and promising technique for imaging blood vessels. In this
paper, we propose a novel 3D-RA vascular segmentation algo-
rithm, which is fully automatic and very computationally efficient,
based on the maximum intensity projections (MIP) of 3D-RA im-
ages. Validation results on 13 clinical 3D-RA datasets reveal that,
according to the agreement between the segmentation results and
the ground truth, our method (a) outperforms both the Maximum
a posteriori-expectation maximization (MAP-EM)-based method
and the MAP-Markov random field (MAP-MRF)-based segmen-
tation method, and (b) works comparably to the optimal global
thresholding method. Experimental results also show that our meth-
od can successfully segment major vascular structures in 3D-RA
and produce a lower false positive rate than that of the MAP-EM-
based and MAP-MRF-based methods.

1. INTRODUCTION

Accurate description of the vascular tree is very important for clin-
ical diagnosis and qualitative analysis. A three-dimensional (3D)
vascular model generated by using automatic and semi-automatic
segmentation techniques in angiograms can be very useful to clin-
icians. The 3D rotational angiography (3D-RA) is a relatively
new imaging technique in neuroradiological interventions, and is
a helpful intra- and inter-operative tool for assessing intracranial
aneurysms and arteriovenous malformations [1] because it can pro-
vide 3D information of the cerebral vessels during treatment.

Using volume and surface rendering tools, which are mainly
based on manual global thresholding, a time-consuming technique
for searching the optimal threshold, 3D-RA vascular structures can
be seen from any angle. However, due to the high noise level and
the presence of reconstruction artifacts and unwanted non-vessel
structures (e.g. bone), prior to visualization, preprocessing, such
as noise reduction, is necessary. Meijering et al. proposed to use
the edge-enhancing anisotropic diffusion (EED) [2], which takes
both the contrast and orientation of edges into account, to reduce
noise. They also demonstrated that, with respect to the noise re-
duction at the vessel walls and user-dependency of visualization,
EED worked better than uniform filtering, Gaussian filtering, and
regularized isotropic nonlinear diffusion. Nevertheless, EED can
be costly in both time and memory. Besides segmentation by man-
ual global thresholding for 3D-RA, Deschamps et al. introduced a
level-set segmentation process for aneurysms in 3D-RA by using
Fast-Marching [3]. The Gaussian distribution is adopted as the re-
gion descriptor for the inside as well as the outside of an aneurysm.

Statistically based parametric techniques have been widely used
to classify vessels in magnetic resonance angiography (MRA), since

they are efficient and easy to implement. Several researchers have
demonstrated that, with a proper statistical mixture model for the
observed intensity distribution of an angiogram, the expectation
maximization (EM) algorithm followed by an estimator can be
used to segment vascular structures [4, 5]. However, to the best
of our knowledge, this framework has not yet been applied to 3D-
RA.

In this paper, we present a novel, computationally efficient
and fully automatic statistical segmentation technique for 3D-RA
based on the maximum intensity projections (MIP). Our method
takes an iterative approach, which is followed by a refinement
technique, to segmenting a 3D vascular structure, progressively,
based on segmentations of MIP images across iterations. Dur-
ing the experimental validation on 13 clinical 3D-RA datasets,
manual segmentations authorized by a consultant radiologist were
treated as the ground truth. Results showed that, according to the
agreement between the segmentation results and the ground truth,
our method (a) works better than the MAP-EM-based method as
well as the MAP-MRF-based method (which is initialized by the
MAP-EM-based method), and (b) works comparably to the opti-
mal global thresholding method, in which the threshold was se-
lected to give the segmentation with maximum agreement against
the manual segmentation among all possible thresholds.

2. PROBLEM STATEMENT

Model selection is an important issue in the parametric statistical
segmentation techniques. To the best of our knowledge, there is no
published work relating to 3D-RA statistical modeling. According
to the intensity range, three major classes can be found in a 3D-
RA dataset: background, non-vessel (e.g. bone and artifacts), and
vessel (and aneurysm). Based on the observations in our previous
work [6], we assume that each class has a Gaussian distribution
of intensities. Furthermore, we found that, the means of the two
classes in a relatively low intensity region were very close, how-
ever, their standard deviations were too large. This causes only
one peak to be visible in the observed 3D-RA histogram. We have
performed probing experiments on numerical phantom datasets,
which simulated a 3D-RA image, to prove that the expectation-
maximization (EM) estimation [7], which approximates the 3D-
RA volume intensity distribution with a triple-Gaussian mixture
model, is quite unstable with respect to the parameter initialization
of the non-vessel class. As such, we try to treat the background
and the non-vessel classes as one class and approximate the inten-
sity distribution of 3D-RA volume by a double-Gaussian mixture
model. However, the segmentation error in the background was
high due to the low threshold estimated by the maximum a poste-
riori (MAP) estimator [7]. After using the MAP-Markov random
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field (MAP-MRF)-based method [8] with the multi-label logistic
(MLL) model [9] to refine the segmentations of the MAP-EM-
based method, the noise ratios in the background were still very
high. In the next section, we will present a new technique, which
takes an iterative approach based on segmentations of MIP images
across iterations, to segment 3D-RA vascular structures. The tech-
nique is a fully automatic algorithm with zero adjustable parame-
ter; it is also simple, easy to implement, and very computationally
efficient.

3. MIP BASED STATISTICAL SEGMENTATION
TECHNIQUE

Our method is based on the fact that the maximum intensity pro-
jection (MIP) [10] operation can decrease the standard deviation of
individual classes [11], which makes the modelling of the observed
MIP intensity histogram (by a triple-Gaussian mixture model) more
stable with respect to the parameter initialization [6].

3.1. Iterative Segmentation Based on MIP Images

The proposed segmentation algorithm utilizes an iterative approach.
Given an intermediate segmentation at each iteration, an MIP im-
age is generated from the 3D data and the corresponding 3D posi-
tion of each pixel in the MIP image is recorded. The MAP-EM-
based algorithm with the triple-Gaussian mixture model, which is
given by (assume that µ1 < µ2 < µ3 and

∑3
k=1 ωk = 1),

p(x) =

3∑
k=1

ωk
1√

2πσ2
k

exp[−1

2
(
x − µk

σk
)2], (1)

is used to segment the MIP image into vessel (modeled by the
Gaussian distribution with the largest mean) and background (mod-
eled by the joint distribution of the other two Gaussians). The
threshold, t, is obtained by the MAP estimator. Providing that
not all the pixels are classified as background, voxels of 3D-RA,
whose corresponding pixels in the segmented MIP image are clas-
sified as vessel, are added to the vessel class; the algorithm, there-
fore, proceeds to the next iteration. At any successive iterations,
voxels, which are classified as vessel, are excluded in the MIP
computation. The termination of the iterative procedure is deter-
mined by a mechanism based on the sum of absolute differences
(SAD). To avoid unnecessary intensity interpolation, we set the
projection direction to one of the three principle axes.

At successive iterations, the number of vessel pixels in the
MIP images decreases as more vessel voxels are excluded in the
MIP computation. Thus the MIP image intensity distribution may
evolve and the estimation of the background class may end with
overfitting, which implies that the background distribution is not
modeled by the first two Gaussians exclusively, instead, is mod-
eled by the overall triple-Gaussian distribution. As shown in Fig.
1, overfitting results in a low threshold and causes a high segmenta-
tion error in the background. Therefore, once we detect overfitting,
the iterative approach should be terminated.

We propose a mechanism, which is based on SAD, to detect
overfitting in the background class. At the kth(k > 0) iteration,
without any prior knowledge, we estimate the background distri-
bution of the current MIP image, hb

k, from the threshold calculated
at the previous iteration, tk−1. Thus, for intensity level i, hb

k(i), is
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Fig. 1. (a) The MIP image from the last iteration. (b) The seg-
mented MIP image. (c)The intensity histogram (dashed line) along
with the estimated mixture model.

defined by,

hb
k(i) =

{
hk(i) if i < tk−1

0 otherwise
, (2)

where hk is the observed MIP image histogram at the current itera-
tion. After the EM algorithm, let h1

k be the joint distribution of the
two Gaussians in a relatively low intensity region and h2

k be the
overall triple-Gaussian distribution. We then calculate two SAD
values: SAD(hb

k, h1
k), between hb

k and h1
k, and SAD(hb

k, h2
k),

between hb
k and h2

k. With these two values, the overfitting problem
can be avoided as follows: (a) if SAD(hb

k, h2
k) ≤ SAD(hb

k, h1
k),

i.e., the overall triple-Gaussian distribution models the background
class, then the iterative procedure should be terminated; or (b) oth-
erwise, continues. Let K be the iteration at which we detect over-
fitting. In order to segment all vessel voxels out, the threshold from
the previous iteration, tK−1, is employed as a global threshold to
segment the current 3D-RA volume. This is equivalent to using
tK−1 to globally segment MIP images successively, if we keep on
iterating, until no vessel voxel is found. The iterative segmentation
algorithm is outlined in Algorithm 1.

Algorithm 1 The iterative segmentation algorithm based on MIP.

Initialization: A 3D-RA volume, V , and an empty volume, X ,
which is of the same size as V .

Step 1. Create an MIP image from V , while record the 3D posi-
tion of each pixel in the MIP image. Estimate the param-
eters in the triple-Gaussian mixture model using the EM
algorithm.

Step 2. Calculate SAD(hb, h1) and SAD(hb, h2).
If SAD(hb, h2) ≤ SAD(hb, h1), goto Step 4.

Step 3. Segment the MIP image by the MAP estimator. Classify
the voxels in X , whose corresponding pixels are classified
as vessel, to vessel, and set their intensity values in V to
null. Goto Step 1.

Step 4. Use the threshold from the previous iteration to globally
segment V , and update the voxel classification in X . Re-
turn X as the final 3D segmentation.

3.2. MIP-based Segmentation in Multiple Projections

In order to exploit more information in 3D-RA, we extend the Al-
gorithm 1 in multiple projections. Let D = {d1, d2, · · · , dn} be
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a set of directions. (In our experiments, in order to avoid time-
consuming intensity interpolation, we set D to the three princi-
ple axial directions.) Along each direction d (d ∈ D), we ap-
ply the Algorithm 1 (i.e. MIP images are computed along d) and
get a segmentation, Xd. Then we obtain a set of segmentations,
XD = {Xd1 , Xd2 , · · · , Xdn}. Given a 3D neighborhood system
N , the final segmentation, X∗, is obtained from XD by employing
the iterated conditional modes (ICM) [12] to minimize an energy
function, which embodies both the knowledge of the observed im-
age and spatially smooth. Given a segmentation X , the energy,
E(X), is defined as,

E(X) =
∑
v∈V


L(Xv|Iv) + λ

∑
v′∈N (v)

P (Xv, Xv′)


 , (3)

where Xv is the classification (vessel or background) of a voxel,
v, in X , and Iv is the observed intensity value of v. We define

L(x|i) =
1

|XD|
∑

X∈XD

LX(x|i)

and

P (Xv, Xv′) =

{ −1 Xv = Xv′
0 Xv �= Xv′

,

where |XD| is the size of XD and LX(x|i) is the negative log-
likelihood energy of classification x to intensity value i in seg-
mentation X , which can be estimated via histograming the inten-
sity values for individual classes in Xd. The constant λ in Eqn.
3 controls the degree of spatial smoothness and is set to 1 in our
implementation.

Summary of the MIP-based Segmentation Algorithm:

Step 1. Along the three principle axial directions, separately exploit
the Algorithm 1, and obtain three segmentations.

Step 2. Use ICM to compute the final segmentation by minimizing
Eqn. 3.

4. VALIDATION AND EXPERIMENTAL RESULTS

To obtain a quantitative assessment of our method, we manually
segmented 13 clinical 3D-RA datasets and the segmentations were
modified and verified by a consultant radiologist with 16 years ex-
perience at our collaborating hospital. These manual segmenta-
tions were treated as the ground truth of the 13 datasets. A segmen-
tation was then evaluated against the manual segmentation with
three different statistical measures: (1) Dice similarity coefficient
(DSC) [13]; (2) True positive rate (TPR); and (3) False positive
rate (FPR). TPR measures the sensitivity and FPR measures the
specificity, while, DSC measures the agreement between two seg-
mentations since it takes both sensitivity and specificity into ac-
count. As such, DSC can be treated as a more objective measure
in our validation.

For comparing the results, we applied the MAP-EM-based
method with a double-Gaussian distribution (referred as MAP-
EM), and the MAP-MRF-based method with the multi-label lo-
gistic (MLL) model (referred as MAP-MRF), which refined the
segmentations of MAP-EM, for the 13 datasets. Then, we ap-
plied the optimal global thresholding method (refereed as OGT),
in which the threshold was selected to give the segmentation with

Method DSC TPR FPR Mean SD
MIP-MP 0.8937 0.8822 0.0006 0.0038 0.0193
MIP 0.8510 0.8332 0.0009 0.0321 0.0302
MAP-MRF 0.5941 0.9862 0.0093 0.3187 0.2096
MAP-EM 0.3638 0.9993 0.0245 0.4873 0.1912
OGT 0.8670 0.8406 0.0007 – –

Table 1. Columns “DSC”, “TPR” and “FPR” give evaluation
results of different segmentation methods on a 3D-RA dataset
against the authorized manual segmentation. Columns “Mean”
and “SD” show the means and the standard deviations of the rela-
tive differences between the DSCs of OGT and the DSCs of other
methods on 13 datasets.

maximum DSC against the manual segmentation among all possi-
ble thresholds. The MIP-based segmentation algorithm along one
projection (Algorithm 1) (referred as MIP) was also tested. The
whole approach of our method (along multiple directions) is re-
ferred as MIP-MP. In total, there are 5 different methods as listed
in Table 4.

In the table, columns “DSC”, “TPR” and “FPR” present the
evaluation results on one 3D-RA dataset. Columns “Mean” and
“SD” show the means and the standard deviations of the relative
differences between the DSCs of OGT and the DSCs of the other
methods on the 13 datasets. According to the values in columns
“DSC” and “Mean”, the evaluation results showed that MIP-MP
worked better (larger DSC) than MAP-EM and MAP-MRF on all
13 datasets. (The mean and the standard deviation of MIP-MP
were 0.0038 and 0.0193. Meanwhile, for MAP-EM, their values
were 0.4873 and 0.1912, and for MAP-MRF, their values were
0.3187 and 0.2096.) Moreover, it is noted that, according to DSC
values, MIP-MP outperformed OGT on 6 datasets and worked
comparably to OGT on another 7 datasets.

We also found that the FPRs of the segmentations obtained by
MIP-MP were consistently smaller than by MAP-EM and MAP-
MRF, and comparable to by OGT. (Column “FPR” in the table
shows the typical values of one dataset.) In addition, MIP-MP con-
sistently produced larger TPRs than that of MIP on all 13 datasets
thanks to the combination of segmentations from multiple direc-
tions (Section 3.2). It is also noticeable that MAP-EM and MAP-
MRF produced high FPRs as well as high TPRs on all 13 datasets.

The processing time of MIP-MP, MAP-EM and MAP-MRF
were, on average, around 8, 2 and 30 seconds respectively, for
segmenting a 3D-RA of size 100 × 100 × 100 on a 2.26GHz PC.
Meanwhile, to manually find a good global threshold, popular in
3D-RA processing, is always time consuming.

Fig. 2 shows six ROIs, which are segmented by (a) a consul-
tant radiologist, (b) MAP-EM, (c) MAP-MRF, (d) MIP, (e) MIP-
MP, and (f) OGT. To visualize segmentations, the volume rendered
images were created using the Visualization Toolkit (VTK). Fig.
3 shows (a) the axial MIP image, three volume rendered images
based on segmentations by (b) a radiologist, (c) MAP-MRF, and
(d) MIP-MP. Results revealed that, MIP-MP has successfully seg-
mented the major vascular structures in 3D-RA, and it produced
less noise than MAP-MRF.

5. CONCLUSIONS AND DISCUSSION

The EM-based segmentation method, because of its simplicity and
computational efficiency, has been widely used for image segmen-
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(a) Manual (b) MAP-EM (c) MAP-MRF

(d) MIP (e) MIP-MP (f) OGT

Fig. 2. ROIs segmented by different methods. (”MIP” and ”MIP-
MP” are the Algorithm 1 and the whole approach of our algo-
rithm.)

tation. Based on our experimental results on 13 clinical 3D-RA
datasets, it is shown that, the double-Gaussian mixture model gives
unsatisfactory segmentations because the estimated global thresh-
olds are too low which give high false positive rates (FPRs) in
the segmentations. Even if with the refinement by the MRF-based
method, the problem cannot be alleviated by much. In this pa-
per, we have proposed a novel 3D-RA vascular segmentation tech-
nique based on the iterative segmentations of maximum intensity
projections (MIP) along multiple projections. In an MIP image,
the variances of each structural class (background, non-vessel and
vessel) become smaller. This makes the modelling of the observed
MIP intensity histogram more stable. For validation, we com-
pared our method with (a) the MAP-EM-based method, (b) the
MAP-MRF-based method and (c) the optimal global thresholding
method (based on manual segmentations obtained with the help of
a radiologist). Validation results on 13 3D-RA datasets showed
that our method consistently gave higher Disc similarity coeffi-
cients (DSCs) than the MAP-EM-based and the MAP-MRF-based
methods, and gave comparable DSCs to the optimal global thresh-
olding method. Experimental results on 13 datasets revealed that
our method can successfully segment the major vascular structures
and produce less noise than the MAP-EM-based and the MAP-
MRF-based methods. Moreover, the computational efficiency of
our method is high (on average, around 8 seconds per dataset of
100×100×100 voxels). Our future work is to apply and extend
our method to other medical angiograms, for example, PC-MRA
and TOF-MRA.
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