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ABSTRACT

Filtering is a core operation in low level computer vision. It
is a preliminary process in many biomedical image processing ap-
plications. Bilateral filtering has been applied to smooth biomed-
ical images while preserving the edges. However, to avoid over-
smoothing structures of sizes comparable to the image resolutions,
a narrow spatial window has to be used. This leads to the ne-
cessity of performing more iterations in the filtering process. In
this paper, we propose a novel filtering technique namely trilat-
eral filter, which can achieve edge-preserving smoothing with a
narrow spatial window in only a few iterations. The experimental
results have shown that our novel method provides greater noise
reduction than bilateral filtering and smooths biomedical images
without over-smoothing ridges and shifting the edge locations, as
compared to other noise reduction methods.

1. INTRODUCTION

Filtering is a preliminary process in many biomedical image pro-
cessing applications. It is a fundamental operation in low level
computer vision, which is aimed at restoring a noise-corrupted im-
age to its noiseless counterpart. Any post-processing tasks, such
as visualization and segmentation, may benefit from the reduction
of noise. Diffusion equations with scalar-valued and tensor-valued
diffusivities have been applied to magnetic resonance (MR) imag-
ing and 3D rotational angiography (RA) [1], [2], [3] for edge-
preserving smoothing. MR angiography (MRA) denoising with
adaptive filtering in the Fourier domain has been proposed in [4].
Non-linear noise reduction techniques in computed tomography
(CT) imaging have been investigated in [5].

In this paper, we present a novel filtering method for bio-
medical images, namely trilateral filtering. The method works
along the same lines as bilateral filtering [6], integrating geomet-
ric, photometric and local structural similarities, to achieve edge-
preserving smoothing. It is simple to implement and is applicable
to multi-dimensional signals. It uses a narrow spatial window (3
pixels in each dimension) and takes only a few iterations (3 itera-
tions in all the experiments conducted in this work) in the smooth-
ing process.

This paper is organized as follows: Section 2 briefly intro-
duces the bilateral filter, as the fundamental of our trilateral filter-
ing. The formulation of the trilateral filter follows. In Section 3,
sensitivity analyses of the new method as well as experimental re-
sults on 3D numerical phantoms, 2D and 3D clinical datasets and
a 3D MR imaging phantom are presented. Conclusions are drawn
in Section 4.

2. FUNDAMENTAL AND METHOD

In this section, we present the fundamental and the method for-
mulation of the new filtering technique. Section 2.1 introduces
bilateral filtering, as the preliminary of our trilateral filtering. The
formulation of the trilateral filter is given in Section 2.2. In Section
2.3, the methodology to extract the local structural information is
discussed.

2.1. Bilateral Filtering

Bilateral filtering, representing a large class of non-linear filters
proposed by Tomasi et al. [6], is a non-iterative and local approach
to edge-preserving smoothing. A filtered image is obtained by
replacing the intensity value of each pixel with an average value
weighted by the geometric and photometric similarities between
neighboring pixels within a spatial window. The bilateral filtering
can be summarized in the following discrete formulation:
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where �x and �ξ are spatial coordinates, �I is the noisy image, �I∗ is
the filtered image, N�x defines the spatial window around the pixel
at �x, k (�x) is the normalization constant which assures the weights
c (·) · s (·) are added up to 1 within N�x, the functions c and s mea-
sure the geometric and photometric similarities between neighbor-
hoods respectively. For the definitions of the two functions, see
[6].

The concept of bilateral filtering has been investigated in a
recent publication. Barash [7] revealed that bilateral filtering is
a non-iterative method only if a wide spatial window is used (15
pixels in each dimension). However, a wide spatial window may
over-smooth sharp ridges and gutters in the image as indicated in
[8]. Therefore, it is necessary to strike a balance between the size
of the spatial window and the number of iterations needed to be
performed in bilateral filtering.

2.2. Trilateral Filtering for Biomedical Images

Sharp ridges and gutters are commonly found in biomedical im-
ages, such as nested vessels in digital subtraction angiography
(DSA) and 3D angiography, and folded gray and white matters
in brain MR imaging. Therefore, a narrow spatial window, say, 3
pixels in each dimension, should be used in order to avoid over-
smoothing structures of sizes comparable to the image resolutions.
This leads to the necessity of performing more iterations in the
filtering process.
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In this paper, we propose a novel filtering method for biomed-
ical images, which works along the same lines as the bilateral fil-
ter, it takes not only the geometric and photometric similarities
into account, but also, the local structural similarity to smooth the
images with a narrow spatial window while preserving the edges.
Local structural information is used to determine inhomogeneity
in the images. On one hand, low-pass filtering is performed in
the homogeneous regions. On the other hand, smoothing along
edges is achieved by considering the geometric, photometric and
local structural orientation similarities between neighboring pixels
in the inhomogeneous regions. We found that this new approach
provides greater noise reduction than bilateral filtering with a 3-
pixel-width spatial window (cf. Section 3).

Because of the use of the three similarities in the filtering pro-
cess, we name this novel method trilateral filtering. The trilateral
filtering is expressed as follows:
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t is a time variable, a (�x) ∈ [0, 1] is the regularized local signal
amplitude (cf. Section 2.3) of the pixel at �x, a → 0 in the homo-
geneous regions, the functions c and s are defined as in the bilateral
filter, D is the dimensionality of the image �I and the function di

measures the similarity of the rank i local structural orientation
between the pixels at �ξ and �x. Rank 1 orientation refers to the
principal direction of a linear structure, whereas rank 2 orientation
refers to one of the principal directions of a planar structure (cf.
Section 2.3). The function di is defined as follows:
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where

δ (�u,�v) = 1 −
∣∣∣∣ �u · �v
‖�u‖ ‖�v‖

∣∣∣∣ , (5)

êi is the direction of rank i orientation and the parameter σ is cho-
sen based on the desired amount of orientation discrepancy filter-
ing between neighborhoods. δ → 0 if the angle between �u and �v

is 0◦ / 180◦, therefore, di → 1 if the pixel at �ξ locates along the
direction êi with respect to the pixel at �x.

In other words, the trilateral filter produces a smoothed image
by weighting the intensity value of each pixel within the narrow
spatial window. Weights are either defined by the geometric sim-
ilarity, c (·), in the homogeneous regions or defined trilaterally by
the geometric, photometric and local structural orientation similar-
ities, c (·) · s (·) · ∑i di (·), in the inhomogeneous regions.

2.3. Extraction of Local Structural Information

The local structural information is obtained from the eigen decom-
position of orientation tensors as described in a previous work [9],
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Fig. 1. Local signal amplitude regularization. (a) Mapping func-
tion m as a function of A∗

�x ∈ [0, 1], q = 4, with five different val-
ues of p: 0.1 (leftmost curve), 0.3, 0.5, 0.7 and 0.9; (b) a portion
of a slice image from a numerical phantom; and (c) regularized
local signal amplitudes a, p = 0.3 and q = 4 in the regularization
process. It is evident that a → 0 (dark) in the background region,
while a → 1 (bright) if the pixel at �x is located near the edges
of the bright structure. Therefore, it can be used to determine the
inhomogeneity in an image

in which it is demonstrated that the use of the orientation tensor
gives more reliable local structural information than the use of the
Hessian matrix. The vectors ê1 and ê2 are the eigenvectors cor-
responding to the first and second smallest eigenvalues in the de-
composition. The Frobenius norm of the orientation tensor (i.e.,√∑D

i=1 λi
2, where λi, i = 1, 2, . . . , D, are the eigenvalues of

the tensor in a D-dimensional space) defines the local signal am-
plitude A�x ∈ [0, +∞). Regularization is achieved by a mapping
function m, which maps the normalized local signal amplitude
A∗

�x ∈ [0, 1] to [0, 1], as follows:

a (�x) = m (A∗
�x, p, q) =

(A∗
�x · (1 − p))q

(A∗
�x · (1 − p))q + ((1 − A∗

�x) · p)q , (6)

where p ∈ [0, 1] and q are positive constants. Figure 1(a) shows
the mapping function m as a function of A∗

�x, q = 4, with five
different values of p. Figure 1(b) shows a portion of a slice image
from a numerical phantom (see Section 3 for details). Figure 1(c)
shows the regularized local signal amplitudes a, p = 0.3 and q =
4 in the regularization process. It is evident that a → 0 (dark)
in the background region, while a → 1 (bright) if the pixel at �x
is located near the edges of the bright structure. Therefore, the
regularized local signal amplitudes a can be used to determine the
inhomogeneity in an image.

3. RESULTS AND DISCUSSION

A 64×64×64 voxels numerical phantom has been built to evaluate
the performance of the trilateral filter. The phantom is shown in
Figure 2(a), which is a pipe (5 voxels in diameter) in a 3D space
with its centerline aligned with a cubic B-spline curve. In order
to study the capability to smooth an image with a narrow spatial
window (3×3×3 voxels), we have applied the trilateral filter (TF)
and the bilateral filter (BF) to the numerical phantom at signal level
equals 5. The signal level is defined as follows:

Signal Level =
Q

σN
, (7)

where Q = 255 is the intensity value of the noiseless pipe and σN

is the standard deviation of an additive white Gaussian noise. The
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(a) Surface model (b) Original (c) 20 NEX

(d) AF (e) EED (f) TF

Fig. 2. Numerical phantom. (a) 3D surface model; (b) a portion
of a slice image from the phantom; smoothed images with (c) 20
NEX, (d) AF (e) EED and (f) TF

signal level 5 implies σN = 255/5 = 51. We found that there is
93.96% decrease in the mean square error (MSE) for TF, in con-
trast to 59.20% decrease in MSE for BF, using a single iteration.
These results have shown that TF provides better image denoising
than BF, using a narrow (3-pixel-width) spatial window.

Furthermore, we have conducted four noise sensitivity analy-
ses, in which the increases in (a) signal-to-noise ratio (SNR), (b)
contrast-to-noise ratio (CNR), (c) MSE and (d) deviation in gradi-
ent direction after the application of different denoising methods
are studied. SNR and CNR are defined in the following:

SNR =
Q̄P

σB
, (8)

CNR =

(
Q̄P − Q̄B

σB

)2

, (9)

where Q̄P and Q̄B are the mean intensity values of the pipe and
the background respectively, and σB is the sample standard de-
viation of the noise in the background. Deviation in gradient di-
rection is calculated according to Equation 5, taking the truth gra-
dient vector and the computed gradient vector from the denoised
image as arguments. We have compared TF with three other de-
noising methods, viz. 20 NEX (averaging), adaptive filtering (AF)
[4] and edge-enhancing anisotropic diffusion (EED) [3], where AF
and EED are edge-preserving noise reduction techniques.

Figure 2(b) shows a portion of a slice image from the phantom
at signal level equals 5. Figures 2(c)-(f) show the filtered images
obtained with 20 NEX, AF, EED and TF respectively. Figure 3
shows the results of the noise sensitivity analyses. Increases are
measured in dB according to this formula:

Increase in dB = 20 · log10

New Value
Old Value

. (10)

It is noted that TF gives the largest amount of reduction in MSE
and the greatest increase in both SNR and CNR amongst the other
methods. Further, TF provides better gradient direction restoration
than 20 NEX if the signal level ≥ 5.
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Fig. 3. Results of noise sensitivity analyses. Increases in (a) SNR,
(b) CNR and (c) MSE; and (d) deviation in gradient direction at
different signal levels

In addition to the numerical phantom, we have applied TF to
2D and 3D biomedical datasets and a 3D MR imaging phantom.
Figure 4 shows filtered images of a 2D DSA obtained with BF and
TF. Figure 5 shows denoised slice images of a 3D RA produced
by AF, EED and TF. Figure 6 shows smoothed slice images of a
3D T1 MR imaging phantom from BrainWeb1 obtained with AF,
EED, BF and TF. It is evident that: TF gives a greater noise re-
duction than BF in the vascular regions, see Figures 4(d)-(f), and
smooths the DSA image without over-smoothing ridges, as found
in the BF denoised image, pointed by the arrows in Figures 4(b)
and 4(e); TF produces a smoothed 3D RA image without shifting
the edge locations as compared to EED, indicated by the arrow
in Figure 5(e); and TF gives smoother solution in homogeneous
regions, while produces sharper edges than the other methods as
illustrated in the T1 MR imaging phantom (see Figure 6).

4. CONCLUSION

We have presented a novel denoising method for biomedical im-
ages, namely the trilateral filter. The method integrates the ge-
ometric, photometric and local structural similarities to filter the
images. It replaces the intensity value at each pixel with an aver-
age value weighted by the three similarities between neighboring
pixels within a narrow spatial window.

In order to evaluate the performance of the trilateral filter,
we have conducted several experiments on 3D numerical phan-
toms, 2D and 3D biomedical datasets and a 3D MR imaging phan-
tom. The experimental results have shown that our novel method
produces greater noise reduction than the bilateral filtering and
smooths the images without over-smoothing ridges and shifting
the edge locations, as compared to other edge-preserving noise re-
duction methods.

1A simulated brain database from Montréal Neurological Institute,
McGill University (www.bic.mni.mcgill.ca/brainweb/).
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(a) Original (b) BF (c) TF

(d) Original (e) BF (f) TF

Fig. 4. DSA. (a) Original image; denoised images with (b) BF and
(c) TF; and (d)-(f) closeup of the images (a)-(c)

In this paper, we have demonstrated an application of the trilat-
eral filter. We expected that this new method will not be restricted
to biomedical images. It could be applicable to other image types,
e.g., natural scenes, artwork or spatial-temporal images.
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Fig. 5. 3D RA. (a) A slice image from the dataset; filtered images
with (b) AF, (c) EED and (d) TF; and (e) intensity profile of the
images (a)-(d) at the scanline defined in (a)

(a) Original (b) Closeup (c) AF

(d) EED (e) BF (f) TF

Fig. 6. T1 MR imaging. (a) An original slice image; (b) closeup
of the slice image; smoothed images with (c) AF, (d) EED, (e) BF
and (f) TF
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