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Abstract. This paper proposes an entropy based Markov chain (EMC) fusion technique and demon-
strates its applications in multisensor fusion. Self-entropy and conditional entropy, which measure
how uncertain a sensor is about its own observation and joint observations respectively, are adopted.
We use Markov chain as an observation combination process because of two major reasons: (a) the
consensus output is a linear combination of the weighted local observations; and (b) the weight is the
transition probability assigned by one sensor to another sensor. Experimental results show that the
proposed approach can reduce the measurement uncertainty by aggregating multiple observations.
The major benefits of this approach are: (a) single observation distributions and joint observation
distributions between any two sensors are represented in polynomial form; (b) the consensus output
is the linear combination of the weighted observations; and (c) the approach suppresses noisy and
unreliable observations in the combination process.
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1. Introduction

In recent years, much interest in multisensor fusion has been generated in the fields
of robotics, computer vision, remote sensing and medical imaging because of the
general belief that multiple observations can reduce uncertainty. Thus, multisen-
sor fusion is a science in studying the methods for combining multiple sensory
observations into a consensus output such that classification and estimation accu-
racy can be improved by reducing the measurement uncertainty. The consensus
output can be either (a) one of the possible classes for the classification problem,
or (b) a random variable for the parameter estimation problem. In general, multi-
sensor fusion includesmodelling of belief, observation combinationanddecision
rule [4], as shown in Figure 1. Modelling of belief, such as probabilistic or fuzzy
set representation, concerns how the degree of belief in the observations and output
are modelled. Observation combination defines the way to aggregate the beliefs in
multiple observations for an output. Decision rule chooses the consensus output in
order to maximize the occurrence probability or possibility for the classification
problem, or minimize the variance for the parameter estimation problem.
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Figure 1. Components of multisensor fusion.

In multisensor fusion literature, there are numerous and context-dependent tech-
niques. Among these techniques, certain properties are particularly important to
the multisensor fusion performance. They are uncertainty reduction, observation
interdependence, resource constraints and robustness.

Uncertainty reduction: this is a crucial property because it is absolutely discour-
aging if the combination of multiple observations brings about a consensus output
of greater uncertainty. Reducing the uncertainty associated with the consensus out-
put is the main goal of multisensor fusion. It is generally accepted that uncertainty
is an unavoidable factor in sensory measurement. Uncertainty stems from low res-
olution of a sensor [3, 13], low representative competence of a feature [22], limited
viewing angle or power of a visual sensor [27], and others.

Observation interdependence: two sensory observations can either bedepen-
dentor independent. Sensory observation dependence can help reduce system un-
certainty. It is a concept for depicting the nature of interactions among a set of
observations. Any two sensory observations are dependent if the values of one
observation correlate with the values of another observation [8]; otherwise, they
are independent. The features of observation dependence can be categorized into
independent, positively dependentand negatively dependenton the basis of the
change of the system uncertainty level [6, 7]. Thus, two sensor observations are
independent if the level of uncertainty does not change after they are combined.
Similarly, two sensor observations are defined to be positively dependent if the
level of uncertainty is reduced after they are combined. As such, the negative
analogue is equivalent to the negative dependence. By advocating the combination
of positively dependent observations and avoiding the combination of negatively
dependent observations, the system uncertainty level can be tremendously reduced.
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As a result, the modelling of the positive and negative dependence becomes an
integral part of the multisensor data fusion tasks and is of a particular interest in
this paper. A good example [3] is the estimation of region occupancy probability.
The authors show that the consideration of dependence among the observed regions
and application of Bayesian fusion to integrate the information of three sensor
readings can help to reduce the impact of false or bogus readings as compared with
[13, p. 141], in which the author copes with the same problem and uses Bayesian
fusion to update the grid points, but with the assumption of independence among
them.

Resource constraints: most simple mobile robotic systems involve only two or
more inputs. As the environment gets more complex, the number of inputs for
performing area exploration and task accomplishment is significantly increased
[14, p. 387]. System implementation resources, especially the size needed to rep-
resent the interrelations between the input sensory observations and the consensus
output and computational time for observation combination, have all become key
concerns in designing or selecting a multisensor fusion technique [16, p. 260]. A
good multisensor fusion technique should show competence in (a) representing
and updating the degree of belief about the multiple sensory observations effec-
tively and (b) combining these observations efficiently even when the number of
observations is large.

Robustness: this is another important factor in the sensory system, especially
with a large scale system in which the possibility of having unreliable and noisy
sensor is high. The rate of sensor failure is also high. A robust fusion technique
should give stable performance when the sensory observations are deviated from
the normal training data [18, p. 5; 2, p. 355]. The deviation may be caused by
the sensor failure, the operation environment different from the training environ-
ment or sensor operation reliability, etc. These deviations are regarded as sensory
input noise. A robust fusion is important because, if one of the sensors becomes
unreliable or fails, the effect of the failure, which causes a large departure from
the normal training data [25, p. 699], should not be amplified and affect signifi-
cantly the performance of the whole system. When a sensor gives contaminated
observation, its observation will become noisy and unreliable. As a result, a robust
system should be capable of dealing with the noisy observations. Observation of
a failed sensor can be gated or discarded automatically by a gating mechanism if
we assume that the gating mechanism exists (see [24] for detail description of the
sensor fault detection). However, this paper will not assume the existence of gating
mechanism for failed sensors and will demonstrate a way to overcome the problem
of unreliable observations.

This paper proposes an entropy-based Markov chain (EMC) fusion technique
and demonstrate its applications in multisensor fusion. Experiments have been per-
formed to demonstrate the proposed approach. The results show that our approach
can reduce the measurement uncertainty by aggregating multiple observations. The
major benefits of this approach are as follows:
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(a) single observation distributions and joint observation distributions between
any two sensors, which represent the interrelations between the sensory ob-
servations and the consensus output, are represented in polynomial form;

(b) the consensus output is a linear combination of the weighted observations, in
which weights can be computed in polynomial time; and

(c) EMC is robust because it suppresses the noisy observation with high uncer-
tainty level to minimize the contribution of the noisy and unreliable observa-
tion in the combination process.

The major contributions of this research are as follows:

(i) the dependent sensory observations are considered and the impact of consid-
ering observation interdependence is demonstrated in the experiments; and

(ii) the robustness of the EMC fusion technique is studied and compared with the
Bayesian fusion.

2. Bayesian Fusion Technique

Bayesian fusion techniques has been used widely in a variety of application sce-
narios, including object detection [3, 13]; and mobile position estimation [20] in
an unknown environment for mobile navigation; speech recognizing [31]; edge
detection [23]; feature based object recognition [22] and its motion tracking [5];
wind shear avoidance [29] in aircraft guidance system; rain rate estimation [15] and
area classification [27, 28] in geographical information systems; pixel classification
of medical images [19]; pipe flaw detection [11]; and personal identity verification
systems [21].

A fusion problem can be stated as follows: suppose that there is a common
variable of interestθ ∈ 2, which may be a discrete variable (i.e., pixel, object,
person, an area, etc.) or a continuous variable (i.e., position, rain-rate, etc.), and
there arem individual sensors. If the common variableθ is discrete, it should be
assigned to one of the possible classesθ1, . . . , θn ∈ 2 on the basis ofm sensory
observations. If the common variableθ is continuous, its assigned value should be
bounded by an interval[θ+, θ−] ∈ 2 on the basis of them sensory observations.
The sensory observations are represented byEx = (x1, . . . , xm) ∈ Xm.

Modelling of belief. The degree of belief in the observationsEx, given the observed
variableθ , is represented by a functionl(Ex|θ) called the likelihood function to
quantify the probability of occurrence ofEx given θ . π(θ) denotes the prior prob-
ability of the occurrence of the variableθ . This prior knowledge of the observed
variable can be estimated initially by a uniform distribution if it is not known, and
then updated during the experiment.

Combination. Likelihood function and prior probability are combined by the Bayes’
rule,
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p(θ |Ex) ∝ l(Ex|θ)× π(θ),
wherep(θ |Ex) represents the posterior probability that the observed variable isθ

given the observationsEx. The assumption of observation independence is not al-
ways valid. If it is assumed in the combination process, the computation of poste-
rior probability is simpler. The posterior probability with the assumption of inde-
pendence is of the form

p(θ |Ex) ∝ 1

C

m∏
i=1

l(xi |θ),

wherel(xi|θ) represents the likelihood that the observation isxi givenθ , andC is a
normalization constant. Moreover, there is a number of different methods proposed
to evaluate the posterior probability, e.g. the median of the individual univariate
posterior probabilities [21], etc.

Decision rule – Maximum a Posterior (MAP). If the observed variable is an object
which is discrete, the observed object is assigned to a classθ∗ ∈ 2 on the basis of
the following maximization function

θ∗ = arg max
θi∈2

p(θi|Ex).

This function maximizes the posterior probabilityp(θ |Ex) and is commonly used in
the classification problem.

Decision rule – Minimum variance. If the observed variable is a random variable,
then the expected value of the random variableθ is given by:

E[θ |Ex] =


∑

θ∈2 θp(θ |Ex), if θ is discrete,∫
θ∈2

θp(θ |Ex)dθ, if θ is continuous.

It is noted thatE[θ |Ex] has a property of minimum variance, which is shown in [8,
p. 25; 10, p. 197].

Bayesian fusion has an obvious advantage of having a clear formulation for
describing fully the interdependent relationships between a set of sensory observa-
tionsx1, . . . , xm ∈ X and consensus outputθ ∈ 2 [8]. The interrelations between
the consensus output and sensory observations are depicted by a joint distribution
p(θ, x1, . . . , xm), which tabulates the relative frequencies or the probabilities of
the event occurrences in the discrete or continuous sample space2×Xm. The size
of the table of joint distribution grows exponentially as the number of observations
m increases. Assuming that all the sample spaces are discrete, that there arem

observationsx1, . . . , xm in the same sample spaceX, that the size of the sample
space is denoted by|X|, and that the size of the output space is denoted by|2|,
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the total number of events included in the joint distribution table is|2| × |X|m.
Therefore, the exponential increase in the joint distribution table size is one of the
disadvantages of Bayesian fusion if the number of interdependent observations is
large. Of course, if all the observations are assumed to be independent, the joint
distribution table ofp(θ, x1, . . . , xm) is no longer needed and will be broken into
m bivariate distribution tables forθ andxi . The required size is then tremendously
reduced tom× |2| × |X|. However, the assumption of observation independence
is not always valid [8]. It represents the loss of information about the interactions
among the dependent variables.

As the size of the joint distribution table increases exponentially, the time needed
to compute the posterior probability also increases exponentially. In Bayesian fu-
sion, the combination rule is

p(θ |Ex) ∝ l(Ex|θ)π(θ),
where the likelihood function is in the form

l(Ex|θ) = p(Ex|θ)∑
θ∈2 p(Ex, θ)

= p(Ex, θ)∑
θ∈2 p(Ex, θ)

∑
Ex∈X p(Ex, θ)

.

Hence, the time required to compute the posterior probabilityp(θ |Ex) is at least of
O(|2|+|X|m) time, which is exponentially increased as the number of observations
m increases.

To conclude, this section reviews the basic formulation of the Bayesian fusion
technique, and shows its deficiency. Firstly, the size of the table of joint distribu-
tion in the Bayesian fusion grows exponentially as the number of observationsm

increases. Secondly, the time needed to compute the posterior probability in the
Bayesian fusion increases exponentially. In an attempt to overcome the deficiency,
the entropy based Markov chain fusion technique is proposed.

3. Entropy-based Markov Chains (EMC)

3.1. MODELLING OF BELIEF

For entropy-based Markov chain (EMC) fusion, the degree of belief is represented
by a probabilistic model. As such, the degree of belief in each single observationxi ,
given the observed variableθ , is represented by a functionl(xi |θ) called likelihood
function to quantify the probability ofxi occurrence givenθ . For a joint observation
xi andxj , the degree of belief, given the observed variableθ , is represented by
the likelihood functionl(xi, xj |θ) to represent the joint probability ofxi andxj
occurrence givenθ . π(θ) denotes the prior probability of the occurrence of the
variableθ . It is the prior knowledge of the observed variable. It can be estimated
initially by a uniform distribution if it is not known, and then updated during the
experiment.
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3.2. OBSERVATION COMBINATION

3.2.1. Entropy Measure

In Section 1, it is noted that the sensory observation dependence can reduce system
uncertainty. This section continues the discussion by first introducing entropy for
uncertainty measurement. Self-entropy and conditional entropy are then adopted
from [1] to measure the uncertainty level of the single observationsxi or xj , and
the joint observationxi andxj , respectively. The difference between conditional
entropy and self-entropy of a sensor shows the change of the uncertainty level.
If the uncertainty level of the joint observation is lower than that of the single
observation, it means that the two observationsxi andxj are positively dependent
and the combination of the two observations is beneficial to uncertainty reduction.
Similarly, if the two observations are negatively dependent, the combination is
harmful to the uncertainty reduction.

Shannon’s entropyh which was introduced by Shannon [26] in 1948, has long
been used to measure the probabilistic uncertainty of a random variableθ . If the
probability functionp(θ) is discrete, then the entropy is given by

h = −
∑
θ∈2

p(θ) logp(θ), (1)

whereas, if the probabilistic functionp(θ) is continuous, then the entropy is given
by

h = −
∫
θ∈2

p(θ) logp(θ)dθ. (2)

An essential property of the entropy is that entropyh is directly proportional to the
degree of uncertainty (or randomness) of the measured variable; the smaller the
uncertainty, the smaller the entropy. Let us assume that the probability distribution
p(θ) follows a normal distribution with a p.d.f.f (θ |µ, σ 2). It can easily be shown
that, by Equation (2),

h = −
∫
θ∈2

f ln f dθ = ln(
√

2πeσ 2), (3)

where

f
(
θ |µ, σ 2

) = 1√
2πσ

exp
(−(µ− θ)2

2σ 2

)
.

Hence, if the probability density function is Gaussian, Equation (3) reveals that
the smaller the varianceσ 2, the smaller the entropy. It is noted that the uniform
distribution will have the maximum entropy value. It is clear now that the entropy
is sensitive and directly proportional to the degree of uncertainty. This property
is obvious especially when the probability density function is Gaussian. How-
ever, the Gaussian assumption is not always valid. Hence, the computation of the
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uncertainty level mainly depends on the entropy, which is given by the Equa-
tions (1) and (2). Suppose that there are two observationsxi andxj of sensorsi
andj aboutθ , their single observation posterior distributions and joint observation
posterior distribution are in the form

pi(θ |xi) ∝ π(θ)× l(xi |θ)
and

pij (θ |xi, xj ) ∝ π(θ)× l(xi, xj |θ), (4)

whereπ(θ) is a common prior distribution, andl(xi|θ) andl(xi, xj |θ) are the uni-
variate and bivariate likelihood function givenθ . To measure the uncertainty level
of the single observation and the joint observation, self-entropy and conditional
entropy are adopted from [1] and are given as follows:

Self-entropy, which measures how uncertain a sensor is about its own observa-
tion xi , is defined as

hi|i(xi) = −
∑
θ∈2

pi(θ |xi) logpi(θ |xi). (5)

Conditional entropy, which measures how uncertain sensori is about the joint
observationsxi andxj given that observation of sensorxj is unknown, is defined
as

hi|j (xi, xj ) = −
∑
xj∈Xj

p(xj |xi)
∑
θ∈2

pij (θ |xi, xj ) logpij (θ |xi, xj ), (6)

wherep(xj |xi) is the conditional distribution ofxj givenxi. It shows that givenxi ,
hi|j is simply the expected value of self-entropy of their joint observations. When
the observation of sensorj is explicitly known, Equation (6) reduces to

hi|j (xi, xj ) = −
∑
θ∈2

pij (θ |xi, xj ) logpij (θ |xi, xj ).

The self-entropy and conditional entropy are within the range of zero and one,
i.e., 06 hi|i 6 1 and 06 hi|j 6 1, because they are the relative entropy and the
base of the log function is the sample size of the output spaces|2|. For self-entropy,
let us assume that the sample size of the observation spaceXi is |2|. Therefore,
Equation (5) can be rewritten as

hi|i(xi) = −
∑
θ∈2

pi(θ |xi) logpi(θ |xi)
log |2| .

The maximum entropy is attained when the distributionpi(θ |xi) is uniform and is
equal to 1/|2|. Therefore, the maximum self-entropy is equal to one, i.e.,

hi|i(xi) = −
∑
θ∈2

1

|2|
log 1/|2|
log |2| .
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The minimum self-entropy is equal to zero when the distributionpi(θ |xi) is certain,
i.e., all values are zero except one value is equal to one. As such, the self-entropy
is bounded by zero and one. The same implies for the conditional entropy.

The conditional entropy manifests profoundly the inter-dependence between
sensory observationsxi and xj . For example, if observationxj is irrelevant to
observationxi , the posterior distributionpij will be equal topi which makes sensor
i’s conditional entropy equal to its self entropy. In other words, observationxj does
not help sensori to improve its uncertainty level. On the other hand, if observa-
tion xj is positively relevant to observationxi, hi|j is expected to be smaller than
hi|i, which means that this observation contributes to reducing the uncertainty of
observationxi . Otherwise, the observation is negatively relevant, sensori should at
least maintain its uncertainty level. The properties of self entropy and conditional
entropy can be summarised as follows:

• hi|j is not necessarily equal tohj |i;
• if the self-entropyhi|i is equal to the conditional entropyhi|j , observations are

independent (or irrelevant); and
• if the self-entropyhi|i is larger than the conditional entropyhi|j , observations

are positively dependent (or relevant); and
• if the self-entropyhi|i is smaller than the conditional entropyhi|j , observations

are negatively dependent (or relevant).

3.2.2. Markov Chains

In multisensor fusion, a Markov chain can be regarded as an iterative process for
updating the observations of each sensor, which consists of a number of sensor
states and transition probabilities [17]. Information about the observations is ex-
changed from one state to another state during the iteration process. Based on the
information obtained, the observations of each sensor are updated after each iter-
ation and will eventually converge into a single consensus output [9]. This output
represents the consensus of a pool ofm sensor observations. Durrant-Whyte [12]
also proposed exchanges of information among the dependent sensors. However,
his model differs from our proposed one in that his model depends on the product
of observed and prior information. Whereas, our proposed model depends on the
linear combination of observed and prior (second order posterior probabilities)
information. As shown in Figure 2, each sensor statesi ∈ S represents a sensory
observationxi ∈ X. In this paper, the transition probability is called theweight
(wij ) which is assigned by sensor statesi to sensor statesj . Weightwij represents
the certainty of observationxj after observationxi is known.uki represents the
updated observation at thekth iteration.

Markov chain recursively combines and updates the observations ofEUk−1 by
the following iterative process,

EUk = W EUk−1, k > 1,
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Figure 2. Entropy-based Markov chain (EMC) fusion for three observations.

which is equivalent to

EUk = Wk EU0, (7)

where EU0 = (u0
1, . . . , u

0
m)

T is the initial state vector of the initial local observa-
tions; EUk is the state vector at thekth iteration; andW is the transition matrix
whose non-negative elementwij is the weight (or transition probability) assigned
by sensor statei to sensor statej and has the properties that

∑m
j=1wij = 1 and

06 wij 6 1.
As k approaches infinity,EUk converges to a consensus valueu∗,

u∗ = EKT EU0 =
m∑
i=1

κiu
0
i . (8)

and

WT EK = EK, (9)

where EK = (κ1, . . . , κm)
T is the vector of stationary transition probabilities;∑m

i=1 κi = 1; and 06 κi 6 1. Equation (8) reveals that the consensus output
is the linear combination of the initial local observations. From Equation (7), the
convergence of the matrixWk is reached if

• there exists a positive integerk such that every element in at least one column
of the matrixWk is positive [9], or
• all the recurrent states of the Markov chain communicate with each other (irre-

ducible) and are positive recurrent and aperiodic [9; 17, p. 574].
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Equation (9) can be viewed as the eigenvector problemA · Ex = λEx with eigen-
valueλ equal to one. Therefore,κi, for i = 1, . . . ,m, can easily be found by a
variety of methods for solving eigenvector problems even thoughm is large. The
vector of stationary transition probabilitiesEK can be found in polynomial time
O(m3) [25].

It is observed that, from Equations (7) and (8),κi is large if and only ifwji is
large forj = 1, . . . ,m, that is,

κi ∝ wji. (10)

κi is proportional towji. Weights lying in the same column of the transition ma-
trix W contribute positively toκi. This means sensori will have greater inference
on the consensus valueu∗ if and only if the weights (or transition probabilities)
assigned to sensori are large.

3.2.3. Entropy-based Weight Assignment

This section deals with how appropriate weights are to be assigned based on self-
entropy and conditional entropy. Consider a state transition from sensor statei

to sensor statej with weight wij . If this transition is treated as an information
flow, then sensorj will definitely gain information about sensori. Sensorj can
in turn compute its conditional entropyhj |i based on sensori’s observation. A
greater weight should be assigned to this transition if the calculated conditional
entropyhj |i is small. This implies that the weight (or transition probability) is
inversely proportional to conditional entropy. The same argument applies to self-
entropy. The larger the self-entropy, the smaller the corresponding weight. Ifhj |i
is smaller thanhi|i, thenwij is larger thanwii. This relationship is formulated as
follows:

wij ∝ 1

h
αij
j |i

for i, j = 1, . . . ,m,

where the weight assigned to sensorj by sensori depends inversely on the condi-
tional entropy of sensorj based on sensori’s observationxi , andαij reflects this
dependence. If the self-entropyhj |j is smaller than the conditional entropyhj |i,
implying negative dependence,hj |i will be set tohj |j , andαij is set to one, i.e.,
αij = 1. If the self-entropyhj |j is larger than the conditional entropyhj |i, im-
plying positive dependence,αij should be larger than one. The difference between
hj |j andhj |i is then added toαij , i.e.,αij = 1+ (hj |j − hj |i). For computation
simplicity, (hj |j − hj |i) can be set to the nearest one decimal place. It is obvious
that, sincehj |j andhj |i are bounded between zero and one,αij is bounded by one
and two.

The greater theαij , the smaller the entropy (less uncertain) and the larger the
weight. Therefore,αij describes the sensitivity of the entropy measure. It is then
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written in matrix form,


w11 . . . w1m

w21 . . . w2m
...

. . .
...

wm1 . . . wmm

 ∝



1

h
α11
1|1

. . .
1

h
αm1
m|1

1

h
α12
1|2

. . .
1

h
αm2
m|2

...
. . .

...

1

h
α1m
1|m

. . .
1

h
αmm
m|m


.

Since
∑m

j=1wij = 1, it follows that the weight is given by

wij = 1

h
αji
j |i
∑m

k=1(1/h
αki
k|i )

for i, j = 1, . . . ,m. (11)

3.2.4. Properties of Weights

It is observed that weightwij is a function of self-entropy and conditional-entropy,
which are functions of single (univariate) observation distributionp(θ, xi) and joint
(bivariate) observation distributionp(θ, xi, xj ) between two sensors, respectively.
It is worth noting that only the univariate and bivariate observation distributions are
needed throughout the decision process. However, in the Bayesian model, which
will be discussed later, higher order distributions are necessary.

Attention should be paid to the cases wherebyhi|j diminishes to zero. For
nonzerohi|j , Equation (11) works perfectly. When sensori is absolutely certain
about its observation (hi|i = 0) or joint observation (hi|j = 0), the entire cor-
responding column in the transition matrixwij will then be set to one fori =
1, . . . ,m. When more than one sensor happens to be absolutely certain, normaliza-
tion across the transition matrix row is necessary. If the condition of convergence is
not satisfied, the concensus output will be the weighted average of the initial local
observations.

3.2.5. Local Estimated Observation

Equation (8) shows that global consensus output is a weighted sum of local ob-
servations. The local observation can be preprocessed before the iteration process
starts. The local observation is an estimation of sensori aboutθ based on

(a) the information about the joint observationxi andxj which is represented by
a posterior distributionpij (θ |xi, xj ); and

(b) the entropy of the joint observationxi andxj . The local estimated observation
is given by

E
[
u0
i (θ)

] = m∑
j=1

wij
∑
θ∈2

θpij (θ |xi, xj ), (12)
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for i = 1, . . . ,m, wherewij is defined by Equation (11). It is noted that
pij (θ |xi, xj ) is set topij (θ |xi) whenhi|i < hi|j because the uncertainty level
should at least be maintained in the case of negative relevance.

By rewriting Equation (12), the local estimated observation can be viewed as an
expected value ofθ from a local distributionu0

i (θ).

E
[
u0
i (θ)

] =∑
θ∈2

θu0
i (θ), (13)

where the local distribution is given by

u0
i (θ) =

m∑
j=1

wijpij (θ |xi, xj ). (14)

Similarly, from Equation (8), consensus outputu∗ can be found by substituting
the local observationsu0

i by local estimated observationsE[u0
i (θ)] and is given by

u∗ =
m∑
i=1

κiE
[
u0
i (θ)

]
. (15)

3.3. DECISION RULE

For an observation assumed to be a random variable, Equation (8) gives the con-
sensus decision. On the other hand, if the observed variable is an object which is
discrete, the consensus decision is a classification issue, i.e., the observed object is
assigned to a classθ∗ ∈ 2 such thatθ∗ has the highest posterior probability. If the
local observationsu0

i are the local posterior probabilitiesp0
i (θ |xi), the consensus

decision is the consensus posterior probabilityp∗(θ |Ex), which is given by

p∗(θ |Ex) =
m∑
i=1

κip
0
i (θ |xi),

where

EK = (κ1, . . . , κm)
T,

m∑
i=1

κi = 1, 06 κi 6 1.

Therefore, the observed object is assigned to a classθ∗ ∈ 2 on the basis of the
following maximization function

θ∗ = arg max
θi∈2

p∗(θi|Ex).

This function maximizes the consensus posterior probabilityp∗(θ |Ex).
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3.4. PROPERTIES OF EMC

Entropy based Markov chain (EMC) fusion exchanges sensory observations among
the sensors and updates iteratively the local observations on the basis of the un-
certainty levels of local observations and joint observations between two sensors.
Self-entropy and conditional entropy represent the uncertainty levels of local obser-
vations and joint observations respectively. The consensus output is the convergent
value of the iteration process. Suppose that there arem observations with the same
sample spaceX. The consensus output space is denoted by2. The interdependence
among the observations is modelled by single observation distributionp(θ, xi) and
joint observation distributionp(θ, xi, xj ). Since there arem single observation
distribution andCm2 joint observation distributions, the size required to represent
all the tables of distributions is

m× |2| × |X| + Cm2 × |2| × |X|2.
Therefore, the size of the distribution tables increases polynomially when the num-
ber of observations increases. EMC combines observations by following the eval-
uation steps below:

Entropy. If each sensor knows all the sensory observations, self-entropy and con-
ditional entropy will be in the form

hi|i(xi) = −
∑
θ∈2

pi(θ |xi) logpi(θ |xi),

hi|j (xi, xj ) = −
∑
θ∈2

pij (θ |xi, xj ) logpij (θ |xi, xj ), for i, j = 1, . . . ,m,

respectively. Form observations, there arem self-entropy values,hi|i (xi) andCm2 /2
conditional entropy values,hi|j (xi, xj ). The time required to compute the posterior
probabilitiespi(θ |xi) andpij (θ |xi, xj ) are of O(|2| + |X|) and O(|2| + |X|2), re-
spectively. The required time to compute self-entropyhi|i and conditional entropy
hi|j are of O(|2|2 + |2||X|) and O(|2|2 + |2||X|2), respectively. Therefore, the
total time for evaluating all the entropy is of O(m2)×O(|2|2+ |2||X|2).
Weight Matrix. From Equation (11), weight matrixW is evaluated by the following
expression,

wij = 1

h
αji
j |i
∑m

k=1(1/h
αki
k|i )

for i, j = 1, . . . ,m.

The time required to compute the weight matrixW is of O(m2).

Stationary Transition Probability. From Equation (9), the vector of stationary tran-
sition probabilities EK = (κ1, . . . , κm)

T is computed as follows

WT EK = EK.
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This can be viewed as the eigenvector problemA · Ex = λEx with eigenvalueλ equal
to one. Thus, the vector of stationary transition probabilitiesEK can be found in
polynomial time O(m3) [25].

Linear Combination of the Weighted Observations. From Equation (8), the consen-
sus output is evaluated as follows

u∗ = EKT EU0 =
m∑
i=1

κiu
0
i .

Therefore, the combination process including entropy, weight matrix, stationary
transition probability evaluations and linear combination of the weighted observa-
tions requires polynomial time.

Concerning the robustness of the entropy based Markov chain (EMC) fusion, let
us assume that there arem observations. From Equation (8), the local observations
are combined to get a consensus outputu∗, that is,

u∗ = κ1u
0
1+ · · · + κiu0

i + · · · + κmu0
m.

The stationary probabilityκi reflects the weighting of sensori’s observation in the
combination process. From Equation (10), i.e.,κi ∝ wji , it is clear that the sta-
tionary probabilityκi is directly proportional to the weightswji which is inversely
proportional to the conditional entropyhi|j . Thus, the stationary probabilityκi is
also inversely proportional to the entropyhi|j for j = 1, . . . ,m, κi ∝ 1/hi|j .

If the local observationu0
i is replaced by the weighted sum of the local bivariate

distributions, and the consensus output is replaced by the posterior distribution, as
shown in Equation (14). The Equation (8) can be rewritten as

p∗(θ |Ex) = (κ1, . . . , κm)


w11p1+w12p12+ · · · +w1mp1m

w21p12+w22p2+ · · · +w2mp2m
...

wm1p1m +wm2p2m + · · · + wmmpm

 , (16)

wherepij = pij (θ |xi, xj ) andpi = pi(θ |xi).
Assuming that an observation of sensori deviates from the normal training

data, the uncertainty levelshi|j of the observation will increase accordingly. As
such, the associated weightswji will be decreased. The stationary probabilityκi
will be decreased to reflect the increment of the uncertainty level.

Therefore, the univariate and bivariate distributionspi, pij andpji of the non-
normal and noisy observationxi in the combination process are assigned the smaller
weights such that the contribution of the noisy observation is minimized. It is gen-
erally assumed that if an observation is abnormal or deviated from the normal, it
will have a larger variance. Thus, EMC will suppress the univariate and bivariate
distributions of the noisy observation with high uncertainty level to minimize the
contribution of the noisy and unreliable observation.
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To summarize, the entropy based Markov chain (EMC) fusion is different from
the Bayesian fusion based on the fact that

(a) univariate observation distributions and bivariate observation distributions be-
tween any two sensors, which represent the interrelations between the sensory
observations and the consensus output, are represented in polynomial form;

(b) the consensus output is the linear combination of the weighted local estimated
observations, in which weights can be computed in polynomial time; and

(c) EMC is robust because it suppresses the noisy observation with high uncer-
tainty level to minimize the contribution of the noisy and unreliable observa-
tion in the combination process.

4. Experiments

The proposed entropy based Markov chain fusion technique will be illustrated by
two experiments:

(I) aggregation of three optical sensors with possible application in object recog-
nition on a conveyor belt; and

(II) color mapping from the RGB space to the CMYK space with possible appli-
cation in the printing industry.

For each experiment, three sets of results are obtained under three different condi-
tions, namely,

(i) individual sensors without applying any fusion techniques;
(ii) applying the proposed entropy based Markov chain fusion technique and

assuming sensors are independent; and
(iii) similar to (ii) but assuming sensors are dependent.

Condition (i) serves as one basis of comparison. Condition (ii) considers the com-
mon assumption made by other approaches, [13, 19, 22, 27]. Serving as a basis of
comparison in terms of accuracy, the traditional Bayesian fusion technique is also
implemented. Under the assumption of independence, the conditional entropy will
be set to be the same as the self-entropy, i.e.,hi|j = hi|i , i.e., observations made
by sensorj will no longer affect observations made by sensori. Thus, the weight
matrix W , (Equation (11)), will be reduced to a matrix with identical columns.
And, the posterior probability for the EMC fusion technique takes the form

p(θ |Ex) =
m∑
i=1

κip(θ |xi),

whereθ is the consensus output (decision),Ex = (x1, . . . , xm) is the vector of
decisions made bym sensors andp(θ |xi) is the univariate posterior probability.
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On the other hand, the posterior probability for the Bayesian fusion technique is
given by

p(θ |Ex) =
m∏
i=1

p(θ |xi).

Under the assumption of dependence, the posterior probability of the EMC fusion
technique is given by Equation (16),

p(θ |Ex) = (κ1, . . . , κm)


w11p1+w12p12+ · · · +w1mp1m

w21p12+w22p2+ · · · +w2mp2m
...

wm1p1m +wm2p2m + · · · + wmmpm

 .
Whereas, the posterior probability for the Bayesian approach is given by

p(θ |Ex) ∝ l(Ex|θ)π(θ),
where the likelihood function is in the form

l(Ex|θ) = p(Ex|θ)∑
θ∈2 p(Ex, θ)

= p(Ex, θ)∑
θ∈2 p(Ex, θ)

∑
Ex∈X p(Ex, θ)

.

To demonstrate the robustness of the proposed fusion technique, noise is also
introduced into the test data in our experiments. For each experiment,p(θ |x) is
computed from the training data and Guassian is assumed too. The following
sections give the description of each experiment and the corresponding results
obtained.

4.1. EXPERIMENT I – THREE OPTICAL SENSORS

This section shows the application of the proposed entropy based Markov chains
fusion technique to aggregate the observations of three optical crossbeam sensors
such that the object carried by the conveyer belt is classified. The observation of the
crossbeam sensor is the length of the side view of the object parallel to the conveyer
belt. The setup of the experiment is shown in Figures 3 and 4. The setup consists of
a conveyer belt, a speed decoder, three pulse counters and three crossbeam sensors.
In Figure 4, the conveyer belt carries the objects leftwards to pass through the
optical crossbeam sensors. In this experiment, there are three crossbeam sensors
and the angle between them is 30 degree. Crossbeam sensor [30] consists of a pair
optical transmitter and receiver, and is simply an on and off optical device. As
shown in Figure 5(a), when the object blocks the connection betweenT2 andR2,
the crossbeam sensor sends a signal to switch on the pulse counter,x2, which starts
counting. The crossbeam sends a signal to switch off the pulse counter when there
is no object between the transmitter and the receiver, as shown in Figure 5(b).D is
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Figure 3. Diagram of the 3-optical crossbeam sensors.

Figure 4. Physical setup of the crossbeam sensors and the conveyer belt.

the distance measured by the sensor and is directly proportional to the number of
pulses recorded during the period when the connection between transmitter and
receiver is blocked. The same applies toT1− R1 andT3− R3.

The decoder generates a pulse for each 0.01 mm movement of the conveyer belt.
Therefore, the distanceD between two extreme points ‘viewed’ by the crossbeam
sensor can be computed by the multiplication of the number of counted pulsesX2
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(a) (b)

Figure 5. Detection process: (a) object blocks the connection; (b) object unblocks the
connection.

(a) (b)

Figure 6. Computation of the diameter: (a) definition; (b) relation to pulse counter.

and distance (0.01 mm) per pulse. According to Wallack and Canny [30], the
diameter is defined as the distance between the two extreme points given a fixed
orientation, as shown in Figure 6(a). However, the diameter is not the distance mea-
suredD if the sensor is not perpendicular to the direction of the object movement.
As shown in Figure 6(b), the diameterDMi is then calculated by

DMi = Di cosθi (17)

= Xi × 0.01 cosθi. (18)

Therefore, the diameterDMi is directly proportional to the counted pulses,DMi ∝
Xi, for i = 1,2 and 3. The counted pulse readingsX1, X2, X3 can then be used
directly to classify the ‘observed’ object.

In this experiment, four objects are used. They are characters ‘a’, ‘p’, ‘i’ and ‘t’,
as shown in Figures 7(a), (c), (e) and (g), respectively. For these four objects, the
diameters viewed by the different crossbeam sensors are shown in Figures 7(b),
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(a) Character ‘a’ (b) Diameters of ‘a’

(c) Character ‘p’ (d) Diameters of ‘p’

(e) Character ‘i’ (f) Diameters of ‘i’

Figure 7. Characters used in the experiment and their corresponding diameters.
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(g) Character ‘t’ (h) Diameters of ‘t’

Figure 7. (Continues).

(d), (f) and (h), respectively. As the object is being carried by the conveyer belt,
the diameters recorded by the sensors are dependent on the object orientation.
Intuitively, the chance of misclassification for characters ‘a’ and ‘i’ is relatively
smaller than that for characters ‘i’ and ‘t’. Characters ‘i’ and ‘t’ will be easier to
be misclassified if there is only one optical sensor. It is believed that the addi-
tion of optical sensors can improve classification accuracy. Therefore, the purpose
of the aggregating the observations of the three optical sensors is to reduce the
uncertainty that is inherited by any individual sensor. It is obvious that the ob-
servations of the three optical sensors are dependent and complementary. Let us
assume that the observed object is denoted byo and the sample space is denoted
by O = (o1, o2, o3, o4) = (a, p, i, t). Given a vector of sensory observations
x1, x2, x3, the posterior probabilityp(o|x1, x2, x3) that the object is either one of
the possible objects inO will be computed by the proposed entropy based Markov
chain fusion technique and Bayesian fusion. The observed object will then be as-
signed to either one of the possible objects with the highest posterior probability,
that is,

o = arg max
oi
p(oi |x1, x2, x3).

4.1.1. Results from Individual Sensors

Each object was carried by the conveyer belt, and passed through the three optical
crossbeam sensors 1000 times. Hence, there are in total 4000 sets of observations,
each from three sensors,(x1, x2, x3). From Table I, as expected, the classification
error of each individual crossbeam sensor is large because the objects ‘a’ and ‘p’, ‘i’
and ‘t’ have similar shapes and are quite difficult to be identified in one dimension.
Sensor 2 has larger classification error, which can be explained as follows: As
shown in Figure 3, the viewing angles of sensor 1 and 3 are smaller (30 degree)
than that of the sensor 2 (90 degree from the line of object movement). From
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Table I. Classification error of the individ-
ual crossbeam sensors

Sensor number Classification error %

1 69.8

2 75.2

3 69.8

Equation (18), the relation between the diameter and number of counted pulses
is

Xi = DMi

0.01 cosθi
,

whereXi is the number of counted pulses,DMi is the diameter viewed by sensori
andθi is the viewing angle of sensori from the line of object movement. Therefore,
when the viewing angleθi decreases, a small difference in diameterDMi, e.g.,
character ‘i’ and ‘t’, is magnified into a larger difference in term of the number
of counted pulsesXi . Therefore, sensor 1 and 3 are more sensitive to the small
difference in diameter than sensor 1, and hence give relatively smaller classification
errors.

4.1.2. Results from Fusion Techniques

Two fusion techniques, the proposed EMC and the Bayesian, under two assump-
tions, independent and dependent were implemented for comparison. Table II
shows

(i) error is reduced as compared to that given in Table I;
(ii) results from the EMC fusion technique in terms of classification error is

comparable to that of the Bayesian approach; and
(iii) consideration of dependent relations improves further the classification er-

rors.

Noise in terms of number of pulsesN is added to each of the testing sensory
observations individually, i.e., (x1 ± N , x2 ± N , x3 ± N), where 10 values ofN
ranging from 10 to 100 were tested. In our experiments, we have found that the
probability of the beam sensor giving pulses higher than 50 error pulses is quite
low (approximately 1.19%). Therefore, we experimented up to 100. Figure 8 give
the classification errors when noise at different levels are introduced. Note that in
all cases, the deviation from those without noise is negligible, within±0.2% for
the EMC technique and a maximum of 0.4% for the Bayesian one.
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Table II. Classification errors from fusion techniques

Fusion technique Classification error % Classification error %

Independent Dependent

EMC 56.3 17.6

Bayesian 56.3 17.5

Figure 8. Classification errors (%) with noisy input data (dependent assumption).

4.2. EXPERIMENT II – COLOR MAPPING FROM RGB SPACE TO CMYK SPACE

The proposed entropy based Markov chain fusion technique is further demon-
strated in color mapping applications. The experiment only concerns the color
mapping from the RGB color space to the CMYK color space. RGB denotes
the Red, Green and Blue primary colors while CMYK denotes Cyan, Yellow,
Magenta, and blacKbasic colors commonly used in the printing industry. Each
CMYK representation is expected to be some combination of the three stimuli in
the RBG representation. Their relationships can best be depicted by a Bayesian
network, as shown in Figure 9. We shall assume that the values of stimuli C,
M, Y and K are denoted byc, m, y, k and the sample space of each stimulus
is denoted byC = (c1, . . . , c12), M = (m1, . . . ,m12), Y = (y1, . . . , y12) and
K = (k1, . . . , k7). Similarly, the sample spaces of Red, Green and Blue in the
RGB representation are denoted byR = (r1, . . . , r256), G = (g1, . . . , g256) and
B = (b1, . . . , b256), respectively. Suppose that probabilistic model is employed,
given a RGB representation(r, g, b), the posterior probability that values ofc,
m, y, k are ci ∈ C, mi ∈ M, yi ∈ Y , ki ∈ K, respectively, is computed by
aggregating the values of the three stimuli (RGB), that isp(c,m, y, k|r, g, b). The
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Figure 9. Bayesian network describing the interdependent relations between RGB and CMYK
stimuli.

value of the combined posterior probability is then estimated by the proposed-
entropy based Markov chain fusion technique. The stimuli(c,m, y, k) will then
be assigned a value in one of the possible classes in(C,M, Y,K) such that the
combined posterior probability is the highest, that is

(c,m, y, k) = arg max
(ci ,mi ,yi ,ki )

p(ci,mi, yi, ki |r, g, b).

The results will be compared with that obtained by the Bayesian fusion technique.

4.2.1. Results from Individual Stimulus

A slight variation in the value of stimulus might not be detected by human eye
easily. In the CMYK representation, if the stimulus value changes within the range
of 20, it still gives similar color appearance. Therefore, given a CMYK represen-
tation (C,M, Y,K), any CMYK representation(Ci,Mi, Yi,Ki) will give similar
color appearance and be treated as the ‘matched’ representation if the sum of
differences between each pair of stimuli is less then 20, i.e.,

if (|C − Ci| + |M −Mi | + |Y − Yi| + |K −Ki |) 6 20,

then SIMILAR COLOR APPEARENCE.

Based on the given training data, which gives a table of mappings from CMYK
to RGB, one RGB representation may match up to five CMYK representations.
These multiple mappings cause the major matching errors. Therefore, in most
mismatched cases, given the RGB representation, it gives more than one CMYK
representations, which have equal and the highest posterior probabilities. In this
situation, the system has to select one CMYK representations randomly among
these representations and to check whether this chosen representation is matched.

The experiment of utilizing individual sensor (or stimulus) for color matching
has shown that the matching error is expectedly large, as shown in Table III. It is
because the color space of each single stimulus in RGB have 256 values. However,
the color space of CMYK color representation has 12096(= 12×12×12×7) val-
ues, where Cyan (C), Magenta (M), Yellow (Y) have twelve values, and Black (K)
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Table III. Matching errors
from individual stimulus

Stimulus Matching Error

R 15.6%

G 15.6%

B 15.6%

Table IV. Matching errors from fusion techniques

Fusion technique Matching error Matching error

Independent Dependent

Bayesian 1.26% 1.24%

EMC 1.26% 1.26%

has seven values. In other words, each individual stimulus in RGB representation
may match up to 47 CMYK representations on the average.

4.2.2. Results from Fusion Techniques

Table IV shows the matching errors of selecting only one representation at a time.
Again EMC and Bayesian techniques are comparable in terms of matching errors.
Note that there is not much improvement when dependent relations are considered.

4.2.3. Results with Noisy Data

Fifteen levels of noise were introduced into the RGB input data. Figure 10 shows
the results for the two fusion techniques under the independent assumption. Note
that the performance of the Bayesian fusion technique (solid line) is very sensitive
to noise as compared to the EMC (dashed line) technique. The matching errors
from the Bayesian approach are over 95% whereas those from the EMC approach
are between 17 and 21%. This is due to the multiplicative nature in computing the
multivariate posterior probability which is given by

p(C,M, Y,K|R,G,B)
= p(C,M, Y,K|R)p(C,M, Y,K|G)p(C,M, Y,K|B).

A small change in one of the univariate posterior probabilities will amplify the
overall multivariate probability. On the other hand, the proposed EMC fusion tech-
nique is more robust. The performance is not affected by noise as much as the
Bayesian approach. The EMC fusion technique computes the multivariate poste-
rior probability based on weighted sum of other posterior probabilities, instead of
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Figure 10. Matching errors with noisy input data (independent assumption).

Figure 11. Matching errors with noisy input data (dependent assumption).

weighted product, i.e.,

p(C,M, Y,K|R,G,B)
= κRp(C,M, Y,K|R)+ κGp(C,M, Y,K|G)+ κBp(C,M, Y,K|B).

Under the dependent assumption, the Bayesian approach is based on the likelihood
function. And the EMC fusion technique is based on Equation (16). It is shown
from Figure 11, the proposed EMC fusion technique (dashed line) is more robust
than the Bayesian approach (solid line). The range of errors for the EMC approach
is between 4.6 and 13.6% whereas that for the Bayesian approach is between 1.7
and 59.6%.
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Table V. Computational requirements

Bayesian EMC

Size of distribution table |2| · |X|m m|2| · |X| + Cm2 |2| · |X|2
Time required to

compute probabilities O(|2| + |X|m) O(|2| + |X|) +O(|2| + |X|2)
Time required to

compute entropies Not necessary O(m2)O(|2|2+ |2||X|2)

4.3. SUMMARY OF THE RESULTS

Entropy based Markov chain fusion is established to incorporate the uncertainties
of the univariate observation and bivariate observations into the Markov chains
such that the interdependence between sensors can be reflected effectively during
the data combination process. The performance of the approach, when compared
with the individual sensors in terms of error, demonstrates its strength in improving

(a) the measurement accuracy for a group of positively dependent sensors,
(b) the classification errors for the color mapping and object identification, and
(c) the robustness.

It provides strong evidence to the generalization of the technique to a pool of
m sensors. It also shows that the aggregation of positively dependent sensors is
constructive.

An important advantage of the technique is its simplicity in terms of data struc-
ture and computation. No greater than second order of the joint observation distri-
bution is necessary form sensors by which it can greatly simplify the data struc-
ture to represent the interrelations among sensors, and accelerate the computation
of sensory weights. Table V gives the summary of the theoretical computational
requirements of the two approaches. Since the number of sensors used in our
experiments is three, there is no significant difference between the two.

5. Conclusion

This paper proposes and demonstrates the entropy based Markov chain (EMC) fu-
sion technique to aggregate multiple sensory observations into a consensus output.
The significant impact of including dependent information in sensory observation
combination process has been shown. As illustrated by the experimental results,
the addition of dependent relationships is useful in the sense that EMC with depen-
dence can remarkably improve the measurement accuracy, when compared with
individual sensors. The major benefits of the approach are as follows:
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(a) single observation distributions and joint observation distributions between
any two sensors, which represent the interrelations between the sensory ob-
servations and the consensus output, are represented in polynomial form,

(b) the consensus output is the linear combination of the weighted observations,
in which weights can be computed in polynomial time and

(c) EMC is robust because it suppresses the noisy observation with high uncer-
tainty level to minimize the contribution of the unreliable and noisy obser-
vation in the combination process. The disadvantage of this approach is that,
owing to the limited order of likelihood functions, dependence information
may not be ‘fully’ represented as in the Bayesian fusion, in which data set
interactions can be completely modelled by the higher order likelihood func-
tions. However, in terms of computation efficiency and data representation
simplicity, EMC is still attractive to implement.
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