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Abstract

We propose a novel framework to segment vessels on their cross-sections. It starts with a probabilistic vessel axis tracing in a gray-scale
three-dimensional angiogram, followed by vessel boundary delineation on cross-sections derived from the extracted axis. It promotes a
more intuitive delineation of vessel boundaries which are mostly round on the cross-sections. The prior probability density function of
the axis tracer’s formulation permits seamless integration of user guidance to produce continuous traces through regions that contain fur-
cations, diseased portions, kissing vessels (vessels in close proximity to each other) and thin vessels. The contour that outlines the vessel
boundary in a 3-D space is determined as the minimum cost path on a weighted directed acyclic graph derived from each cross-section. The
user can place anchor points to force the contour to pass through. The contours obtained are tiled to approximate the vessel boundary
surface. Since we use stream surfaces generated w.r.t. the traced axis as cross-sections, non-intersecting adjacent cross-sections are guar-
anteed. Therefore, the tiling can be achieved by joining vertices of adjacent contours. The vessel boundary surface is then deformed under
constrained movements on the cross-sections and is voxelized to produce the final vascular segmentation. Experimental results on syn-
thetic and clinical data have shown that the vessel axes extracted by our tracer are continuous and less jittered as compared with the other
two trace-based algorithms. Furthermore, the segmentation algorithm with cross-sections are robust to noise and can delineate vessel
boundaries that have level of variability similar to those obtained manually.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Vascular disease is one of the major causes of death and
disability worldwide and thus one of the leading causes of
nursing home admissions and hospitalization in many
countries. Taking the population of the United States of
America in census year 2000 (�281 million) as an example,
there were 10–16 million people suffering from intracranial
aneurysms, a kind of cerebrovascular disease that causes
stroke upon rupture of the aneurysms (Rinkel et al.,
1998); not to mention other types of cerebrovascular dis-
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doi:10.1016/j.media.2007.05.003

* Corresponding author. Tel.: +852 2358 7000; fax: +852 2358 1477.
E-mail addresses: cswilbur@cse.ust.hk (W.C.K. Wong), achung@cse.

ust.hk (A.C.S. Chung).
eases such as carotid stenoses and arteriovenous malforma-
tions (AVM).

Vascular imaging is particularly essential to the diagno-
sis and prognosis of vascular diseases in a clinical environ-
ment—interventionists acquire three-dimensional (3-D)
angiograms of a patient to comprehend the pathology
and the peripheral vasculature; a treatment can then be
planned with reference to those images; a new set of 3-D
angiograms is often acquired after the treatment to assess
the effectiveness of the operation. Hence, segmentation of
those 3-D angiograms is invaluable. It provides patient-
specific 3-D vascular models that can facilitate an effective
and efficient diagnostic review of the vasculature. It also
helps the radiologists/interventionists to further character-
ize vascular diseases by measuring clinical parameters of
interest on these models, e.g. stenosis severity, the neck
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width and the dome height of a cerebral aneurysm. In addi-
tion, segmentation is a common pre-processing step for
other routines or analyses, such as visualization, volumetric
measurement, quantitative comparison and image-guided
surgery (Suri et al., 2002).

Nevertheless, vascular segmentation alone can be insuf-
ficient for: (a) studying quantitatively the vessel attributes
over a particular vessel population (Bullitt et al., 2004);
(b) generating fly-throughs in virtual endoscopy (Farag
et al., 2004); or (c) performing real-time registration of 3-
D vessels to X-ray angiograms (Kita et al., 1998). In such
cases, extraction of the vessel axes is required instead. This
usually demands further post-processing on the segmenta-
tions of the 3-D vessels. Topological thinning (Palágyi
et al., 2001), voxel encoding technique (Zhou and Toga,
1999; Farag et al., 2004) and Voronoi diagram (Ogniewicz
and Kubler, 1995) had been investigated for the construc-
tion of vessel axes from the segmentations. Hybrid
approaches were also proposed (Flasque et al., 2001; Has-
souna et al., 2005). In order to obtain a satisfactory vessel
axis extraction with the above algorithms, a topologically
and morphologically correct vascular segmentation (i.e.,
with no holes and cavities) is necessary, which however
may be difficult to obtain from clinical data sets.

Axis-based vascular segmentation algorithms (Hernán-
dez-Hoyos et al., 2000; Wink et al., 2000; Aylward and Bul-
litt, 2002; Shim et al., 2005; McIntosh et al., 2006) provide
an alternative means to kill two birds with one stone. In
these algorithms, vessel axes are extracted segment-by-
segment while the vessel boundary associated with each
segment is delineated. Generally speaking, they consist of
two core alternate steps:

(i) the generation of an axial tangent; and
(ii) the computation of the next axial point.

Segmentation is performed locally w.r.t. the axial point
and its tangent to help determine the position of the next
axial point. An axis-trace is initiated by a manually
selected seed point. The axial tangent of the seed is then
generated. This tangent helps to define a cross-sectional
plane (normal plane) by shifting forward the current one
along the tangential direction, on which the vessel is seg-
mented and the next axial point is calculated as the cen-
troid of the planar segmentation. This process keeps
iterating until a termination criterion is met or the user
preempts the tracing.

However, the trace obtained with the aforementioned
methods may go astray and make sudden jumps in
regions that contain furcations, diseased portions and
kissing vessels (Wink et al., 2000). Re-initialization of
the axis-trace at the proximal end of the side branch
and the immediate disease-free and kissing-free portions
is therefore inevitable. As a result, a disconnected vessel
axis may be obtained and, more importantly, these meth-
ods may only produce an incomplete segmentation of the
vessels of interest.
1.1. Our approach to vessel axis tracing and segmentation

In this paper, to alleviate the two following difficulties
of:

(i) composing a topologically and morphologically cor-
rect vascular segmentation then extracting vessel axis
from it; and

(ii) continuously tracing the vessel axis through regions
that contain furcations, diseased portions and kissing
vessels (aka problematic regions), in the meantime
producing vascular segmentation,

we take a very different approach to tracing the vessel axes
and segmenting the vessels of interest. First, we extract ves-
sel axes from a gray-scale 3-D angiogram without any form
of segmentation (e.g. edge detection (Hernández-Hoyos
et al., 2000; Wink et al., 2000; Shim et al., 2005; McIntosh
et al., 2006) or ellipse-fitting (Shim et al., 2005) on the
cross-sectional planes). Flasque et al. (2001) and Aylward
and Bullitt (2002) suggested an intensity-weighted mass
center traversal algorithm and an intensity ridge traversal
method, respectively, to extract tubular vessel axis. Our
method, however, can produce continuous vessel axes in
the problematic regions which may not be tubular in shape.
This is achieved by allowing users to give guidance on axis
tracing. With the extracted axis, we then segment the vessel
of interest on the cross-sections that are derived from the
axis. Such decoupling of segmentation and vessel-axis-trac-
ing avoids incomplete segmentation of the vessel of interest
due to axis-trace re-initialization and disconnected vessel
axis in the problematic regions as in the aforementioned
axis-based segmentation algorithms. Moreover, it is prefer-
able to trace a vessel axis directly rather than compute it in
a roundabout way from a segmentation that may be
subject to topological or morphological incorrectness. Such
incorrectness may lead to an undesired vessel axis which
needs further rectification.

We observed that the vessel boundaries to be segmented
on the cross-sections are mostly round, compared with
those on either axial, coronal or sagittal image planes. This
is especially true for the intracranial vessels, which are
curved and thus rarely oriented normal to those image
planes. Therefore, by segmenting vessels on the cross-sec-
tions, we can reduce the comparatively complex 3-D seg-
mentation problem into a series of simpler 2-D vessel
boundary delineation problems. As the final procedure, a
3-D vessel boundary surface model is constructed from
the contours extracted on the cross-sections. The surface
model is then deformed with the mesh vertices moving on
their corresponding cross-sections rather than freely in a
3-D space. This helps avoid shrinkage of the model and
bunching of the mesh vertices at regions that with high
intensity gradient magnitude.

Our axis tracer works along the research lines of Ayl-
ward and Bullitt (2002), in which the vessels are analyzed
on a scale-space. Nonetheless, we do not perform Hessian
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matrix analysis as in the work. Instead, we embed the scale-
space analysis in a probabilistic framework. In this frame-
work (cf. Section 2), the axial point and its associated
tangent are found in a single step as a maximum a posteriori

(MAP) estimation, contrary to other algorithms (Hernán-
dez-Hoyos et al., 2000; Wink et al., 2000; Aylward and Bul-
litt, 2002; Shim et al., 2005; McIntosh et al., 2006) which
take alternate steps to search those two quantities. Our
method guarantees that the traced points are distanced
from the preceding and the succeeding ones by a user-
defined distance. This effectively helps avoid sudden jumps
of the trace and large spatial discontinuities between the
axial points. User-given guidance (2-D curves drawn on
the screen by the user to guide the axis tracer through
the problematic regions) can also be integrated seamlessly
into the probabilistic framework as a prior probability den-
sity function (pdf).

In addition, the cross-sections derived from the traced
axis are not necessarily flat planes as in Hernández-Hoyos
et al., 2000; Wink et al., 2000; Shim et al., 2005. As pointed
out by Yim et al. (2001), cross-sections of a curved vessel are
prone to intersection problems if the density of the axial
points is not low enough. In order to relax this planar con-
straint, we generate cross-sections with a commonly used
flow visualization technique, namely stream surfaces (cf.
Section 3). This technique guarantees that there is no inter-
section between the cross-sections. It offers a nice property
that the vessel boundaries extracted on those surfaces are
ordered in a 3-D space. In other words, a 3-D vessel bound-
ary surface model with no self-intersection can be con-
structed by joining the vertices of adjacent contours. Also,
extra cross-sections (and the extracted vessel boundaries)
can be inserted between the existing ones without the need
of re-computation, contrary to the method proposed in
(Yim et al., 2001), where re-calculation of cross-sections is
a must. In our framework, delineation of the round vessel
boundary on a cross-section is accomplished by finding
the shortest, globally optimal, circular path on a weighted
directed acyclic graph (DAG) which is carefully constructed
from the cross-section. We also allow the user to place
anchor point(s) to guide the boundary extraction. This is
achieved by offsetting some of the edge weights of the DAG.

Experimental results on synthetic and clinical data sets
show that our axis tracer can extract less jittering vessel
axis in regions that contain furcations, kissing vessels and
thin vessels (in diameter <2 voxels) compared with the
other two related works, (Aylward and Bullitt, 2002; Shim
et al., 2005). With user guidance, our method can also pro-
duce continuous traces to side branches at furcations and
bypass diseased portions. Moreover, we have evaluated
our cross-sections built for the vascular segmentation. In
contrast to the other methods (naı̈ve method and Yim
et al., 2001), our results have shown no intersection, surface
artifact and severe uneven surface sampling amongst the
cross-sections. It is also found that the proposed frame-
work is robust to noise and can produce vascular segmen-
tations that have level of variability similar to those
segmentations obtained from human raters. We believe
that our method is particularly good at segmenting the (dis-
eased) vasculature of a small region of interest, in which
users want to control the vessel axis extraction and segmen-
tation process. Such application is essential to endovascu-
lar treatment planning, diagnosis and prognosis of
vascular diseases in the clinical environment.

2. Probabilistic framework for axis tracing

2.1. Problem formulation

We formulate the vessel axis tracing as a problem that
can be solved by iteratively and simultaneously finding
(1) the next axial point xiþ1, (2) the associated tangent
t̂iþ1 and (3) the scale ri+1 (� width) of the vessel, given
the current ones (indexed with i). These three quantities
form the solution vector piþ1 of the axis tracing problem.
Without loss of generality, one can express xiþ1 and t̂iþ1

in spherical coordinates ðhiþ1
x ;/iþ1

x Þ and ðhiþ1
t ;/iþ1

t Þ with
respect to the reference frames whose Z-axes are parallel
to t̂i and b̂i ¼ ðxiþ1 � xiÞ=jxiþ1 � xij, respectively. We adopt
the ‘‘double-cross’’ successive method (Bloomenthal et al.,
1996) to compute the reference frame of xiþ1 from that of xi

(the previous axial point). This method tries to minimize
the rotation amongst successive reference frames. The x-
axis of the reference frame to be calculated is expressed
as t̂?i ¼ t̂i � t̂?i�1 � t̂i, where t̂?i�1 is the x-axis of xi’s reference
frame. The x-axis of the t̂iþ1’s reference frame is given by,
b̂?i ¼ b̂i � t̂?i � b̂i. Therefore, the solution vector piþ1 is
expressed as ½hiþ1

x /iþ1
x hiþ1

t /iþ1
t riþ1�T, given the vector

qi ¼ ½xîtît?i �
T from which the reference frames of xiþ1 and

t̂iþ1 can be derived. Fig. 1a shows a 2-D version for better
illustration. The spherical coordinates /iþ1

x and /iþ1
t 2 ½0; p�

denote the polar angles, whereas hiþ1
x and hiþ1

t 2 ½0; 2p�
denote the azimuthal angles. Mathematically,

xiþ1 ¼ xi þ ½̂t?i ð̂t?i � t̂iÞ̂ti�
d cos hiþ1

x sin /iþ1
x

d sin hiþ1
x sin /iþ1

x

d cos /iþ1
x

2
64

3
75 ð1Þ

and

t̂iþ1 ¼ ½b̂?i ðb̂?i � b̂iÞb̂i�
cos hiþ1

t sin /iþ1
t

sin hiþ1
t sin /iþ1

t

cos /iþ1
t ;

2
64

3
75 ð2Þ

where d = dV is a user-defined step size of the trace and dV

is the voxel size of the angiogram.
On a probabilistic framework, the solution vector is esti-

mated by a maximum a posteriori (MAP) estimation, and is
given as

piþ1 ¼ arg max
p2X

f ðpjqi; ÎÞ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{posterior pdf

¼ arg max
p2X

f ðÎjqi; pÞ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{likelihood pdf

f ðpjqiÞ
zfflfflffl}|fflfflffl{prior pdf

0
B@

1
CA;
ð3Þ



Fig. 1. Illustrations of (a) the probabilistic framework for axis tracing and (b) the tracing with user guidance on the probabilistic framework.
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where X is the solution space, f(Æ) denotes a pdf and Î
represents an appearance model of the subject (vessel axis)
to be traced. Further discussion of the appearance model
that we use in this work is presented in Section 2.2. Sup-
pose the pdf can be expressed as f ð�Þ ¼ 1

Z expð�Uð�ÞÞ,
where Z is a normalization constant and U(Æ) denotes
the corresponding energy function. Eq. 3 can be re-formu-
lated as

piþ1 ¼ arg min
p2X

UðÎjqi; pÞ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{likelihood energy

þ UðpjqiÞ
zfflfflfflffl}|fflfflfflffl{prior energy

0
B@

1
CA: ð4Þ

UðÎjqi; pÞ and UðpjqiÞ are the corresponding likelihood
and prior energies, respectively. Thier formulations are gi-
ven in Sections 2.2 and 2.3. In order to avoid backward
tracing, we set the domain of the polar angles to [0, p/3].
In addition, we force ri+1 2 [(1 � q)ri, (1 + q)ri], where
q = 0.5, such that we can control the allowable scale
change in percentage of ri to prevent sudden changes in r

when the trace flies through bifurcations and diseased por-
tions. Therefore, the solution space X of piþ1 is [0, 2p) ·
[0, p/3] · [0, 2p) · [0, p/3] · [(1 � q)ri, (1 + q)ri].

2.2. Likelihood energy function

The likelihood energy function is built upon an appear-
ance model. We employ a bounded spherical projection
(BSP) image, generated with respect to qi, as the basis
of the appearance model. The BSP image is created in a
similar fashion as the spherical maximum intensity projec-
tion (MIP) image described in (van der Weide et al.,
1998), except for the following: (1) our projection is
bounded, i.e., the spherically casted rays are not extended
infinitely, (2) the pixel intensities of the BSP image are the
normalized cumulative sums of the voxels along the
casted rays (i.e., the maximum and minimum intensities
of the BSP image is 0 and 1, respectively) and (3) the
polar coordinate is originated from the z-axis of a refer-
ence frame.

Figs. 2a–d show some of the BSP images generated on
an image volume with a solid straight tube (intensities
inside are higher than the outside) at different 3-D points
and reference frames as depicted in Figs. 2e–h. It is
observed that there is a special pattern (three horizontal
strips) on the BSP image if (1) the length of the projection
bound (later in this work, we bind this to the scale variable
r of the solution vector p) is greater than the tube radius
(we set r equal to 1.5· the tube radius), (2) the 3-D point
is on the tube’s axis and (3) the z-axis of the reference frame
is aligned with the tube’s orientation, see Figs. 2a and e
(note that there is no horizontal strip for the other three
cases as illustrated in Figs. 2b–d). As such, we use this spe-
cial BSP image as our appearance model Î in Eq. 4.
Inspired by a commonly used similarity measure, sum of
squared differences (SSD), the likelihood energy function
is given as

UðÎjqi; pÞ ¼

P
h;/
ðIh;/ðqi; pÞ � Îh;/Þ2

2r2
I

; ð5Þ

where Îh;/ denotes the BSP intensity of the appearance
model at the coordinates (h,/), Iðqi; pÞ is the BSP image
generated at xi with the reference frame defined by t̂i as

the z-axis and t̂?i as the x-axis (recall qi ¼ ½xîtît?i �
T) and

the projective bound length r (the scale variable given in
p). The variable rI ¼ 1=

ffiffiffi
2
p

controls the tolerance to the
pixel-wise differences between the BSP image Iðqi; pÞ and
the appearance model Î.

2.3. Prior energy function

User guidance is expressed as a set of user-drawn 2-D
curves on the screen. They help steer the axis tracer in 3-
D by giving reference paths on which the perspective
projected trace should follow on the screen. This idea is
illustrated in Fig. 1b. Suppose the trace follows the main
vessel from left to right without any guidance. If the user
wants to guide the trace towards the side branch, a 2-D
curve should be drawn on the screen as given. This is useful
to make the tracer to fly-through the problematic regions in
the angiogram.

We model such guidance in the prior pdf of our proba-
bilistic framework as



Fig. 2. (a–d) The bounded spherical projection (BSP) images (azimuthal and polar angles are enumerated in the horizontal and vertical axes, respectively)
generated on an image volume with a solid straight tube (the surfaces are for visualization only) at different 3-D points and the associated reference frames
(the red arrows give the z-axis directions) as depicted in (e–h). The blue frames in (a–d) are not parts of the BSP images, they are for better presentation of
the images on white papers. The wireframe-spheres in (e–h) define the scope of the bounded spherical projection (i.e., their radius equals the length of the
projection bound).
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U gðpjqiÞ ¼

PN
j¼1

ðs2
j;1 þ s2

j;2Þ

2r2
g

; ð6Þ

where N is the number of 2-D curves drawn by the user.
The variables sj,1 and sj,2 are the shortest Euclidean dis-
tances (on the screen) from the perspective projected
points of the succeeding two candidate axial points x0iþ1

and x0iþ2 to the j-th user-drawn 2-D curves, respectively.
The term ‘‘candidate’’ refers to the quantities, annotated
by the symbol prime ( 0), that are calculated on the basis
of a solution vector p ¼ ½hx/xht/tr�

T. The candidate axial
point x0iþ1 is obtained according to Eq. 1 with the spher-
ical coordinates (hx, /x). x0iþ2 is estimated from the candi-
date axial tangent t̂0iþ1 as follows: x0iþ2 ¼ x0iþ1 þ dt̂0iþ1,
where t̂0iþ1 is calculated from b̂0i ¼ ðx0iþ1 � xiÞ=jx0iþ1 � xij,
b̂?

0
i ¼ b̂0i � t̂?i � b̂0i, ht and /t, according to Eq. 2. (See

Fig. 1b for a pictorial illustration.) The variable rg = 5
screen pixels controls the guiding influence over the candi-
date axial points. A smaller energy value is obtained if
x0iþ1 and x0iþ2 are closer to the curve on the screen, i.e.
"j, sj,1! 0 and sj,2! 0. User guidance with more than
one 2-D curve is demonstrated in Section 4.

Axis smoothness is modeled in the same fashion. The
prior that favors smooth vessel axis is defined as

U sðpjqiÞ ¼
ð1� j�̂t � b̂0ijÞ

2

2r2
s

; ð7Þ

where �̂t is the mean vector of t̂i and t̂0iþ1, and rs = 0.5 con-
trols the degree of the axis smoothness (the smaller rs is the
smoother the axis). Therefore, the prior energy function in
Eq. (4) is given as
UðpjqiÞ ¼ U gðpjqiÞ þ U sðpjqiÞ: ð8Þ
2.4. Initialization

The manually selected seed point may only be picked in
close proximity to the vessel axis of interest. To initialize a
trace, we need to find the first axial point x0 within the
neighborhood of the seed point. This is done by locating
the local maxima in a Gaussian smoothed version of the
image volume. For the estimation of the initial projection
bound length (i.e., the initial scale r0) and the initial refer-
ence frame (defined by t̂0 and t̂?0 ), we perform the analysis
of the Hessian matrix and compute the ridge direction
(analogous to t̂) and the direction of maximum curvature
(analogous to t̂?) at each scale (analogous to r) in a discrete
scale-space (Aylward and Bullitt, 2002). Then, we set the
values of r0, t̂0 and t̂?0 to the triple ðr; t̂; t̂?Þ that minimizes
UðÎjq; pÞ (see Eq. (5)), where q ¼ ½x0̂ t̂t?�T, r is the scale
variable in p, and t̂0 is flipped if an opposite trace is desired.

2.5. Regularization of vessel axis

The vessel axis extracted with the probabilistic frame-
work described in Section 2.1 may be prone to slight jitters
due to the fact that the axis smoothness is constrained
locally throughout the extraction, as shown in Fig. 3a. In
order to have a globally smooth vessel axis, we minimize
the magnitude of the first-order derivative along the axis
with the following update equation:

x
ðtþ1Þ
i ¼ x

ðtÞ
i þ ctensile

X
j2Ni

ðxðtÞj � x
ðtÞ
i Þ; ð9Þ



Fig. 3. (a) The vessel axis extracted with the probabilistic framework described in Section 2.1. Slight jitters are noticeable. This is due to the fact that the
axis smoothness is constrained locally throughout the extraction. (b) The regularized vessel axis. Regularization is performed by minimizing the magnitude
of the first-order derivative along the axis.
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where x
ðtÞ
i is the 3-D position of the i-th axial point at

time t and Ni denotes the set of first-order neighbors
of the i-th axial point along the trace. ctensile controls
the rate of the minimization. This makes the vessel axis
act like a membrane such that slight jitters can be elimi-
nated, as discussed in (Kass et al., 1988). We set ctensile =
0.1 and run the update equation for 10 times in all the
experiments conducted. The reference frame of the regu-
larized axial point xi is then updated with the ‘‘double-
cross’’ successive method (Bloomenthal et al., 1996) by
taking the tangent of a cardinal spline (Kochanek and
Bartels, 1984) (whose spline knots are the axial points
of the smoothed vessel axis) as the z-axis. Fig. 3b illus-
trates a regularized axis.

3. Segmentation of vessel with stream surfaces and

minimum cost paths

3.1. Stream surfaces as the cross-sections

Once a vessel axis is extracted in a 3-D space and regu-
larized, we define a steady 3-D vector field on a regular grid
that is identical (in terms of sample spacing and dimen-
sions) to the original 3-D angiogram. The vectors are the
gradient of the Euclidean distance transform (EDT) of
the vessel axis. For better illustration, we show the EDT
image together with the axis of a straight vessel segment
in Fig. 4a, and several vectors from the vector field in Figs.
4b and c. With this dedicated steady vector field, we
employ a commonly used technique in flow visualization,
called stream surfaces (Schroeder et al., 2003), to construct
the cross-sections.

A stream surface is defined as the locus of an infinite set
of streamlines that are curves always tangential to a steady
vector field and originated from a rake, a continuous line
segment around the axial point, as illustrated in Fig. 5a.
According to this definition, our cross-sections have the
property that their normals are everywhere tangential to
the vectors in the field. On one hand if the vessel axis is
straight, those surfaces form the cross-sectional planes, as
shown in Fig. 5b, on the other hand if the vessel axis forms
an arc, the surfaces are squeezed on the inner side of the
curved axis (highlighted by the arrow in Fig. 5c) and they
are no longer kept on flat planes.
This property guarantees no intersection amongst the
cross-sections. Intersecting cross-sections are problematic
if one wants to define vascular surface model from the con-
tours extracted on the cross-sections that delineate the ves-
sel boundary (Yim et al., 2001; Felkel et al., 2004). Fig. 6
illustrates the problem with a 2-D example, in which a part
of the boundary of a curved vessel is shown together with
its axis. Several cross-sectional planes (gray straight lines in
the figure) are defined along the axis. It is observed that
they are intersected on the RHS of the axis. The boundary
on the cross-sectional planes are detected and shown as
hollow dots in the figure. One can simply construct a
non-self-intersecting surface to model the boundary by
connecting the vertices of adjacent contours (the hollow
dots), see the boundary on the LHS of the axis in
Fig. 6a. The numbers enumerate the sequence of connec-
tion. As long as the order of connection is identical to that
of the points on the axis (the solid dots), there is no self-
intersection on the surface model. Nonetheless, this is not
the case for the boundary modeling on the RHS of the axis
(see Fig. 6b for a close-up of that region). A self-intersect-
ing surface is, therefore, inevitable. By ensuring the cross-
sections are free from intersections, the problem of surface
self-intersecting can be avoided.

We adopt the stream surface construction algorithm
proposed by Hultquist et al. (1992) to generate the cross-
sections given the extracted axial points and their associ-
ated reference frame (defined by t̂i, axial tangent, and t̂?i ,
its binormal vector, where i is the index of the axial point,
see Fig. 1 for details).

The rake of a cross-section is constructed from K evenly
distributed points sampled on the normal plane (defined by
the reference frame) from the axial point at dr mm (we set
K = 8 and dr = dV, where dV is the voxel size of the angio-
gram). A fourth-order Runge–Kutta ordinary differential
equation (ODE) solver is employed to generate segments
of streamlines (Press et al., 1992). Greedy minimal-width
tiling strategy is used to tile the propagating ribbon, the sur-
face between two adjacent streamlines, with triangles. This
strategy selects the shortest one of the two diagonals
formed by the four points of interest on the two neighbor-
ing streamlines to complete the tessellation. Fig. 7a illus-
trates the idea, the segment LiRi (i 2 Z�) defines a portion
of the propagation front.



Fig. 4. (a) The Euclidean distance transform (EDT) image of the vessel axis. Three orthogonal planes that slice the EDT are shown. Bright (dark) pixels
on the planes denote high (low) distance values. The vessel axis is illustrated as a tube at the crossing of two orthogonal planes. (b) A side view and (c) a
top view of several vectors from the vector field which contains the gradient of the EDT. The vessel axis is shown as a tube in the middle of the field.

Fig. 5. (a) A stream surface. One of the streamlines is shown as a dotted line on the surface highlighted by the hollow arrow. The rake (solid line), from
which the streamline is originated, around an axial point is highlighted by the solid arrow. (b) Stream surfaces along a straight axis. They form the cross-
sectional planes. (c) Stream surfaces along a curved axis. They are squeezed on the inner side of the curve (highlighted by the arrow).
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Furthermore, as the front (originated from the rake)
advances, we add a new streamline when the width of the
ribbon is greater than the step length of the streamline by
a user-defined factor (we set the step length and the factor
to dV and 1.5, respectively, in this paper), in order to
increase the sampling density at the distant portion of the
surface from its center. This is to alleviate the sparse sam-
pling at the distant region, due to the fact that a fixed num-
ber of streamlines are radiated out from the axial point. We
label each streamline with a level index l. Each time when a
streamline is added, the level index of the new streamline is
set to max (lL, lR) + 1, where lL and lR are the level indices
of the two adjacent streamlines. The level index of the
streamlines that originate from the rake is set to 0. Figs.
8a and b illustrate a stream surface with and without add-
ing of new streamlines, respectively. The origins of the
streamlines at different levels are highlighted in Fig. 8c
which shows a close-up of the square region in Fig. 8a.

In the meantime, we also keep track of the distance ds to
the axial point of each streamline sample. It is to help
define the smoothness constraint in finding the round con-
tour on the cross-sections that delineates the vessel bound-
ary (cf. Eq. (10) on Section 3.2). The value of dk

s is the
cumulative length of the streamline segment from the ori-
gin of the streamline to the sample k. If a new streamline
is introduced with origin M, as illustrated in Fig. 7b, we



Fig. 6. One cannot simply construct a non-self-intersecting surface to model the boundary on the RHS of the axis by connecting the vertices of adjacent
contours (the hollow dots) due to the intersecting cross-sections (gray straight lines). Note the order of connection (numbered starting from the cross-
section at the bottom of the figure), (a) since it is identical to that of the axial points for the boundary on the LHS of the axis, there is no such problem;
however it is not the case on the RHS, as shown in (b). Self-intersecting surface is therefore inevitable if those vertices are connected accordingly to the
ordering.

Fig. 7. Front propagation. (a) The four points of interest on two neighboring streamlines. (b) A new streamline is introduced with origin M.

Fig. 8. Stream surface (a) with and (b) without adding of new streamlines. (c) A close-up of the highlighted region in (a). The origin of the streamlines of
different levels are highlighted by different dots: black, level index l = 0; dark gray, l = 1; light gray, l = 2; white, l = 3. (d) A stream surface color-coded
with linearly interpolated gray-scale values from the original angiogram at each vertices together with an iso-surface model of the vasculature and the
corresponding vessel axis.
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set dM
s to ðdLiþ1

s þ dRiþ1
s Þ=2, where dLiþ1

s ¼ dLi
s þ dV and

dRiþ1
s ¼ dRi

s þ dV .
The front stops advancing until it reaches a pre-defined

maximum number of steps. To determine how far the front
of the stream surface should propagate such that it can
cover the vessel boundary, we employ the scale variable ri

in the solution vector pi. As described in Section 2.1, the
scale ri is proportional to the vessel width at axial point
xi. Since we use the BSP image generated at the axis of a
solid straight tube as the appearance model Î (cf. Section
2.2, Figs. 2a and e) which is constructed with the length of
the projection bound equal to 1.5· the tube radius, the
scale ri in the vector pi is therefore a good estimation of
the local vessel width. In this work, we set the maximum
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number of steps for the stream surface front propagation
to Øri/dVø and thus the size of the stream surface con-
structed is adaptive to the width of the vessel.

3.2. Segmentation with minimum cost paths on stream

surfaces

After the cross-sections are generated, the next step is to
delineate the vessel boundary on those surfaces. Fig. 8d
shows a cross-section color-coded with linearly interpo-
lated gray-scale values from the original angiogram at each
vertices together with an iso-surface model of the vascula-
ture and the corresponding vessel axis for better illustra-
tion. In general, the vessel boundary to be outlined is
round on the cross-section. Therefore a circular (closed
and round) contour drawn on the cross-section around
the axial point is sufficient for the boundary delineation.

We follow a research line (Sun and Pallottino, 2003) in
which a shortest path algorithm is employed to extract cir-
cular object boundaries from 2-D images (regular grids). In
that work, Sun and Pallottino applied the Bellman–Ford
algorithm (Cormen et al., 1990) to find the minimum cost
path (MCP) in a directed acyclic graph (DAG) defined
on the elliptical polar-transformed image. The MCP corre-
sponds to the closed and round boundary of the object to
be segmented. (Readers are advised to read (Sun and Pal-
lottino, 2003) for details.) In our application, however,
the medium from which a round boundary to be extracted
is not a regular grid. In fact, our cross-section (stream sur-
face) is an irregular one. As such, we have to find an alter-
native way to define a DAG and its edge weights.

Fig. 9a illustrates the new way that we define the DAG
amongst two adjacent streamlines and an added streamline
in between. In the figure, only a small portion of the cross-
section is shown. Curves Sa and Sb denote the streamlines
of interest with level index equal to i. Curve Sc is the
streamline added in between the curves Sa and Sb. Its level
index is therefore equal to i + 1. The samples Ba and Bb
Fig. 9. (a) Definition of the directed acyclic graph (DAG) amongst two adjace
shown for better clarity) (b) The DAG is defined over all the streamlines of the c
duplicated deliberately. (c) The user places anchor point at sample L and forc
section, rather than other sample L 0 on the same streamline.
define a segment of the front at which Sc is inserted. We
group locally the vertices into five sets, V1, . . ., V5, as
shown. It is noted that vertices Ba and Bb are shared by
two pairs of sets {V1, V2} and {V4, V5}, respectively.
DAG edges are then defined as the edges of the complete
bipartite directed (in anti-clockwise direction) graphs com-
posed of three pairs of sets {V1, V4}, {V2, V3} and
{V3, V5}, except the edge from Ba to Bb. In doing so, we
define a DAG over all the streamlines of the cross-section
in anti-clockwise direction, in which a reference streamline
is duplicated deliberately, as given in Fig. 9b. This allows
us to find closed and round contours that delineate the ves-
sel boundary on the stream surfaces from the MCPs on the
DAG. Our DAG definition fulfills the requirements of the
graph suggested in (Sun and Pallottino, 2003): (a) stable

and layered, edges connect different vertex sets (layers)
but not the same; and (b) sequential, edges connect two
adjacent vertex sets (layers).

The weight of the DAG edge from L to R, where L and
R are two adjacent vertices of the DAG, is defined as
follows:

weðL;RÞ¼
1

2a

0
BBB@K1 ð1�MðL;RÞÞ

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{image constraint

þK2 1� exp �dd2ðL;RÞ
2r2

d

� �� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{regularization constraint
1
CCCA;

ð10Þ
where a is the largest level index l of the streamlines asso-
ciated with L and R (see Fig. 8c)—for example, as given
in Fig. 9a, if L and R are in sets V2 and V3, a = i + 1; if
the two samples are in sets V1 and V4, a = i—such quantity
counteracts the increase in the radial resolution, such that
the MCP would not bias towards boundary that is closer
to the axial point. K1 (=1) and K2 (=1) are constants to
control the influence of the image and regularization con-
straints, rd (=0.5) controls the sensitivity of the function
dd(L, R) which denotes the difference of the distance to
axial point from L and R. MðL;RÞ returns the average
nt streamlines and an added streamline in between (only one DAG edge is
ross-section in anti-clockwise direction, in which the reference streamline is
es the minimum cost path (MCP) to pass through sample L on the cross-
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gradient magnitude at samples L and R. Those functions
are expressed as follows:

ddðL;RÞ ¼ jdL
s � dR

s j ð11Þ

and

MðL;RÞ ¼ j
_rAðLÞj þ j _rAðRÞj

2
; ð12Þ

where A is the angiogram and _r denotes the normalized
gradient operator. It is noted that the multiplicands of
the constants K1 and K2 are 2[0, 1]. This makes the magni-
tudes of the two constraints comparable.

Under some circumstances, the user may want to guide
the boundary extraction by given anchor point(s). Our for-
mulation can easily satisfy such requirement by offsetting
some of the edge weights. Suppose the user wants the
boundary to pass through sample L on the cross-section,
rather than other sample L 0 on the same streamline, as
illustrated in Fig. 9c. In order to guarantee that the MCP
passes through L via a DAG edge from vertex set (layer)
Vi to Vi+1, we can simply subtract the in-edges’ weights
of vertex L by the maximum value of all edge weights.

This slight modification can also cope with the scenario
that multiple samples on the same streamline are selected as
anchor points. Because of the stable and layered properties
of the DAG, the MCP obtained should only pass through
one of those anchor points on the same streamline. There-
fore, such fuzzy guidance is not a problem in our
algorithm.

In this work, we employ an algorithm dedicated to solv-
ing the single-source shortest-paths problem on a weighted
DAG. This algorithm exploits the property of DAG, i.e.,
no negative-weight cycles can exist even if there are nega-
tive edges, to compute the shortest paths from a single
source in HðjVj þ jEjÞ with a topological sort, where V
and E are the set of vertices and edges of the DAG (Cor-
men et al., 1990). Its running time complexity is smaller
than the Dijkstra algorithm, HðjVj lg jVj þ jEjÞ, and the
Bellman–Ford algorithm, HðjVj � jEjÞ.

Algorithm 1. Closed and Round Boundary Extraction

1. c* 1
2. p* NULL
3. for all samples vi in the reference streamline do

4. P DAG-SHORTEST-PATHS (G, W, vi)
5. (p, c) BACK-TRACK ðP ; v�i Þ
6. if c* > c then

7. c* c

8. p* p

9. end if

10. end for

11. Return p*

To summarize, the closed and round boundary extrac-
tion algorithm is outlined in Algorithm 1. The vertex vi

denotes a sample on the reference streamline. Given a
DAG G, a set of edge weights W and a source vi, DAG-
SHORTEST-PATHS(Æ) returns a predecessor map P of the
MCP. BACK-TRACK(Æ) returns the path p, which ended at
v�i given the predecessor map P, and its cost c, where v�i
is the duplicate of vi (the corresponding vertex on the dupli-
cated reference streamline). p* stores the MCP found so far
regardless the source. c* keeps the corresponding cost.

Fig. 10 shows the vessel boundaries extracted from sev-
eral typical cross-sections: (a) without any anchor point;
(b) with anchor points, one of the vessel boundaries in a
kissing vessel region; and (c) with multiple anchor points
on a streamline, the boundary of a vessel branch at a
bifurcation.

3.3. Formation of 3-D vessel boundary surface model

The outputs of Algorithm 1 are contours (on non-inter-
secting cross-sections) in a 3-D space which delineate the
boundary of a vessel of interest along its axis. A 3-D vessel
boundary surface model can then be constructed from the
extracted contours by joining the vertices of adjacent ones
(cf. Section 3.1 and Fig. 6 for the explanation). However,
due to the difference in the number of vertices on each
extracted contour, there is no obvious way to join the ver-
tices. The algorithm proposed by Keppel (1975) offers a
remedy for this problem.

As long as a reference vertex on each of the adjacent con-
tours is given, the Keppel algorithm can find the optimal tri-
angulation to approximate the surface of a volume defined
by the adjacent contours. The optimality, in this work, is
defined as the total length of the edges inserted in between
those two contours. In this work, we use the contour vertex
that lays on the reference streamline of each cross-section as
the reference vertex in all the experiments conducted.

3.4. Constrained deformation on cross-sections

The 3-D vessel boundary surface model constructed so
far can only serve as a rough delineation of the vessel of
interest—mesh vertices are discrete samples obtained from
each cross-section, which in fact is posing discontinuity
along the longitudinal direction on the surface model.
Owing to this, fine position adjustment on the mesh verti-
ces is necessary. We employ a 3-D version of the active con-
tour models proposed by Kass et al. (1988) to perform such
model deformation. The only energy functionals to be min-
imized in this work are the internal energies and the edge
functional. The internal energies (tensile and flexural) pro-
vide surface regularization, making the surface model act
like a membrane and a thin-plate to resist the development
of discontinuity and corner (singularity), respectively. The
edge functional, Eedge ¼ �jrAj2, on the other hand,
attracts the surface moves towards the object edges (the
vessel boundary). The weights to control the influence of
tensile, flexural, edge functionals and the time step are set
to 0.5, 0.5, 2, and 1/50, respectively. The deformation halts
until 100 iterations are executed or the net displacement of



Fig. 10. Vessel boundaries (lines on the surface) extracted from several typical cross-sections. (a) Without any anchor point. (b) With an anchor point (dot
on the surface), one of the vessel boundaries in a kissing vessel region. (c) With multiple anchor points on a streamline, the boundary of a vessel branch at a
bifurcation.
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each vertex is <1/10 of the voxel size. All those values of
the parameters are found empirically and are fixed in all
the experiments conducted.

Nonetheless, if the deformation is performed in a free-
form fashion, two undesirable effects are resultant, as
pointed out by Lobregt and Viergever (1995): (1) the tensile
and flexural functionals make the deformable model shrink
and (2) the edge functional drives the mesh vertices to
bunch together at regions that with high intensity gradient
magnitude (e.g. corners). As shown in Fig. 11a, the model
obtained from free-form deformation is shrunk and con-
tracted severely at both ends of the model, which leads to
an incomplete modeling of the vessel of interest.

A practical solution to solve such problem, as discussed
in (Lobregt and Viergever, 1995; Yim et al., 2001), is to
insist radial vertex displacement throughout the deforma-
tion. The streamlines generated in constructing the cross-
sections provide excellent loci for the mesh vertices to
following. Fig. 12 shows three illustrations to demonstrate
step-by-step on how the constrained displacement is
accomplished. vi, viþ1 and viþ2 are three consecutive sam-
Fig. 11. Deformation of the vessel boundary surface model. Model before the
illustrated in wire-frame. Vessel axis is shown for reference. (a) Free-form defo
leads to an incomplete modeling of the vessel of interest. (b) Constrained defo
ples on a streamline. u is the mesh vertex of interest, f is
the deformation driving force acting on it. T0 and T1 are
the cursors pointing to the start and end points of the line
segment that u lays. â is the unit vector of T 0T 1

��!
and d

equals jT 0T 1
��!j. u0 and f 0 denote the new quantity of u and

f , respectively. The steps are as follows,

Step 1: Project f along the line vi þ nâ (n 2 R, and vi is the
point at cursor T0), as given in Fig. 12a.

Step 2: Advance u according to the projection before it
reaches the other end point at cursor T1 (i.e.,
viþ1). Then we obtain u0 as given in Fig. 12b.

Step 3: Update f with the residual driving force and
advance the cursors to the adjacent segment, as
given in Fig. 12c.

Step 4: Continue the above process until the displacement,
ju0 � uj, is very small.

This illustration describes the scenario that a mesh ver-
tex moves down the streamline (away from the streamline
origin). The opposite scenario—vertex moves towards the
deformation is shown in semi-transparent surface. Deformed models are
rmation, the model is shrunk and contracted severely at both ends, which
rmation along the streamlines on the cross-sections.



Fig. 12. Three illustrations to demonstrate step-by-step on how the constrained displacement is accomplished: (a) Step 1; (b) Step 2; and (c) Step 3.
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streamline origin—is handled in a similar fashion. How-
ever, we need to handle a special case that when the vertex
is going to move off the streamline at the origin. If the
streamline’s level index is equal to 0 (i.e., its origin is on
the rake), we prohibit any further displacement of the ver-
tex. (This is identical to the case that when the vertex
reaches the edge of the cross-section.) Otherwise, we have
to remove the vertex from the mesh. Fig. 13 shows how
the surface gap is tiled due to the vertex deletion. The clos-
est immediate contour neighbor uc of the vertex-to-be-
deleted u is selected. Then, new edges originated from uc

are inserted to connect to the neighbors of u, except edge
ðu; ucÞ and the duplicated edges. Such deletion of the off-
streamline vertex has the advantage to controlling the mesh
transverse resolution. A vessel boundary surface model
deformed along the streamlines on the cross-sections is
shown in Fig. 11b.

Algorithmically, the constrained deformation is given in
Algorithm 2, where a is the interpolation coefficient of the
line segment T 0T 1 and a 0 is the new quantity of it. m is the
vertex displacement along the streamline driven by f mea-
suring in the unit of the interpolation coefficient. � is a very
small constant. Flags Bmoved and Bprev_moved are marked if
the vertex is moved in the current and the previous itera-
tion, respectively, on the line segment T 0T 1. Flag Bterminate

marks if it is going to terminate the repeat-until loop.
Function POS(Æ) returns the 3-D position of the given point,
AT-STREAMLINE-ORIGIN(Æ) and AT-STREAM-SURFACE-
EDGE(Æ) give a true value if the given point is at the stream-
line origin and stream surface edge, respectively. PREV-SEG-

MENT(Æ) and NEXT-SEGMENT(Æ) return the previous and next
streamline segments of the given line segment.
Fig. 13. Vessel boundary surface model re-tessellation due to
Algorithm 2. Constrained Deformation along Streamline

1. � 0.001, m 1
2. Bmoved FALSE, Bprev_moved TRUE

3. Bterminate FALSE

4. repeat
5. a ðu� PosðT 0ÞÞ � âð Þ=d
6. m ðâ � f Þ=d
7. if (a = 0) � (m 6 0) then

8. if AT-STREAMLINE-ORIGIN (T0) then

9. m 0, Bmoved TRUE

10. else

11. ðT 0; T 1Þ  Prev-SegmentðT 0T 1Þ
12. m 0, Bmoved FALSE‘
13. end if

14. else if (a = 1) � (m P 0) then

15. if AT-STREAM-SURFACE-EDGE (T1) then

16. m 0, Bmoved TRUE

17. else

18. ðT 0; T 1Þ  Next-SegmentðT 0T 1Þ
19. m 0, Bmoved FALSE

20. end if
21. else

22. a 0  max(0, min(1, a + m))
23. m a 0 � a
24. u0  ð1� a0ÞPosðT 0Þ þ a0PosðT 1Þ
25. f 0  ðf � ðu0 � uÞÞ
26. u u0, f  f 0, Bmoved TRUE

27. end if

28. Bterminate  :Bmoved ^ :Bprev moved

29. Bprev_moved Bmoved

30. until Bterminate � (m < �)
vertex deletion: (a) before deletion and (b) after deletion.



1 For interpretation of the references to color in this figure, the reader is
referred to the web version of this article.
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In the algorithm outlined above, there are three scenar-
ios embedded in the first level if-block. The first two scenar-
ios state that when the mesh vertex u is going to move off
the line segment T 0T 1 at point T0 or T1, then the streamline
segment of interest is changed to the adjacent one accord-
ingly. The third scenario states that the new quantity of the
driving force is obtained by subtracting the vertex displace-
ment vector from the old driving force, f , when the vertex
moves within the line segment.

3.5. Voxelization of deformable model

As a final step, the deformable model is voxelized into a
binary volume with voxel size and dimensions identical to
the original angiogram. It has an advantage to aggregating
different segmentation results with a simple union opera-
tion, for example, merging the segmentations of two vessel
branches of a bifurcation to compose the segmentation of
the vascular junction, and producing the segmentation of
an aneurysmal lumen by combining the binary volumes
of the aneurysmal sac and its parent vessels.

4. Results

4.1. Vessel axis

We apply a modified version of (1 + 1)-Evolution Strat-
egy (ES) for the optimization (modification is referred to
the optimization with simple bounds on the parameters).
(1 + 1)-ES is a special type of the Evolutionary Algorithms
with both the population size and the number of children
generated equal to one, which has an automatic step size
and provides search direction adaptation (Styner et al.,
2000). Thus, it has the ability to step out of non-optimal
minima and can provide the axis tracing problem with a
long capture range. We have tested the proposed method
on three synthetic data sets, a clinical data set—3-D rota-
tional angiography (RA), available at http://www.gris.
uni-tuebingen.de/areas/scivis/volren/datasets/datasets.html,
courtesy of Philips Research, Hamburg, Germany. The size
of the image volume is 256 · 256 · 256 vox. with isotropic
voxel in 0.33 mm—and three sub-volumes of 3-D RA
acquired at the Department of Diagnostic Radiology and
Organ Imaging, Prince of Wales Hospital (PWH), Hong
Kong (see Section 4.3 for the description of the data sets).
The design of the synthetic data took several challenging
vascular structures for the trace-based axis extraction
methods into consideration: kissing vessels, a bifurcation,
and a typical saccular aneurysm in the cerebral circulation.

Figs. 14a–c and 15 show the experimental results
obtained from our vessel axis tracer on the synthetic
and clinical data sets, respectively. It is worth mentioning
that the regularization procedure outlined in Section 2.5 is
not performed to obtain the experimental results pre-
sented in this sub-section. This is to make fair compari-
sons with other algorithms since the regularization
procedure is not included in the original algorithms.
The dark axes in those figures are traced without any user
guidance. It is evident that the vessel axes extracted from
the kissing vessels (see Figs. 14a and 15a), at the furca-
tions (see Figs. 14b and 15b), and from the thin vessel
(<2 voxels in diameter, see Fig. 15c) are satisfactory.
Due to the existence of the synthetic saccular aneurysm
(see Fig. 14c), the axis extracted are steered, as a result
it is deviated from the desired vessel axis. User guidance
is therefore needed to drive the trace towards the target
axis in this case, as well as to the side branches of the
bifurcations shown in Figs. 14b and c. The necessity of
such guidance is determined visually by the user. In the
current implementation, iso-surface of the vasculature is
shown together with the traced axis (MIP image can also
serve the purpose). No guidance is required until the user
found that the extracted axis is deviating from the one
expected. The user-drawn 2-D curves (green in color with
circles, those circles are the 2-D locations picked by the
user on the screen to compose the curves) are depicted
in Figs. 14d, h and l.1 The curve shown in Fig. 14d helps
guide the trace (lighter in color) to go to the right side
branch of the bifurcation given in Fig. 14b. The other
two curves given in Figs. 14h and l altogether steer the
trace (lighter in color) to the left side branch of the saccu-
lar aneurysm shown in Fig. 14c. Two extra 2-D curves are
needed to produce the trace to the right side branch, how-
ever, they are not shown here.

As a comparison, we have also tested the methods pre-
sented in (Aylward and Bullitt, 2002; Shim et al., 2005)
on the data sets. Figs. 14e–g and i–k show the results
obtained from Aylward and Bullitt’s (2002) and Shim
et al.’s (2005) methods on the synthetic data sets, respec-
tively. The shorter dark axes shown in Figs. 14e–g are
the vessel axes extracted with the large spatial discontinuity
detection (LSDD). Such detection mechanism preempts the
tracing if the next axial points is >1 voxel apart from the
current one. It is observed that, with the detection,
Aylward and Bullitt’s method stops the tracing just before
entering the kissing, bifurcation and diseased regions. The
method, however, produces axes (in lighter color) with a
large axial point displacement in the aforementioned
regions if there is no LSDD. Shim et al. method gives sim-
ilar results except for the kissing vessels. In addition, sev-
eral U-turns can be observed at the bifurcation and in
the aneurysmal sac. Comparisons on the clinical data set
(from Philips Research) are presented in Fig. 15, in which
the green and white axes are the vessel axes obtained from
Aylward and Bullitt’s, and Shim et al. methods, respec-
tively. In the regions that contain kissing vessels, a furca-
tion and a thin vessel, the axes extracted from the two
methods are either jittered in between the two adjacent ves-
sels, dragged towards the center of the furcation or off the
target axis when the vessel is too thin to be traced.

http://www.gris.uni-tuebingen.de/areas/scivis/volren/datasets/datasets.html
http://www.gris.uni-tuebingen.de/areas/scivis/volren/datasets/datasets.html


Fig. 14. Results obtained from (a–c) our novel vessel axis tracer, the methods proposed by (e–g) Aylward and Bullitt (2002) and (i–k) Shim et al. (2005) on
the synthetic data sets which contain (a, e and i) kissing vessels, (b, f and j) a bifurcation and (c, g and k) a saccular aneurysm. The 2-D curves drawn on the
screen for the user guidance on the tracing are given in (d), (h) and (l). The semi-transparent surfaces are iso-surfaces and are displayed for better
visualization only.

Fig. 15. Results on the clinical data set from Philips Research. The blue, green and white axes are the vessel axes obtained from ours, Aylward and
Bullitt’s (2002) and Shim et al.’s (2005) methods, respectively, on different vascular regions: (a) the two anterior cerebral arteries (ACA), (b) the first
furcation of middle cerebral artery (MCA) and (c) opthalmic artery (OA). The semi-transparent surfaces are iso-surfaces and are displayed for better
visualization only.
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Generally speaking, their methods produce vessel axis with
more jitters than ours.

Furthermore, we have extracted the axes of nine major
vessels, including the internal carotid artery (ICA), the
two anterior cerebral arteries (ACA), a few branches of
the middle cerebral artery (MCA) and the posterior com-
municating artery (PCoA), in the Philips Research’s clini-
cal data set with our method. They are depicted in
Fig. 16a. An MIP image is shown in Fig. 16b for visual
comparison. User guidance is given at the furcations to
steer the traces towards the side branches and at the base
of the aneurysm to bypass the diseased portion (highlighted
by arrows). It is demonstrated that our method can trace
vessel segments, including the side branches and that in
the diseased region. Since the other algorithms do not sup-
port user guidance, they may have problems in producing
continuous traces through bifurcations and diseased
lumens (as illustrated in Figs. 14 and 15). Hence they are
not used to extract the axes of the major vessels, except
the ICA (results are tabulated in Table 1) which is the first



Fig. 16. (a) Extracted axes of nine major vessels in the clinical data set, including the ICA, the two ACA, a few branches of the MCA and the PCoA.
(b) MIP image. (c) Axis of the ICA extracted at five difference times. The semi-transparent surfaces are iso-surfaces and are displayed for better
visualization only.

Table 1
The Euclidean distance errors in percentage of diagonal length of the voxel between the extracted vessel axes and the manually drawn axes

Data Sets Ours Aylward and Bullitt (2002) with LSDD Aylward and Bullitt (2002) Shim et al. (2005)

Synthetic 29% 16% 464% 304%
(126%) (140%) (1274%) (798%)

Clinical 23% 10% 96% 70%
Sub-regions (60%) (53%) (182%) (228%)
Clinical 29% – – –
Major vessels (100%)
Clinical 32% 3% 46% 6%
ICA (77%) (76%) (137%) (86%)

The mean errors are tabulated with the maximum errors in the parentheses. The synthetic data sets are those shown in Fig. 14. The clinical data set of sub-
regions, major vessels and ICA are those presented in Figs. 15, 16a and c, respectively.
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vessel segment (with no bifurcation and diseased lumen)
located at the root of the vascular tree in the data set. To
study the repeatability of the method, the ICA is traced
for five times. The axes extracted are shown in Fig. 16c.
Visually, there is no significant discrepancy amongst those
axes.

We have also evaluated quantitatively the extracted ves-
sel axes with the manually drawn axes built with reference
to the reformatted cross-sectional images (defined on flat
planes) along the vessels. The mean Euclidean distance
(ED) errors (maximum errors are given in the parentheses)
in percentage of diagonal length of the voxel (DV) are listed
in Table 1. The error is defined as the shortest ED from an
axial point of the extracted axis to the manually drawn
axis. Apparently Aylward and Bullitt’s method with LSDD
performs better according to the errors tabulated. How-
ever, it produces preempted traces whenever large spatial
discontinuity is encountered (the locations are highlighted
by arrows in Figs. 15 and 16c). Compared with the other
algorithms which produce axes with large errors in the syn-
thetic and several sub-regions of the clinical data set, our
method is capable of extracting the complete axes of the
vessel segments consistently with mean errors <DV/3 and
maximum errors �DV. Concerning the processing time,
the axes of the nine major vessels (total length = 585 mm)
took <15 min (computational time is �10 min, time for
user intervention is �4 min) to extract with the novel
method on a 2.0 GHz PC. The manual process, by con-
trast, took 169 min to finish. (To recapitulate, the image
volume is 256 · 256 · 256 voxels.) In a typical application
where the region of interest is at a diseased portion or a fur-
cation, the length of the vessel segment to be traced is
�30 mm and our algorithm takes �30 s to extract (note
that the current implementation of the algorithm is not
optimized).

Several vessels of interest are traced in the three sub-vol-
umes of the 3-D RA acquired at PWH. Fig. 17 shows the
extracted vessel axes together with iso-surfaces of the vol-
umes for the visualization of the vascular boundaries. It
is observed that our method permits the user to trace vessel
axes at furcations (two- or even three-way vascular junc-
tion) and diseased portion (stenotic lumen where vessel
width changes suddenly). Later in Section 4.3, these axes
help the generation of the stream surfaces which are then
used to produce the vascular segmentation presented.

4.2. Cross-sections

We have compared the cross-sections generated by our
method with two different approaches. The first one is the



Fig. 18. The cross-sections generated with the three methods: (a) our method, (b) naı̈ve method and (c) Yim et al. method (Yim et al., 2001).

Fig. 17. The vessel axes extracted from the three sub-volumes of the 3-D rotational angiographies (RA) acquired at the Department of Diagnostic
Radiology and Organ Imaging, Prince of Wales Hospital, Hong Kong. See Section 4.3 for the description of the data sets. The semi-transparent surfaces
are iso-surfaces and are displayed for better visualization only: (a) Single vessel lumen; (b) stenotic lumen, bifurcation; and (c) 3-way junction.
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commonly used naı̈ve method (Hernández-Hoyos et al.,
2000; Wink et al., 2000; Aylward and Bullitt, 2002) which
gives flat cross-sectional planes that are normal to the tan-
gents of the vessel axis. The second is the one proposed
by Yim et al. (2001), in which a fixed number of straight
radial lines are emitted from the axial points to define
cross-sections and if one radial line intersects2 the other,
such straight radial line is then truncated and is merged
to an un-truncated radial line (or previously truncated
but then concatenated to an un-truncated radial line)
whose corresponding axial point is the nearest in the axial
direction.

The comparison is conducted on a synthetic data set
that contains a tube in arc-shape. The cross-sections gen-
erated with the three methods (our method, naı̈ve method
and Yim et al. method) are given in Figs. 18a–c, respec-
tively. It is noticeable that the cross-sectional planes gen-
erated by the naı̈ve method are intersecting with each
others at the arc on the inner side. By warping the
straight radial lines, Yim et al. method successfully pre-
2 Two radial lines are considered as intersected if one enters the territory
of the other. The territory is the region that a radial line is closer to its
corresponding axial point than to that of any other radial line (Yim et al.,
2001).
vents intersecting cross-sections. Indeed their surfaces
are overlapping on the inner side of the arc. However,
due to the fact that the straight radial lines are concate-
nated in the warping region, the surfaces constructed
from those warped lines are composed of planes with dif-
ferent, and yet discrete, orientations, hence they have arti-
facts. The other disadvantage of their approach is that the
sampling is relatively too dense near the axis, while it is
too sparse at distant region (similar to our stream surface
without adding new streamlines as shown in Fig. 8b). On
the contrary, ours results show no intersecting cross-sec-
tions, surface artifacts and severe uneven sampling on
the surfaces (see Fig. 8a).

The above observations are further quantified by
studying the maximum positive (convex surface) and neg-
ative (concave surface) mean curvatures of each cross-
sections along the axis. Fig. 19a shows a plot (mean
curvatures vs. unit length along the axis) of the study.
Lines above and below zero mean curvature depict the
values of the maximum positive and negative mean curva-
tures, respectively. It is noted that mean curvature values
(both positive and negative) are high, especially at the arc
region, in the results obtained from Yim et al. method
(the dashed lines). This implies that there are ripples
(combination of convex and concave surface patches) on
their surfaces, see Fig. 19b for an example. Our method,



Fig. 19. (a) Plot of mean curvatures vs. unit length along the axis. Curvatures shown are the maximum positive (convex surface) and negative (concave
surface) mean curvatures of each cross-section along the axis. Lines above and below zero mean curvature depict the values of the maximum positive and
negative mean curvatures, respectively. Solid lines show the mean curvatures of our surfaces. Dashed lines show the mean curvatures of Yim et al. surfaces.
(b) A cross-section obtained from Yim et al. method. Ripples (combination of convex and concave surface patches) are noticeable on their surface. (c) A
stream surface (color-coded with mean curvatures) towards one end of the axis.
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however, is capable of keeping the surfaces as flat as pos-
sible at the arc region, as reflected in the close-to-zero
mean curvatures in the plot.

One may notice that the curvature values shown in the
plot of the stream surfaces towards both axial ends are
comparatively high. This is because the relatively sharp
bending at the edge of the surfaces located in the inner
region of the arc, see Fig. 19c for the surface (color-coded
with mean curvatures) towards one end of the axis.

4.3. Vascular segmentation

We have tested the proposed segmentation method on a
synthetic data set. The data set contains a segment of a hor-
izontal tube with the same diameter along its axis and has
two consecutive opposite turns at the middle of the seg-
ment, as given in Fig. 20a. The data sets are created to emu-
Fig. 20. (a) The synthetic model, a segment of a horizontal tube with the same d
of the segment. (b) The axes extracted from each noisy volume with the algorith
with SNR equal to 2. (d) The 40th slice of the synthetic data set. The intensity v
background. (e) and (f) The 40th slice of the noise corrupted volumes with SN
late the field of view of the region of interest (6–150 mm)
and the image volume (80 · 120 · 80 vox.) of typical 3-D
angiographies taken at intracranial circulations. The inten-
sity value of the voxels laying inside the tube equals 255, and
it is set to 0 in the background. Fig. 20d shows the 40th slice
of the data set.

Vessel axes and boundary surface models are built
from four noise corrupted copies (with signal-to-noise
ratio equal to 2, 3, 5 and 7) of the synthetic data set.
White Gaussian noise is added to produce the noisy vol-
umes. Signal-to-noise ratio (SNR) is defined as the ratio
of the peak intensity value to the sample standard devia-
tion of the noise. For example, Gaussian noise with the
sample standard deviation equals 85 is added to the data
set to generate a noisy volume with SNR equal to 3. Figs.
20e and f shows the 40th slice of the noise corrupted
volumes with SNR equal to 5 and 2, respectively. The
iameter along its axis and has two consecutive opposite turns at the middle
m described in Section 2. (c) The surface model built from the noisy volume
alue of the voxels laying inside the tube equals 255, and it is set to 0 in the
R equal to 5 and 2, respectively.
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axes extracted from the noisy volumes with the algorithm
described in Section 2 are shown in Fig. 20b. Although
there are small discrepancies in the positions of the
extracted axial points amongst those volumes, they are
all within the confines of the tube boundary and we have
experienced no undesired effect on the construction of the
boundary surface models. The surface model built from
the noisy volume with SNR equal to 2 is given in
Fig. 20c for illustration.
Table 2
Quantitative analysis on the segmentations of the synthetic data sets which
are corrupted by additive white Gaussian noise

Noise sample std. dev. SNR JSC

36.4 7 0.9646
51.0 5 0.9422
85.0 3 0.9646

127.5 2 0.9387

The sample standard deviation of the additive noise, the signal-to-noise
ratio (SNR) and the Jaccard similarity coefficient (JSC) computed with the
truth segmentation (the noiseless volume) are tabulated.

Fig. 21. Volume rendering (VR) images, sample slices and the vessel boundary
(a–c) a portion of ICA that lays inside the cranium; (d–f) a bifurcation at the h
segment of MCA.
Quantitative analysis on the segmentations produced
with the algorithm presented in Section 3 is conducted on
the basis of Jaccard similarity coefficient (JSC) between
the obtained segmentations and the truth (the noiseless vol-
ume). JSC is defined as the ratio of the size of the intersec-
tion volume to the size of the union volume of the two
given segmentations (Leemput et al., 1999). It is used to
quantify the accuracy of a segmentation. JSC gives value
1 if the segmentation equals the truth. Table 2 lists the
JSC values obtained from sub-volumes (20th–99th slices
along the y-axis; this is to ignore the portions of no inter-
est) of the segmentations. It is observed that our algorithm
can produce segmentations with high degree of similarity
to the truth segmentation across different levels of additive
white Gaussian noise. This demonstrates the robustness of
the proposed algorithm towards noise, even severe noise at
the level of SNR equal to 2.

Furthermore, we have applied the proposed algorithm
to sub-volumes of three clinical data sets. These data are
3-D rotational angiographies (RA) acquired by the Philips
Integris imager at the Department of Diagnostic Radiology
and Organ Imaging, Prince of Wales Hospital, Hong
surface models built of the three sub-volumes from the clinical data sets:
orizontal (M1) segment of MCA; and (g–i) a furcation at the Sylvian (M2)



Table 3
Jaccard similarity coefficient (JSC) values calculated amongst every pair of
the three segmentations—obtained from our framework and slice-by-slice
segmentation approach by two human raters—on the three sub-volumes
which contain a portion of ICA that lays inside the cranium, a bifurcation
at the horizontal (M1) segment of MCA and a furcation at the Sylvian
(M2) segment of MCA

Data Set Rater 1 vs. Rater 2 Rater 1 vs. Ours Rater 2 vs. Ours

ICA 0.8854 0.9094 0.9102
M1 MCA 0.7479 0.7564 0.7784
M2 MCA 0.7279 0.7219 0.7355
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Kong. The size of the image volume is 256 · 256 · 256 vox.
with the field of view 30–50 mm. The three sub-
volumes contain individually (a) a portion of ICA that lays
inside the cranium, (b) a bifurcation at the horizontal (M1)
segment of MCA and (c) a furcation at the Sylvian (M2)
segment of MCA. The segmentation of the vascular junc-
tions are composed by aggregating the segmentation of
each vessel branch as described in Section 3.5. A volume
rendering image, a sample slice and the vessel boundary
surface model(s) built of each sub-volumes are given in
Fig. 21 for illustrations. It is evident that the proposed
algorithm is capable of producing not only a segment of
a single vessel lumen (see Fig. 21c), but also a diseased
lumen where vessel width changes dramatically (see
Fig. 21f) and multi-way vascular junctions in which the
width of the branches may not necessarily be the same
(see Figs. 21f and i).

Due to the fact that the truth segmentations of those
clinical data sets do not exist, we have asked two human
raters to compose segmentations by assigning binary labels
to each voxel in the slices. The open source software SNAP
(available at http://www.itksnap.org) is employed for the
composition. JSC values are calculated amongst every pair
of the three segmentations (obtained from our algorithm
and the two human raters) per sub-volume. The results
are tabulated in Table 3. It is evident that our framework
is capable of producing vascular segmentations that have
level of variability similar to those obtained from the
human raters. This study suggests that our algorithm can
be good enough to replace the slice-by-slice manual seg-
mentation approach, which indeed is very tedious and time
consuming, to delineating vasculatures.

5. Conclusions

We have proposed a novel framework to extract vessel
axes and delineate vessel boundaries in a decoupled fash-
ion. This framework avoids incomplete segmentation of
the vessel of interest due to axis-trace re-initialization and
disconnected vessel axis in regions that contain furcations,
diseased portions and kissing vessels (aka problematic
regions), as found in the other axis-based vascular segmen-
tation algorithms. It is particularly suitable for delineating
the (diseased) vasculature of a small region of interest, in
which a greater degree of user control is desired. Our
framework starts with the extraction of vessel axis from
the original angiogram, followed is the minimum cost
paths (MCP)-based vessel boundary delineation on cross-
sections defined by the extracted axis. The design philoso-
phy of this framework is to promote a more intuitive vessel
boundary delineation on the vessel cross-sections, where
the boundaries are mostly round, compared with those
on either axial, coronal or sagittal image planes. Moreover,
such design allows direct vessel-axis-tracing, which avoids
the need of further rectification of the vessel axes if they
are extracted from a segmentation that is subject to topo-
logical or morphological incorrectness.

Our vessel cross-sections are generated as stream sur-
faces. They are not necessarily on flat planes such that
non-intersecting cross-sections are guaranteed. This makes
the construction of a 3-D vessel boundary surface model
with no self-intersection very easily—by just joining the
vertices of adjacent contours that delineate the vessel
boundaries on the cross-sections. Insertion of extra cross-
sections between the existing ones is also feasible without
any re-computation of the existent cross-sections. This per-
mits an increase in the longitudinal resolution of the vessel
boundary surface model if it is desirable. Furthermore, the
surface model constructed inherently has a couple of prop-
erties that suit the finite element grid generation for compu-
tational fluid dynamics (CFD) application: (1) the vertices
at high curvature regions (i.e., the saddle regions, the inner
boundaries of a curved vessel) are denser which allows
more accurate modeling; and (2) the triangulations of the
cross-sections partition the vascular volume into non-over-
lapping layers—volume between two adjacent cross-section
triangulations—(thanks to the non-intersecting property of
the cross-sections) which can form the basis (i.e., a set of
points in a 3-D space) for free meshing (Huebner et al.,
2001).

Because of the probabilistic formulation of the vessel
axis tracer, we find the axial points and their associated ref-
erence frame in a single step as a maximum a posteriori
(MAP) estimation. This is in marked contrast to the other
algorithms which take alternate steps to search those quan-
tities. Our approach guarantees that the axial points are
apart at a user-defined distance, which helps avoid sudden
jumps of the trace and large spatial discontinuities between
the axial points. In addition, it allows incorporation of user
guidance (2-D curves drawn on the screen by the user) on
the axis tracing via the prior pdf. The user guidance can
effectively help drive the axis tracer to fly-through the prob-
lematic regions, whose necessity is identified visually by the
user on a display of either the iso-surface or MIP image of
the vasculature and the traced axis. The MCP approach to
segmenting vessel on its cross-sections also allows the user
to place anchor points to guide the vessel boundary
delineation.

Experimental results on synthetic and clinical data have
shown that our probabilistic axis tracer can extract less jit-
tering (as compared with the other two trace-based algo-
rithms) and continuous axes in the problematic regions,

http://www.itksnap.org
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and the segmentation algorithm with cross-sections has
high robustness towards noise and can delineate vessel
boundaries that have level of variability similar to those
obtained manually. This study suggests that the proposed
framework can be good enough to replace the time-con-
suming and tedious slice-by-slice manual segmentation
approach.

There are several limitations in the proposed algorithm,
for instance, user intervention is necessary if one wants to
trace the side branches of a furcation; and the anatomical
structures to be traced in the image volumes have to be
the brightest and symmetric along their axis due to the
appearance model. Those are of interest for further
research and may lead to potential extensions to the
method: (1) reducing the amount of intervention in tracing
side branches or supporting automatic branches tracing at
furcations; (2) extending the method to trace axes of vessels
that are not the brightest anatomical structures in the
image volumes (e.g. vessels in computed tomography angi-
ography where bones and metallic instruments are the
brightest objects), and to trace axes of anatomies other
than blood vessels (especially those with asymmetric
cross-sections) with different appearance models and/or
ways to estimate the likelihood pdf; and (3) incorporating
different image features other than the gradient magnitude
into the formulation of the DAG edge weights in the MCP-
based segmentation with cross-sections.
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