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Abstract. Retinal vessel segmentation is an essential step of the diag-
noses of various eye diseases. In this paper, we propose an automatic,
efficient and unsupervised method based on gradient matrix, the nor-
malized cut criterion and tracking strategy. Making use of the gradient
matrix of the Lucas-Kanade equation, which consists of only the first
order derivatives, the proposed method can detect a candidate window
where a vessel possibly exists. The normalized cut criterion, which mea-
sures both the similarity within groups and the dissimilarity between
groups, is used to search a local intensity threshold to segment the vessel
in a candidate window. The tracking strategy makes it possible to extract
thin vessels without being corrupted by noise. Using a multi-resolution
segmentation scheme, vessels with different widths can be segmented at
different resolutions, although the window size is fixed. Our method is
tested on a public database. It is demonstrated to be efficient and insen-
sitive to initial parameters.

1 Introduction

The analysis of retinal images, also called fundus images, plays an important
role in the diagnoses of various eye diseases. Useful features of color retinal
images are extracted and analyzed to help the ophthalmologists, e.g. optic disk,
exudates, the structure and widths of vessels. In this paper, we focus on the
vessel segmentation in retinal images. Vessel segmentation is very important in
various medical diagnoses. Many algorithms for vessel segmentation in 2-D and
3-D data have been proposed. In a broad term, these algorithms can be divided
into two categories: those utilize some filters to extract boundary or ridge of the
vessels, followed by further refinement (e.g. [1,2,3,4]); and those employ tracking
strategy by some given or detected seeds in the vessels (e.g. [5,6,7]).

The algorithm presented by Chaudhuri et al. [2] was based on directional 2-D
matched filter that assumed a Gaussian vessel cross-sectional profile and small
vessel radius variations. Hoover et al. [1] improved this method by a region-based
threshold probing of the matched filter response. Jiang and Mojon [8] directly
applied multi-threshold probing to the image through a verification procedure
which made use of a curvilinear structure model. Koller et al. [9] introduced
a nonlinear multiscale line filter based on the second derivative of Gaussian
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function. This filter could be used to detect lines of various widths in 2-D and 3-
D image data. Similarly, some algorithms ([3,10,11,12]) used the Hessian matrix
to extract the local line features on different scales of 3-D volume. Different
from these algorithms based on filters, Tolias and Panas [5] developed a fuzzy
C-means clustering algorithm. They started the fuzzy tracking algorithm from
the optic located by the algorithm. Lalonde et al. [6] tracked a pair of points on
the boundary of vessel in the edge map and Cree et al. [7] tracked the vessel by
fitting a 2-D physical model.

The methods above for vessel segmentation can work well to extract the major
parts of the vasculature. For the thinner parts, however, it is still an open prob-
lem because the image contrast around thin vessels is generally low. Recently,
focusing on 2-D retinal images, several supervised methods [13,14,15] have been
explored to get better results. At every pixel, they extracted a feature vector
in the neighborhood. The vector was classified by a kNN-classifier [13,14] or a
Bayesian classifier with class-conditional probability density function [15].

It can be labor-intensive to segment the training images manually. The pro-
cess of training needs to be repeated in different situations. Thus we propose an
unsupervised method in this paper. The proposed algorithm employs the gradi-
ent matrix of the Lucas-Kanade equation [16] to evaluate a local window, and
determines whether there is a vessel in the window by eigen-decomposing the
gradient matrix. Unlike the methods using the Hessian matrix, since the pro-
posed algorithm avoids computing the second derivative, it can detect thinner
vessels in a window. For every candidate window, which is a region containing a
vessel, the algorithm searches a intensity threshold by minimizing the normalized
cut criterion [17]. In order to segment thinner vessels and avoid selecting noisy
candidate windows, the algorithm utilizes a tracking strategy. This makes it pos-
sible to set strict parameters for pre-selection and relax them dynamically . For
vessels with different widths, the algorithm generates the Gaussian pyramid for
an input image and segment vessels with different widths at different resolution
levels. It is shown that the experimental results on a public database, DRIVE
[13], are more accurate than one of the widely used unsupervised methods [8],
and comparable with two supervised methods [13,15].

2 Proposed Method

The overview of the proposed method is described as follows:

1. Compute the Gaussian pyramid of the input image;
2. For images at different resolution levels, compute the gradient vector for

every pixel by the Sobel operator;
3. Scan the image by a sliding window of fixed size, compute the gradient matrix

of the window and evaluate it by eigen-decomposing the matrix (Section 2.1);
4. Select the window whose eigenvalues satisfy some conditions as an candidate

window, and search a local intensity threshold in the candidate window by
which the binary segmentation with the smallest NCut in Eq. 3 produces
the blood vessel (Section 2.2);
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5. If a vessel is detected, track the vessel along the direction generated from
the eigenvector of gradient matrix and relax parameters to select the next
candidate window (Section 2.3); otherwise, continue scanning;

6. Combine all the results obtained from different resolution levels and refine
the final result.

The details are explained in the following subsections.

2.1 Gradient Matrix

The gradient matrix originates from the problem of optical flow. Eq. 1 is the
basic optical flow equation

∇I · [u v]T + It = 0. (1)

Considering every pixel p in a small window under the assumption that the flow
field is smooth locally, Lucas and Kanade [16] proposed a least square method
to obtain the solution [u, v] as follows:

[∑
p IxIx

∑
p IxIy∑

p IyIx

∑
p IyIy

]
· [u v]T = −

[∑
p IxIt∑
p IyIt

]
. (2)

The left hand side of Eq. 2 is called gradient matrix in this paper, denoted by G.
The gradient matrix G contains the texture information of the window. Table 1
shows the relationship between local features and two eigenvalues of G, λ1 and
λ2(λ1 ≥ λ2).

Table 1. Relationship between local features and G

Local Feature λ1 λ2 |Σ∇I |
High textured Large Large –

Low textured Small Small Small

Edge Large Small Large

Line Large Small Small

In Table 1, we see that the type of local feature can be determined by the
values of λ1 and λ1/λ2. However, from the two eigenvalues, we cannot distinguish
between an line and an edge. It is observed that, although both of them produce
the gradient matrices with large λ1 and small λ2, all the gradients along an edge
are in the same orientation, and the gradients along a line are in two inverse
orientations. For a line structure in the window, the magnitude of the sum of
gradients (|Σ∇I|) will be small. Therefore, the line structure can be detected
by looking at the value of (|Σ∇I|/max(|∇I|)), where max(|∇I|) is the maximal
magnitude of the gradient in the window. It is used to normalize |Σ∇I| in regions
with different contrast. For example, in Figure 1, we consider three 7×7 windows.
From top to bottom, there is a junction in the first window, so it is a high texture
region with a large λ1 = 64799.6 and a small λ1/λ2 = 2.4. There is a vessel (a
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Fig. 1. Illustration of selecting candidate windows and segmentation in candidate win-
dows. The left image is the green channel of an original image; the middle images show
the corresponding zoom-in white windows in left image; the right column shows the
eigenvalues of the gradient matrices of the corresponding 7× 7 white windows and the
segmentation results. The third window with an edge is rejected due to a large value
of |Σ∇I |/max(|∇I |).

line) crossing the second window, so λ1 = 118183.6 is large and λ1/λ2 = 45.4
means that λ2 is relatively small. There is an edge in the third window, λ1 =
1219631.3 is also very large and λ1/λ2 = 50 also indicates a relatively small
λ2. However, the values of |Σ∇I|/max(|∇I|) distinguish the second (with 2.4)
and the third (with 20.7) windows. Therefore, according to these three values,
the first and second windows are selected as candidate windows, while the third
window is rejected.

2.2 Normalized Cut

After selecting the candidate windows by the gradient matrix, the algorithm
needs to find an efficient way to segment the vessel. In our work, we introduce
normalized cut criterion to search the best intensity threshold for segmentation.

The normalized cut (NCut) was proposed by Shi and Malik [17] based on the
graph theory and spectral clustering. For two-way cut of a graph, the normalized
cut criterion can be written as:

NCut(A, B) =
∑

p∈A,q∈B

wpq(
1∑

p∈A Dp
+

1∑
p∈B Dp

), (3)

where A, B are two segments of the original set V , wpq is the similarity between
two vertexes p and q according to intensity and distance, Dp =

∑
q∈V wpq is

defined as the degree of the vertex p. From Eq. 3, we can see that the normalized
cut measures the total dissimilarity between the different groups, as well as the
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total similarity within groups, which can help to search the best threshold to
segment the vessel in a given window.

Although the problem of minimizing NCut is NP hard [17], ignoring the
discrete constraint, the authors presented an approximation solution by eigen-
decomposing. Because computation of eigen-decomposing is inefficient, we only
use Eq. 3 as a criterion to search an intensity threshold for every candidate
window which produces the lowest NCut. Although it is an approximation of
the standard normalized cut, it works more efficiently and our experiments show
that most of the vessels can be well segmented by a local intensity threshold in
candidate windows.

Based on Eq. 3, the NCut tends to partition the window into two parts with
similar size. Therefore, we assume the width of a vessel is around 2 − 3 pixels,
and set the size of the sliding window 7 × 7 to suit the property of normalized
cut criterion. Because the size of candidate windows (7× 7) is too small to show
the segmentation image, the segmentation result of the first and second window
in Figure 1 are shown by a binary 7× 7 matrix in the right column of Figure 1.

2.3 Vessel Tracking and Multi-resolution

Based on the two steps described above, the algorithm can segment the vessels
from an image. In order to obtain more accurate segmentation result, we have to
set appropriate parameters to select candidate windows. Although loose parame-
ters can help to select the windows with thinner vessels, they also introduce more
noisy windows, which greatly increase the computation load and segmentation
error. To be insensitive to initial parameters, our method utilizes tracking strat-
egy to solve this problem in our work. Since the first eigenvector of the gradient
matrix indicates the normal direction of a vessel in the corresponding window,
the method can track along the tangent direction of the vessel. Meanwhile, the
parameters are relaxed to make it easy to select the next tracked window.

As mentioned in Section 2.2, we fix the size of sliding window to make full
use of the advantage of the NCut. When the width of vessel is around 2 − 3
pixels, the proposed method will work best. Considering the variation of widths,
we construct the Gaussian pyramid for the input image, and thus vessels with
different widths will be segmented in different resolution levels. Finally, the al-
gorithm recovers the results from images of different resolutions to the original
resolution. The pixels segmented out in any resolution level are combined as the
final result.

3 Experiments and Results

3.1 Data and Evaluation

Our method was tested on a public database of retinal images, called DRIVE
[13]. In total, there are 40 color images with 565× 584 pixels. All the images are
divided into two groups: 20 images segmented by only one observer for training
and the other 20 images segmented by two observers for testing. More details of
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the database can be found in [13]. In our experiments, we took the segmentation
of the first observer as the ground truth, and the second is for reference. We
only showed the results of the testing set to compare with other methods. As
mentioned in [6], since the green channel provides the highest contrast of the
image, we only used the green channel of the color images for testing.

To evaluate the performance, we employed the receiver operating characteris-
tic (ROC) curves, which show the plots of true positive fraction Tp versus false
positive fraction Fp. The true positive and false positive fractions are defined as
follows:

Tp =
Ntp

Nvessel
, Fp =

Nfp

Nnon−vessel
, (4)

where Ntp, Nfp are the numbers of true positives and false positives respectively;
Nvessel, Nnon−vessel are the total numbers of vessel and non-vessel pixels in the
ground truth. The DRIVE database provides mask images for all the images. So
that only pixels inside FOV were considered in the testing.

3.2 Parameters Setting

In our experiments, the parameters of the algorithm were set as follows. For
normalized cut, we compute the similarity wij between two pixels i and j:

wij = e
−�I(i,j)2

σ2
1 e

−D(i,j)2

σ2
2 , (5)

where �I(i, j) is the difference of intensity; D(i, j) is the distance between i and
j; σ2

1 = δ2
I ∗ 0.3 (δI is the maximal variation of intensity in current window),and

σ2
2 = 49.
A window will be selected as a candidate if the conditions are satisfied: λ1 >

T1,λ1/λ2 > T2,|Σ∇I|/ max(|∇I|) < T3. where T1, T2 and T3 are parameters
for selecting candidate windows. Based on our experiments, we made a tradeoff
between all the three parameters by using only one variable k: T1 = 12000 −
1000k, T2 = 2.5− 0.1k, T3 = 2.0 + 0.7k. We changed k from 0 to 10 to generate
the ROC curves. For different resolution levels, T1 and T2 are multiplied by
a factor n + 2, n is the level of resolution. In the experiments, we use three
resolution levels, a higher resolution (n = 0), the original resolution (n = 1)
and a lower resolution (n = 2). In lower resolution, the vessels to be segmented
corresponds to the thick vessels in the original image. In general, the image
contrast around these thick vessels is high, and it is easy to segment them.
Therefore, the parameters were directly fixed in the lower resolution with T1 =
60000, T2 = 2.5, T3 = 4 in all situations. In the tracking process, T1, T2 and T3

are multiplied by factors of 0.7, 0.7 and 1.5 respectively.

3.3 Results

Because the performances of some existing methods on the database have been
reported in [14] and [15], we directly compared our results with the reported
results. The ROC curves of all the methods are plotted in Figure 2. In [13]
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Fig. 2. The ROC curves and Dc of four methods on the DRIVE

and [15], they computed the area Az under the ROC curve to evaluate the
performance of the algorithms. However, we only plotted part of ROC with
Fp < 0.5, and compute the distance Dc between the ROC and the ideal point
(0, 1) instead of Az . The closer to the ideal point, the better the algorithm is.
There are two reasons. First, unlike the supervised method, our method cannot
control only one parameter to threshold all the pixels. This means our curves
hardly reach left bottom and upper right corners. Second, we also think it is
no need to compare Az, because the result is meaningless when Fp is too large
(there will be more false positives than true positives). We pay more attention to
the area around the point of segmentation by the second observer, as pointed out
by the arrows in Figure 2. Although we don’t have the accurate testing results
of other methods, the values of Dc still can distinguish the performances of all
the methods (see the legend of Figure 2).

First of all, we have to point out that the methods of Staal et al. and Soares
et al. are supervised. Especially, they did leave-one-out experiments on STARE
database. It is natural that their results are better than other unsupervised
methods. In Figure 2, although the curves of the proposed method are below
the curves of two training methods, they are closer to the ideal point (0, 1) and
higher than the curves of Jiang et al..

Besides that, the ROC curves show another feature of the method. Every
marker on the ROC of the proposed method stands for an average evaluation of a
set of parameters (the markers on the other curves are the points we sample from
the reported results). We notice that, although we linearly adjust the parameters
by the same step, they are very compact on the left part of the curve which is
in the region close to the second observer and the ideal point (0, 1). That is
because the algorithm uses the tracking strategy which makes the algorithm not
so sensitive to initial parameters.

The experiments also show the method is efficient. Although our implemen-
tation is experimental, the proposed method can segment an image of DRIVE
database in about 30s (Pentium-IV 1.5GHz), which is similar with the method of



Multi-resolution Vessel Segmentation Using Normalized Cuts 935

Jiang et al., but much faster than the supervised method in [13] (about 15min,
Pentium-III 1.0GHz). There is a large space to speed up our method, because
most of the major parts of vessels are segmented in all three resolution levels. We
can combine the process of segmentation in different resolution levels together
to avoid the redundant computation.

4 Conclusion

In this paper, we have proposed an unsupervised method based on normal-
ized cut criterion and the gradient matrix to segment vessels in retinal im-
ages. The performances of the proposed method and some existing methods
have been evaluated using the ROC curves. The evaluation demonstrates our
method can improve the segmentation accuracy, as compared with the other
widely used unsupervised method. The proposed method is computationally
efficient.
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