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Abstract. We propose a novel trace-based method to extract vessel
axes from gray-scale angiograms without preliminary segmentations. Our
method traces the axes on an optimization framework with the bounded
spherical projection images and the sum of squared difference metric. It
does not take alternate steps to search the next axial point and its tan-
gent as in other trace-based algorithms, instead the novel method finds
the solution simultaneously. This helps avoid U-turns of the trace and
large spatial discontinuity of the axial points. Another advantage of the
method is that it enables interactive user guidance to produce contin-
uous tracing through regions that contain furcations, disease portions,
kissing vessels (vessels in close proximity to each other) and thin vessels,
which pose difficulties for the other algorithms and make re-initialization
inevitable as illustrated on synthetic and clinical data sets.

1 Introduction

Segmentation of 3-D angiograms can provide patient-specific 3-D vascular mod-
els for diagnosis and prognosis. Nevertheless, if one wants to: (a) study quanti-
tatively the vessel attributes over a particular vessel population [1]; (b) generate
fly-throughs in virtual endoscopy [2]; or (c) perform real-time registration of 3-D
vessels to X-ray angiograms [3], then extraction of the vessel axis is required. This
usually demands further post-processing on the vascular segmentation. Topolog-
ical thinning [4], voxel encoding technique [5, 2], and Voronoi diagram [6] had
been investigated for the construction of vessel axes from the segmentation. Hy-
brid approaches were also proposed [7,8]. In order to obtain a satisfactory vessel
axis extraction with the above algorithms, a topologically and morphologically
correct vascular segmentation (i.e., with no holes and cavities) is necessary, which
in fact may be difficult to obtain from clinical data sets.

Skeleton-based vascular segmentation algorithms [9, 10, 11, 12] provide an al-
ternative mean to kill two birds with one stone. In those algorithms, vessel axes
are extracted and the local vessel widths are estimated in the meantime, and
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Fig. 1. Illustrations of (a) a typical trace-based method, (b) the optimization frame-
work for axis tracing and (c) tracing with user guidance on the optimization framework

therefore a vascular segmentation can be obtained as a by-product. Technique
that produces vessel axes without segmentation was also proposed [13]. Gener-
ally, those axis extraction methods [9, 11, 10, 12] consist of two core alternate
tasks, the generation of the axial tangent and the computation of the next ax-
ial point. A trace is initiated by a manual seed point. The axial tangent of the
seed is then generated. This tangent helps define a cross-sectional plane (normal
plane), which is used to compute the next axial point after the plane is shifted
forward along the tangent direction, as illustrated in Fig. 1(a). This process
keeps iterating until a termination criterion is met or the user pre-empts the
tracing.

Nevertheless, the trace obtained with the aforementioned methods may go
astray and make U-turns in regions that contain furcations, disease portions
and kissing vessels [11]. Therefore, re-initialization of the trace at the proximal
end of the side branch, and the immediate disease-free and kissing-free portions
is inevitable. As a result, a disconnected vessel axis may be produced.

To alleviate this problem, we propose a novel trace-based approach to ex-
tracting a continuously connected vessel axis, in which we re-formulate the axis
tracing problem on an optimization framework. The objective function is built
upon two bounded spherical projection images and the sum of squared difference
metric. Such framework allows seamless integration of interactive user guidance
(2-D curves drawn on the screen by the user) on the axis extraction so as to
drive the trace along the user-defined paths to fly through those problematic
regions. Our method does not take alternate steps to search the axial points
and tangents as suggested in [9, 11, 10, 12]. Indeed it finds the next axial point
and its tangent simultaneously and guarantees that the axial points are dis-
tanced from the preceding and the succeeding ones by a user-defined distance,
which effectively helps avoid U-turns of the trace and large spatial disconti-
nuity of the axial points. Experimental results on synthetic and clinical data
sets show that our method can extract continuous and less jittering vessel axis
in the regions that contain furcations, kissing vessels and thin vessels (in di-
ameter down to 2 voxels). Furthermore, with the interactive user guidance, it
can produce continuous traces to side branches at furcations and bypass disease
portions.
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2 Optimization Framework for Axis Tracing

2.1 Objective Function

The objective function to be optimized is based upon a bounded spherical pro-
jection (BSP) image generated at a candidate axial point with reference to its
associated tangent. The BSP image is created in a similar fashion as the spherical
MIP image described in [14], except the following: (1) our projection is bounded,
i.e., the spherically casted rays are not extended infinitely, (2) the pixel intensi-
ties of the BSP image are the normalized cumulative sums of the voxels along
the casted rays and (3) the polar coordinate is originated from the direction of
the associated tangent. Figs. 2(a)-(d) show some of the BSP images generated
on an image volume with a solid straight tube (intensities inside are higher than
the outside) at different 3-D points and their associated tangents as depicted
in Figs. 2(e)-(h). It is observed that there is a special pattern (three horizontal
strips) on the BSP image if the length of the projection bound (r) is greater than
the tube radius (we set r equal to 1.5× the tube radius), the 3-D point is on the
desire axis and its associated tangent is aligned with the axis orientation, see
Figs. 2(a) and 2(e). As such, through measuring the similarity between this BSP
image (Î) and those generated at the candidate axial points with the associated
axial tangents, we can find the next axial point and the associated axial tangent
simultaneously by the following minimization:

p∗ = arg min
p

(
ωg · ωs · SSD

(
I (p) , Î

))
(1)

where p is a parameter vector that contains the candidate axial point, its asso-
ciated tangent and the length r, p∗ denotes the solution of the minimization, ωg

and ωs are the multiplicative weights for the integration of user guidance and
the constraint on axis smoothness (see Sec. 2.3 for details), the function SSD
returns the sum of squared difference (SSD) metric of the two arguments, I(p)
is the BSP image generated with the given parameter vector.

2.2 Parameter Vector

As depicted in Fig. 1(b) (which shows a 2-D version for better illustration),
the location of the next axial point xi+1 and its associated tangent t̂i+1 can
be expressed as spherical coordinates, (θi+1

x , φi+1
x ) and (θi+1

t , φi+1
t ), relative to

the current axial points xi, respectively. The coordinates φi+1
x and φi+1

t ∈ [0, π]
denote the polar angles originated from t̂i and (xi+1 −xi), respectively, θi+1

x and
θi+1

t ∈ [0, 2π) denote the azimuthal angles on the normal planes. Mathematically,

xi+1 = xi + Ri
t

⎡
⎣
d cos θi+1

x sin φi+1
x

d sin θi+1
x sin φi+1

x

d cosφi+1
x

⎤
⎦ and t̂i+1 = Ri

x

⎡
⎣

cos θi+1
t sin φi+1

t

sin θi+1
t sin φi+1

t

cosφi+1
t

⎤
⎦ ,(2)

where d = 1 voxel is a user-defined step size of the trace, Ri
t and Ri

x are the 3-D
rotation matrices defined by using t̂i and the unit vector of (xi+1 −xi) as the Z-
axis, respectively, their normal vectors as Y-axis and binormal vectors as X-axis.
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Fig. 2. (a)-(d) The BSP images (azimuthal and polar angles are enumerated in the X-
and Y-axis, respectively) generated on an image volume with a solid straight tube (the
surfaces are for visualization only) at different 3-D points and their associated tangents
(the dark gray arrows) as depicted in (e)-(h). The wireframe-spheres define the scope
of the bounded spherical projection.

Including the length of the projection bound ri+1 of the corresponding candidate
BSP image, we have a 5-D parameter vector, pi+1 = [θi+1

x , φi+1
x , θi+1

t , φi+1
t , ri+1].

In order to avoid backward tracing, we set the search domain of the polar angles
to [0, π/3]. In addition, we force ri+1 ∈ [(1−q)ri, (1+q)ri], where q = 0.5 controls
the allowable length change in percentage of ri to prevent sudden changes in the
length r when the trace flies through bifurcations and disease portions.

2.3 Integration of User Guidance and Axis Smoothness Constraint

User guidance is expressed as a set of user-drawn 2-D curves on the screen. They
help steer the vessel axis traced in 3-D by giving reference paths on which the
perspective projected trace should follow on the screen. This idea is illustrated
in Fig. 1(c). Suppose the trace follows the main vessel from left to right without
any guidance. If the user wants to guide the trace towards the side branch, a
2-D curve should be drawn on the screen as given.

We implement such guidance as the multiplicative weight ωg in the objective
function (see Eqn. 1). The weight is defined as follows,

ωg = Rescale

⎛
⎝

2∏
j=1

(
1 − exp

(
−

s2
j

2σg
2

))
, ωmin

g , ωmax
g

⎞
⎠ (3)

where the function Rescale linearly transforms the first argument from [0, 1] to
[ωmin

g , ωmax
g ], we set ωmin

g = 0.1 and ωmax
g = 1 which are the minimum and maxi-

mum values of ωg, s1 and s2 are the shortest distances from the perspective pro-
jected points of the next two succeeding candidate axial points x′

i+1 and x′
i+2 to

the 2-D curves, respectively. x′
i+2 is estimated from the candidate axial tangent

t̂′i+1 at x′
i+1 as follows: x′

i+2 = x′
i+1 + dt̂′i+1. The variable σg = 3 screen voxels

controls the guiding influence over the candidate axial points. A smaller weight
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is obtained if x′
i+1 and x′

i+2 are closer to the curve on the screen. User guidance
with more than one 2-D curve is demonstrated in Section 3.

Axis smoothness is constrained in the same fashion. The multiplicative weight
ωs in Eqn. 1 that favors smooth vessel axis is defined as follows,

ωs = Rescale

(
1 − exp

(
− (1 − |¯̂t · v̂|)2

2σs
2

)
, ωmin

s , ωmax
s

)
(4)

where ωmin
s = 0.7 and ωmax

s = 1 are the minimum and maximum values of
the weight, ¯̂t is the mean vector of t̂i and t̂′i+1, v̂ is the normalized vector of
(x′

i+1 −xi) and σs = 0.3 controls the degree of the axis smoothness (the smaller
σs is the smoother the axis).

2.4 Initialization and Optimization

The manually selected seed point may only be picked in close proximity to
the vessel axis of interest. To initialize a trace, we need to find the first axial
point x0 within the neighborhood of the seed point. This is done by locating
the local maxima in a Gaussian smoothed version of the image volume. For
the estimation of the initial projection bound length r0 and the initial axial
tangent t̂0, we perform the analysis of the Hessian matrix and compute the
ridge direction (defined by t̂) at each scale (defined by r) in a discrete scale-
space [10]. Then we set the values of r0 and t̂0 to the pair (r, t̂) that gives
minimum SSD(I ′, Î), where I ′ is the BSP image generated at x0 with the pair
(r, t̂). t̂0 is flipped if an opposite trace is desired. We apply a modified version of
(1+1)-Evolution Strategy (ES) for the optimization (modification is referred to
the optimization with simple bounds on the parameters). (1+1)-ES is a special
type of the Evolutionary Algorithms with both the population size and the
number of children generated equal to one, which has an automatic step size
and provides search direction adaptation [15]. Thus it has the ability to step out
of non-optimal minima and can provide the axis tracing problem with a long
capture range.

3 Results

Wehave tested the proposedmethod on three synthetic data sets and a clinical data
set (3-D rotational angiography) available at http://www.gris.uni-tuebingen.de/
areas/scivis/volren/datasets/datasets.html, courtesy ofPhilipsResearch,Ham-
burg, Germany. The design of the synthetic data took several challenging vascular
structures for the trace-based axis extraction methods into consideration: kissing
vessels, a bifurcation, and a typical saccular aneurysm in the cerebral circulation.

Figs. 3(a)-(c) and 4 show the experimental results obtained from the newly
proposed method on the synthetic and clinical data sets, respectively. The black
axes in those figures are traced without any user guidance. It is evident that
the vessel axes extracted from the kissing vessels (see Figs. 3(a) and 4(a)), at

http://www.gris.uni-tuebingen.de/
areas/scivis/volren/datasets/datasets.html
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Fig. 3. Results obtained from (a)-(c) our novel method, the methods proposed by (e)-
(g) Aylward and Bullitt [10] and (i)-(k) Shim et al. [12] on the synthetic data sets
which contain kissing vessels, a bifurcation and a saccular aneurysm. The 2-D curves
drawn on the screen for user guidance on the tracing are given in (d), (h) and (l). The
semi-transparent surfaces are for visualization only.

the furcations (see Figs. 3(b) and 4(b)), and from the thin vessel (< 2 voxels
in diameter, see Fig. 4(c)) are satisfactory. Due to the existence of the saccular
aneurysm (see Fig. 3(c)), the axis extracted are steered, as a result it is deviated
from the desired vessel axis. User guidance is therefore needed to drive the
trace towards the target axis in this case, as well as to the side branches of
the bifurcations shown in Figs. 3(b)-(c). The user-drawn 2-D curves (dark gray
in color with circles, those circles are the 2-D locations picked by the user to
compose the curves) are depicted in Figs. 3(d), 3(h) and 3(l). The curve shown
in Fig. 3(d) helps guide the trace (light gray in color) to go to the right side
branch of the bifurcation given in Fig. 3(b). The other two curves given in Figs.
3(h) and 3(l) altogether steer the trace (in light gray) to the left side branch of
the saccular aneurysm shown in Fig. 3(c). Two extra 2-D curves are needed to
produce the trace to the right side branch, however, they are not shown due to
page limitation.

As a comparison, we have also tested the methods presented in [10, 12] on
the data sets. Figs. 3(e)-(g) and 3(i)-(k) show the results obtained from Ayl-
ward and Bullitt’s [10] and Shim et al. [12] methods on the synthetic data
sets, respectively. The shorter black axes shown in Figs. 3(e)-(g) are the ves-
sel axes extracted with the large spatial discontinuity detection (LSDD). Such
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(a) (b) (c)

Fig. 4. Results on the clinical data set. The black, dark and light gray axes are the
vessel axes obtained from ours, Aylward and Bullitt’s [10] and Shim et al. [12] meth-
ods, respectively, on different vascular regions. The semi-transparent surfaces are for
visualization only.

detection mechanism preempts the tracing if the next axial points is > 1 voxel
apart from the current one. It is observed that, with the detection, Aylward and
Bullitt’s method stops the tracing just before entering the kissing region, bifur-
cation and disease region. The method, however, produces axes (in gray) with a
large axial point displacement in the aforementioned regions if no LSDD. Shim
et al. method gives similar results except for the kissing vessels. In addition,
several U-turns can be observed at the bifurcation and in the aneurysmal sac.
Comparisons on the clinical data set are presented in Fig. 4, in which the dark
and light gray axes are the vessel axes obtained from Aylward and Bullitt’s, and
Shim et al. methods, respectively. In the regions that contain kissing vessels, a
furcation and a thin vessel, the axes extracted from the two methods is either
jittered in between the two adjacent vessels, dragged towards the center of the
furcation or off the target axis when the vessel is too thin to be traced. In general,
the compared two methods produce vessel axis with more jitters than ours.

Furthermore, we have extracted the axes of nine major vessels, including the
internal carotid artery (ICA), the two anterior cerebral arteries (ACA), a few
branches of the middle cerebral artery (MCA) and the posterior communicating
artery (PCoA), in the clinical data set with our method. They are depicted in
Fig. 5(a). An MIP image is shown in Fig. 5(b) for reference. User guidance is
given at the furcations to steer the traces towards the side branches and at the
base of the aneurysm to bypass the disease portion (highlighted by arrows). It
is demonstrated that our method can trace vessel segments, including the side
branches and that in the disease region. Since the other algorithms do not sup-
port user guidance, they are not tested in this study. To study the repeatability
of the method, the ICA is traced for five times. The axes extracted are shown
in Fig. 5(c). Visually, there is no significant discrepancy amongst those axes.

We have also evaluated quantitatively the extracted vessel axes with the man-
ually drawn axes built with reference to the reformatted cross-sectional images
along the vessels. The mean Euclidean distance (ED) errors (maximum errors are
given in the parentheses) in percentage of diagonal length of the voxel (ΔV ) are
listed in Table 1. The error is defined as the shortest ED from an axial point of
the extracted axis to the manually drawn axis. Apparently Aylward and Bullitt’s
method with LSDD performs better according to the errors tabulated. However,
it produces preempted traces upon large spatial discontinuity is encountered
(the locations are highlighted by arrows in Figs. 4 and 5(c)). Compared with
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(a) (b) (c)
Fig. 5. (a) Extracted axes of nine major vessels in the clinical data set, including ICA,
two ACA, a few branches of MCA and PCoA. (b) MIP image. (c) Axis of ICA extracted
at five difference times. The semi-transparent surfaces are for visualization only.

Table 1. The Euclidean distance errors in percentage of diagonal length of the voxel
between the extracted vessel axes and the manually drawn axes. The mean errors are
tabulated with the maximum errors in the parentheses. The synthetic data sets are
those shown in Fig. 3. The clinical data sets of sub-regions, major vessels and ICA are
those presented in Figs. 4, 5(a) and 5(c), respectively.

Aylward and Bullitt Aylward and Shim et al.
Data Sets Ours with LSDD [10] Bullitt [10] [12]
Synthetic 29% (126%) 16% (140%) 464% (1274%) 304% (798%)
Clinical (Sub-regions) 23% (60%) 10% (53%) 96% (182%) 70% (228%)
Clinical (Major vessels) 29% (100%) — — —
Clinical (ICA) 32% (77%) 3% (76%) 46% (137%) 6% (86%)

the other algorithms which produce axes with large errors in the synthetic and
several sub-regions of the clinical data sets, our method is capable of extracting
the complete axes of the vessel segments consistently with mean errors < ΔV/3
and maximum errors ≈ ΔV . Concerning the processing time, the axes of the
nine major vessels took < 15 min to extract with the novel method on a 2.0
GHz PC. The manual process, by contrast, took 169 min to finish.

4 Discussion and Conclusion

We have proposed a novel trace-based method which enables interactive user
guiding of the trace to fly through challenging areas, e.g., vascular regions that
contain furcations, disease portions, kissing vessels and thin vessels. The method
traces a vessel axis on an optimization framework with the bounded spherical
projection (BSP) images and the sum of squared difference (SSD) metric. Inter-
active user guidance (2-D curves that drawn on the screen by the user to steer
the trace) and axis smoothness constraint are integrated seamlessly as the mul-
tiplicative weights in the objective function. Experimental results on synthetic
and clinical data have shown that our method can extract continuous and less
jittering vessel axes, as compared with the other two trace-based algorithms.
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Several potential extensions to the method are of interest for further research.
For instance, reducing the user guidance on tracing the side branches of a furca-
tion, extending the method to trace axes of anatomies other than blood vessels
(especially those with asymmetric cross-sections) with different reference im-
ages/models and similarity measures (i.e. other than BSP images and SSD met-
ric), and incorporating the skeleton-based segmentation algorithms so as to help
producing topologically and morphologically correct vascular segmentations.
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