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Abstract. In this paper, based on the SαS distributions, we design SαS
filters and use the filters as a new feature extraction method for non-rigid
medical image registration. In brain MR images, the energy distribu-
tions of different frequency bands often exhibit heavy-tailed behavior.
Such non-Gaussian behavior is essential for non-rigid image registration
but cannot be satisfactorily modeled by the conventional Gabor filters.
This leads to unsatisfactory modeling of voxels located at the salient
regions of the images. To this end, we propose the SαS filters for mod-
eling the heavy-tailed behavior of the energy distributions of brain MR
images, and show that the Gabor filter is a special case of the SαS filter.
The maximum response orientation selection criterion is defined for each
frequency band to achieve rotation invariance. In our framework, if the
brain MR images are already segmented, each voxel can be automatically
assigned a weighting factor based on the Fisher’s separation criterion and
it is shown that the registration performance can be further improved.
The proposed method has been compared with the free-form-deformation
based method, Demons algorithm and a method using Gabor features by
conducting non-rigid image registration experiments. It is observed that
the proposed method achieves the best registration accuracy among all
the compared methods in both the simulated and real datasets obtained
from the BrainWeb and IBSR respectively.

1 Introduction

Non-rigid medical image registration methods can be broadly classified into two
categories: feature-based methods and intensity-based methods. The intensity-
based non-rigid registration methods are the direct methods aiming to maximize
or minimize the similarity functions defined between two images. Thirion [1]
proposed the Demons algorithm to handle deformable registrations, Rueckert et
al. [2] proposed free-form deformation (FFD) based method, and Vemuri et al. [3]
suggested a level-set based deformable image registration method. The feature-
based non-rigid registration methods model the image registration problem as a
feature matching and optimization problem by extracting features such as surface
landmarks, and shape information from the images. Various feature-based image
registration methods have been proposed [4].
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Gabor filter is a useful tool to capture the energy distributions of various
frequency bands of an input image and has been applied to medical image reg-
istration as a feature extraction method [5]. Gabor filter is in fact a Gaussian
kernel modulated by a complex sinusoid with a specific orientation. Therefore,
the energy distributions of various frequency bands are characterized by the
Gaussian kernel. However, as limited by the Gaussian kernel, Gabor filter is not
a suitable choice to model non-Gaussian behavior, which occurs quite often in
many practical applications [6]. In this paper, it is demonstrated that the en-
ergy distributions of different frequency bands of brain MR images often exhibit
non-Gaussian heavy-tailed behavior. As such, Gabor filters cannot fully describe
the characteristics of brain MR images. Another problem of the Gabor filter is
that it is not rotation invariant. As pointed out in [7], rotation invariance is an
important property for feature-based registration methods.

Therefore, we are motivated to propose the SαS filters as a feature extrac-
tion method for brain image non-rigid registration. The main contributions of
this paper are as follows. First, the proposed SαS filters satisfactorily model
the heavy-tailed behavior of the energy distributions of brain MR images. This
can increase the registration accuracy. It is theoretically shown that the Gabor
filter is a special case of the SαS filters. Second, in order to achieve rotation
invariance, the maximum response orientation (MRO) selection criterion is de-
fined and designed for each frequency band. It also reduces the computational
burden for non-rigid image registration. Third, an optional training framework
is proposed. If the segmentation results of input images are available, each voxel
can be automatically assigned a weighting factor based on the Fisher’s sepa-
ration criterion (FSC). The larger is the weighting factor, the more important
is the voxel during the registration process. It is shown that with this training
step, the registration accuracy can be further improved. The proposed method
has been evaluated by non-rigid registration experiments, and has been com-
pared with the FFD, Demons algorithm and a method using Gabor features. It
is shown that the proposed method achieves the best registration accuracy in
both experiments on synthetic and real 3D image volumes.

2 Methodology

2.1 Feature Extraction with SαS Filters

Gabor filter, which was first proposed by Dennis Gabor [8], is a powerful math-
ematical tool for signal decomposition and image processing. The basic assump-
tion under which the input image can be accurately described by Gabor filtered
responses is that the energy distributions for various frequency bands follow the
Gaussian distribution. However, many signals encountered in practical applica-
tions are non-Gaussian [6]. Using the Gaussian kernel to model non-Gaussian
behavior usually results in significant performance degradation [6].

Figure 1(a) shows a T1 MR image slice obtained from the IBSR website1, its
normalized energy magnitude distributions of several frequencies are plotted in
1 http://www.cma.mgh.harvard.edu/ibsr/index.html
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blue bars from column 2 to column 4. In this example, it is observed that for
brain MR images, the energy magnitude distributions of various frequency bands
have non-Gaussian heavy-tailed behavior. Such behavior is more obvious in the
mid and high frequency bands. Figures 1(b) to 1(d) show the best fitted Gaussian
models obtained via maximum likelihood estimation for various frequency bands.
It is observed that the heavy-tailed behavior cannot be satisfactorily modeled
by the Gaussian kernel.
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Fig. 1. Column 1 is an image slice from a 3D image volume obtained from the IBSR
website. From column 2 to column 4: The blue bars represent the normalized energy
magnitude distributions of the low frequency bands: 2.00 to 3.17, mid frequency bands:
3.17 to 5.04, high frequency bands: 5.04 to 9.00 (cycles/image) for the image in (a).
Figures (b), (c) and (d) show the best fitted Gaussian models obtained via maximum
likelihood estimation for different frequency bands (red curves). Figures (e), (f) and
(g) show the best fitted SαS models obtained via maximum likelihood estimation for
different frequency bands (red curves).

According to [6], symmetric Alpha-stable (SαS) distribution is a powerful
tool to model the heavy-tailed behavior as it has algebraic tails. Its characteristic
function is given by Equation 1 [6]:

ϕ(t) = exp{jat− γ|t|α}, (1)

where α (0 < α ≤ 2) is called the characteristic exponent. It measures the “thick-
ness” of the tails of the distribution. The smaller is the value of α, the heavier
are the tails. a is the location parameter determines the center of the SαS distri-
bution. γ is the scale parameter, which is similar to the variance of the Gaussian
distribution. The SαS distribution is symmetric about a. Gaussian distribution
is a special case of the SαS distribution (i.e., when α = 2). Usually there is no
closed-form expressions for the general SαS density functions. But it can be sat-
isfactorily approximated by power series expansions [6].
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Figures 1(e) to 1(g) show the bested fitted SαS models obtained by using the
maximum likelihood for various frequency bands. It is observed that the heavy-
tailed behavior is well modeled. To further investigate the importance for the
existence of heavy-tailed behavior, Figure 2 highlights the voxels, which lie on
the smallest 10% or largest 10% of the energy magnitudes in various frequency
bands with green circles. In Figure 2, the voxels highlighted with green circles
cannot be satisfactorily modeled by Gaussian as they lie on the ”tail” of the
frequency magnitude histograms. It is observed that most of these voxels are
located at salient regions, which are important for image registration, such as
sulcal roots and gyral crowns [7]. Therefore, failure to model the heavy-tailed
behavior satisfactorily can lead to significant loss of information and degrade the
registration performance.

Fig. 2. Voxels highlighted with green circles are corresponding to the smallest 10%
and largest 10% of the energy magnitudes in various frequency bands. They lie on the
“tail” of the frequency magnitude histograms.

Table 1 lists the sums of squared errors of different frequency band magnitudes
modeled by the Gaussian and SαS distributions. It is shown that the SαS
distribution can model the energy magnitude distribution more accurately than
the Gaussian distribution.

Table 1. Sums of squared errors of modeling the energy magnitude distribution using
the Gaussian and SαS distributions for different frequency bands refer to Figure 1

Low Frequency Mid Frequency High Frequency

Gaussian 0.3076 0.5308 0.4803
SαS 0.0107 0.0291 0.0134

Therefore, in this paper, we propose SαS filters as a new feature extraction
method for brain MR images. A 3D SαS filter is defined as,

ψα,γ,f,θ,φ(x, y, z) = fα,γ(x, y, z) · exp(j2π(xu + yv + zw)), (2)

where fα,γ(x, y, z) is the zero-mean SαS kernel and defined as,

fα,γ(x, y, z)=(
1√
2π

)3
∫

u

∫
v

∫
w

exp{−γ(x2+y2+z2)
α
2 }·exp(j(xu+yv+zw)dwdvdu.

(3)
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In Equation 2, u = f · sinφ cos θ, v = f · sinφ sin θ, w = f · cosφ (0 ≤ θ ≤ π,
0 ≤ φ ≤ π), where f =

√
u2 + v2 + w2 is the center frequency, θ and φ define

the orientations in the frequency domain. Gabor filter is a special case of SαS
filters (i.e., when α = 2).

During the feature extraction process, the input image is convolved with the
SαS filters. Then the magnitudes of the filtered response are normalized to
the range [0,1] and adopted as the features. In this paper, the input image is
convolved with a set of SαS filter banks with various characteristic exponents,
center frequencies and orientations. The center frequencies and orientations are
defined as, fi = fmax/(

√
2)i (i = 0, 1, ..., Nf ), θj = jπ/Nθ (j = 0, 1, ..., Nθ),

φk = kπ/Nφ (k = 0, 1, ..., Nφ). Nf , Nθ and Nφ are the numbers of center
frequencies and orientations to be decomposed in the 3D frequency domain,
fmax is the highest center frequency to be analyzed. In this paper, fmax = 16.00
(cycles/image), Nf = 5, Nθ = 6 and Nφ = 6. Four different characteristic
exponents are used to capture the heavy-tailed behavior: α1 = 0.5, α2 = 1,
α3 = 1.5 and α4 = 2. The scale parameter γ is set for each filter so that each
filter has a half peak radial bandwidth of one octave.

2.2 The Maximum Response Orientation Selection Criterion

As stated in Section 2.1, the SαS filters can capture the non-Gaussian heavy-
tailed behavior. However, it is still not rotation invariant. As pointed out in [7],
rotation invariance is an essential property for feature-based registration meth-
ods. As such, we propose the Maximum Response Orientation (MRO) selection
criterion to make the filters rotation invariant. Suppose for a given characteristic
exponent α and center frequency f , according to the formulation described in
Section 2.1, there are Nθ ·Nφ responses for each voxel with respect to different
orientations. Then the maximum response for each voxel is defined as,

R(x, y, z) = max
j,k

|I ∗ ψα,γ,f,θj,φk
(x, y, z)|, (4)

where I denotes the input image, the ∗ symbol means convolution. As a re-
sult, the R(x, y, z) value for each voxel is rotation invariant because no matter
how the images are rotated, the maximum response value still maintains the
same for a particular direction. Also, the feature dimension can be reduced sig-
nificantly. Without the MRO selection criterion, each voxel is represented by
a 4 ∗ 5 ∗ 6 ∗ 6 = 720 dimension feature vector (four characteristic exponents,
five center frequencies, six θ directions and six φ directions). After applying the
MRO selection criterion, the feature dimension is reduced to 4 ∗ 5 ∗ 1 ∗ 1 = 20.
Therefore, the computational burden is remarkably reduced.

2.3 Training Option with Pre-obtained Segmentation Results

Sections 2.1 and 2.2 introduce the procedure for extracting features from brain
MR images using SαS filters and the MRO selection criterion. It is an unsuper-
vised process. In this section, we present a training framework if the segmentation
results of the brain MR images are available before the registration.
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Suppose the source image is denoted asGs, and it is segmented into c classes of
tissues. For each referencing voxel p, a sphere with radius R is defined whose ori-
gin is the referencing voxel. Then all the voxels on or inside this sphere are under
consideration. R actually defines the maximum scale of the spherical neighbor-
hood system, in this paper, R = 3. For all the voxels under consideration, let
Ni (i=1,2,...,c) denote the number of voxels belong to the i− th tissue, Hp

i,j de-
note the feature vector obtained using SαS filter banks and the MRO criterion
from the j − th voxel of the i − th class. Then for each referencing voxel p, an
appropriate weighting factor can be assigned to it using the Fisher’s separation
criterion (FSC) [9]. First, the intra-class mean and variance are calculated as,

mp
I =

1
c

c∑
i=1

2
Ni(Ni − 1)

Ni∑
k=2

k−1∑
j=1

χ2(Hp
i,j , H

p
i,k), (5)

σp
I =

⎛
⎝ 2

(
∑c

i=1Ni(Ni − 1)) − 2

c∑
i=1

Ni∑
k=2

k−1∑
j=1

(
χ2(Hp

i,j , H
p
i,k) −mp

I

)2

⎞
⎠

1
2

. (6)

Then the inter-class mean and variance are calculated as,

mp
E =

2
c(c− 1)

c−1∑
i=1

c∑
j=i+1

1
NiNj

Ni∑
k=1

Nj∑
l=1

χ2(Hp
i,k, H

p
j,l), (7)

σp
E =

⎛
⎝ 1

(
∑c−1

i=1

∑c
j=i+1NiNj) − 1

c−1∑
i=1

c∑
j=i+1

Ni∑
k=1

Nj∑
l=1

(
χ2(Hp

i,k, H
p
j,l) −mp

E

)2

⎞
⎠

1
2

,

(8)
where χ2 denotes the chi square distance. Then the weighting factor for voxel p
is given as,

wp =
(mp

I −mp
E)2

(σp
I )2 + (σp

E)2
. (9)

Similar to the source image, each voxel of the target image can also be as-
signed an appropriate weighting factor using this training framework when the
segmentation results are available.

3 Similarity Measure and Deformation Model

In this paper, the GSEE-MI [10] is adopted as the similarity measure. GSEE-MI
is defined based on the multi-dimensional cumulative distribution function and
therefore can be directly applied to the multi-dimensional features extracted
from the proposed method. It is also less sensitive to interpolation effect. If
the training option described in Section 2.3 is not used, then each voxel will
have equal weight when calculating the cumulative distribution function. If the
training option is adopted, then when calculating the cumulative distribution
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function, each voxel contributes its weighting factor wp for its corresponding
histogram bin. Regarding the optimization, the gradient descent method is used.
The gradient of GSEE-MI can be approximated by using the Richardson’s ex-
trapolation method [11]. The tri-cubic B-spline basis function is adopted as the
deformation model for the proposed method in the non-rigid registration task,
the control-point spacing was set at 2.5mm.

4 Experimental Results

4.1 Experiment with Simulated 3D Images

In this section, we have tested the performance of the proposed method upon the
simulated 3D T1 image data obtained from the BrainWeb2. 12 image volumes
from different subjects were used. One of the image volumes was served as the
reference image, the others were used as the target images. The image volume
of each subject has the resolution of 256×256×181 voxels with the tissues of
different classes (i.e., white matter, gray matter and cerebrospinal fluid). From
the BrainWeb, all voxels have been already segmented and labeled.

The evaluation method was based on the calculation of the overlap of gray
matter (GM), white matter (WM) and cerebrospinal fluid (CSF) between the
reference image and transformed target image [12]. The evaluation measure was
defined by P = N(A∩B)

N(A∪B) [12], where A and B denote the regions of a specific
tissue in two images. The average values of P and the standard deviations of the
GM, WM and CSF before registration, registration results obtained by using
FFD [2], Demons [1], Gabor features [5] and the proposed method (SαS) with
and without training process are listed in Table 2. As listed in Table 2, the
proposed method gives the highest values of P among all the compared methods
for the registrations of the simulated 3D data sets. When the training procedure
is adopted, the registration accuracy can be further improved.

Table 2. The mean values of P and SDs of the tissues of GM, WM and CSF with
different methods. BR denotes before registration, SαS (WOT) denotes using SαS
filters without training, SαS (WT) denotes using SαS filters with training.

Tissue BR FFD Demons Gabor SαS (WOT) SαS (WT)

Gray 0.43167±0.09 0.74934±0.04 0.77052±0.06 0.72563±0.08 0.82115±0.03 0.87832±0.04
White 0.45638±0.06 0.76042±0.02 0.77374±0.03 0.73093±0.05 0.81093±0.04 0.85129±0.06
CSF 0.35985±0.03 0.71524±0.04 0.73095±0.05 0.69442±0.02 0.78205±0.05 0.82903±0.02

4.2 Experiment on Real 3D Images

We have conducted a non-rigid registration experiment on real 3D T1-weighted
brain MR data obtained from the IBSR website 3. The experiment was performed
2 http://www.bic.mni.mcgill.ca/brainweb/
3 http://www.cma.mgh.harvard.edu/ibsr/index.html
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on 20 image volumes of different subjects. The image volume for each subject is
around 256 × 256 × 64 voxels. For each image, the ground truth of segmented
tissues of different classes is available at the IBSR website. The experimental
settings were similar to the experiments presented in Section 4.1. The value
of P [12] was used to evaluate and compare between different methods. The
experimental results are listed in Table 3. It is observed that in the real 3D
data experiments, the proposed method has the highest values of P among all
the compared methods. Therefore, the robustness and accuracy of the proposed
method are strongly implied.

Table 3. The mean values of P and SDs of the GM, WM and CSF with different meth-
ods. BR denotes before registration, SαS (WOT) denotes using SαS filters without
training, SαS (WT) denotes using SαS filters with training.

Tissue BR FFD Demons Gabor SαS (WOT) SαS (WT)

Gray 0.52456±0.05 0.73146±0.05 0.76883±0.03 0.72925±0.06 0.81525±0.05 0.85184±0.06
White 0.55185±0.03 0.77935±0.05 0.78105±0.01 0.75274±0.04 0.83902±0.03 0.86096±0.08
CSF 0.31868±0.04 0.73802±0.04 0.75023±0.03 0.70214±0.05 0.81935±0.04 0.84086±0.03

5 Conclusion

In this paper, a new non-rigid registration method is proposed and evaluated.
The SαS filters are designed to model the non-Gaussian heavy-tailed behavior of
the energy magnitude distributions of different frequency bands for brain MR im-
ages. The maximum response orientation (MRO) selection criterion is proposed
to make the extracted features rotation invariant and reduce computational bur-
den. A new training framework based on the Fisher’s separation criterion (FSC)
is provided if the segmentation results for the source and target images are avail-
able. The proposed method has been compared with the free-form deformation
based method, Demons algorithm and a method using the Gabor features. It is
shown that the proposed method achieves the highest registration accuracy in
the experiments on both simulated and real 3D IBSR data sets.
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