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Abstract. We propose a new framework for multi-object segmentation
of deep brain structures, which have significant shape variations and rel-
atively small sizes in medical brain images. In the images, the structure
boundaries may be blurry or even missing, and the surrounding back-
ground is a clutter and full of irrelevant edges. We suggest a template-
based framework, which fuses the information of edge features, region
statistics and inter-structure constraints to detect and locate all the tar-
geted brain structures such that manual initialization is unnecessary. The
multi-object template is organized in the form of a hierarchical Markov
dependence tree. It makes the matching of multiple objects efficient. Our
approach needs only one example as training data and alleviates the de-
mand of a large training set. The obtained segmentation results on real
data are encouraging and the proposed method enjoys several important
advantages over existing methods.

1 Introduction

Deep brain structures play critical roles in human brain functioning and their
segmentation has numerous practical applications [1, 2]. One common strategy
used in the segmentation of brain structures is principal component analysis
(PCA), which is utilized to model shape variations [3, 4, 5]. Due to its linear-
ity, PCA may not be able to describe the relative positions of multiple objects
and their non-linear variations. The second popular brain structure segmenta-
tion strategy is fuzzy logic control [6, 7, 8], which can manage the selection of
various candidates of possible structures. The problem with fuzzy logic is that
it is difficult to give consistently high accuracy to the segmentations of various
intracranial structures because the relationship among those structures main-
tained by fuzzy logic may be weak and imprecise. Another popular technique
used in the segmentation of cerebral structures is level sets or active contours
[3, 5, 7, 9, 10, 11], which can model the shapes of each structure. One of the
concerns about active contours is the requirement of precise initialization of the
starting contours. Since the brain images abound with various edges and bound-
aries, which are formed by interwinding gray matter and white matter, active
contours are unlikely to converge to target structures if the initialization is not
good enough. Another concern about the active contours is that if most of the
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boundaries of a structure (e.g. thalamus) are missing, active contour methods
are likely to fail.

One common feature of the above-mentioned methods [3, 4, 5, 7, 8, 9, 10,
11, 12, 13, 14] is the need of sufficient training samples. The training process
usually requires a considerable number of segmented images with the known
ground truths. It will be a difficult situation if a sufficient number of the ground
truths is not readily available. In real applications, it is quite labor-intensive for
a radiologist to extract a large number of small 3D brain structures manually to
obtain training samples.

In this paper, we propose a new template-based framework for deep brain
structure segmentation. Instead of using fuzzy logic or active contour framework,
we integrate detection strategies with shape matching, manage multi-object rela-
tions with a hierarchical tree structure, and evaluate candidates by some specific
energy functions using edge/region information and inter-object relationship. We
use only one example of ground truth as the shape template, which considerably
mitigates the demand of a large amount of ground truths for the training process,
which is usually required in other related works. Each object or structure in the
template is allowed to deform individually according to a series of transforms.
The complicated interaction among multiple structures is simplified by using
the Markov dependence tree (MDT). MDT requires that children objects only
depend on parent objects and makes efficient the matching of the multi-object
template to input images. The proposed framework has the advantages of less
train burden, no need of initialization and applicability to missing boundary.

2 Methodology

In the proposed framework, we organize multiple objects by using a Markov
dependence tree, where the pose of each object except for the root is only de-
pendent on its parent object. We first need to detect a root object, which is
acted as the footstone of the tree structure. For each of the other objects, we
match it to the target image under a rigid transform and evaluate the result
with an energy function. Part-to-part interaction between parent and child ob-
jects is also considered and relative position of interactive parts can be altered.
The final segmentation is acquired after we fine-tune the coarse segmentation by
affine transform according to the evaluation energy function.

2.1 Multi-object Template Construction

As the prior knowledge for segmentation, a tree structure called Markov depen-
dence tree (MDT) is adopted to describe the relationship among the multiple
objects of interest. The basic rule is that the pose of every node (object) only
depends on its parent’s pose except for the root node, which has no parent. This
hierarchical structure greatly simplifies the interaction among those objects. For
a set of N objects, we need to concern N(N − 1)/2 relations if we consider all
possible pairwise relations. In contrast, we just need to concern N − 1 relations
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if we adopt the relation graph of a tree structure. The energy minimization of
the Markov dependence tree (MDT) model can be formalized as,

P ∗ = argmin
P

E(P ) = argmin
P

(
∑

i

Mi(pi) +
∑

i

∑

j=parent of i

Ti,j(pi|pj)), (1)

where E(P ) denotes the objective energy of the tree model, P is the set of poses
of all parts, Mi(pi) is a single-part local measure, pi is the pose of part i, and
Ti,j measures a parent-to-child compatibility between parts i and j.

In our framework, we construct the template (binary map) from one example
of ground truth of the target multiple objects. Only the ground truth of a single
data set is needed to form the prior shape model and estimate related parame-
ters, which is an advantage over some existing methods that need a number of
training images to either generate the atlas of whole brain or estimate the related
parameters of the shape model. For the segmentation of deep brain structures,
we construct a three-level hierarchical template. The ventricles are the tree root,
caudate nuclei are at the second level, and putamina and thalami are at the third
level. This model appears to be reasonable because ventricles, whose boundaries
are relatively sharp, are the most prominent object among the structures. Cau-
date nuclei cling to ventricles, so we regard them as child nodes to ventricles.
Putamina and thalami are nearer to caudate nuclei than to ventricles and hence
we put them at the third level.

2.2 Single-Part Registration

In this subsection, we focus on the first term of the objective MDT energy,
which depicts the measurement of the registration of a single part to the tar-
get image. Single-part registration is a data-driven process while pairwise-part
matching (the second term) is data-independent. Therefore single-part registra-
tion is served as an initial capture or detection of the parts in the image context.

In the proposed method, we make use of the gradient information, intensity
variance and distance of edge to register a single part to the image. The energy
Mi for single-part registration is formulated as,

Mi(pi) = αe1(pi|I) + βe2(pi|I) + γe3(pi|IE), (2)

e1(pi|I) = − 1
bi

∫∫∫

Bi

∇I(x, y, x)dxdydz, (3)

e2(pi|I) =
1
ai

∫∫∫

Ai

(I(x, y, z) − I(Ai))2dxdydz, (4)

e3(pi|IE) = PHD(Bi, IE), (5)
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where pi is the pose of part i, I is the input image intensity and IE refers to
the edge map of the image. α, β and γ are the corresponding weights, which do
not need to sum up to one. Bi is the boundary of part i, bi is the area of the
boundary Bi and I(x, y, z) is the intensity of the voxel at coordinates (x, y, z).
I(Ai) is the mean intensity in the image region Ai that is overlapped with part
i, and ai is the volume of the region. PHD, the partial Hausdorff distance, refers
to the k-th largest distance of all the points in one point set to the other set, and
is defined as PHD(Bi, IE) = Kth maxa∈Bi minb∈IE D(a, b), where D(·, ·) denotes
the Euclidean distance of two points.

The first term e1 considers the gradient of the part region boundary. If the
mean gradient value (normalized by the boundary area) is large, it is believed
that the region has a clear boundary and deserves a low energy. The second term
e2 in Eq. 2 focuses on the gray level variation within the part region. It prefers
to a region with smaller intensity variance. The third term in Eq. 2 encourages
the partial Hausdorff distance between the boundary of component pi and the
image edge map to be as small as possible.

2.3 Pairwise-Part Matching

When one part is registered to the image using single-part registration, we also
adjust its pose by means of pairwise-part matching, by which we can eliminate
some false detections of part pose in the single-part registration stage via high-
level interactions and constraints of the close objects. Note that the matching
will only change the pose of child part while the parent pose is fixed. Triple-
part or more interactions can be considered but the relation graph will not be
tree-structured and thus the computational burden will be increased consider-
ably. The matching of two interactive parts is evaluated by the following energy
function Ti,j ,

Ti,j(pi|pj) = δe4(pi|pj) + ζe5(pi|pj) + ηe6(pi|pj), (6)

e4(pi|pj) = D(Cpi , Cpj ), e5(pi|pj) = ||si − sj ||, e6(pi|pj) = I{nij/nj > τ}, (7)

where pi and pj are the poses of parts i and j, respectively. δ, ζ and η are the
corresponding weights of each term. D(·, ·) denotes the Euclidean distance of
two points. Cpi is the center of mass of part i, which is calculated by, Cpi =
1
ai

(
∫∫∫
Ai

xdxdydz,
∫∫∫
Ai

ydxdydz,
∫∫∫
Ai

zdxdydz). ai is the volume of the image re-

gion Ai that is overlapped with part i, assuming density is 1. (x, y, z) are the
coordinates of the voxel in region Ai. si and sj are the vectors of scaling (each
has three elements in 3D) of the parts i and j, respectively. Operator || · || refers
to the magnitude of a vector. I{event} is an indicator function, i.e., if an event
is true, I = 1; otherwise I = 0. aj is the volume of part j, nij is the volume of
the overlapping region of parts i and j, and τ is a tolerance factor with respect
to the overlapping extent.

The first term e4 checks the distance between the centers of mass of two parts
i and j, and tries to keep the parts in a proper distance. The second term e5
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is pertinent to the scale difference of the two interactive parts. It assures that
the two parts have similar levels of scaling. The third term of Ti,j deals with the
overlapping problem. It penalizes the situation that the overlapping of two parts
exceeds certain extent.

2.4 Detection, Segmentation of Root Object and Parameter
Estimation

Detection and segmentation of ventricles are not easy tasks and there are not
many research works in the literature directly related to it. In the proposed
framework, we adopt an automatic method without the need of specifying initial
seeds manually. At first, we perform tissue segmentation to classify voxels in the
brain image volume into white matter (WM), gray matter (GM), cerebrospinal
fluid (CSF) and others. The voxel-based segmentation is implemented through
a Gaussian mixture model, which is optimized by the expectation-maximization
algorithm. We then register the ventricle shape in the template to the CSF
binary segmentation map according to the MDT evaluation function (Eq. 1) and
obtain the rough position of the ventricles in the original image. The proposed
method further extracts automatically some seeds whose intensity is very dark
among the rough ventricle segmentation. The rationale behind this is that CSF
has always the lowest intensity compared to WM and GM in deep brain region
in T1-weighted MRI. At the final step, we perform a neighborhood connected
region growing algorithm based on the selected seeds to extract the ventricles.

In the energy function of MDT (Eq. 1), there are six parameters (α, β, γ, δ, ζ, η)
that can be adjusted. From the angle of energy minimization, one of the param-
eters can be fixed and the five others are free parameters. We propose an auto-
matic method to estimate the free parameters. We can calculate the six terms
(e1 to e6) in the objective energy function based on the single training image
and the corresponding true poses of each structure. After the values of the six
terms are calculated, we can estimate the weights of each term by means of their
ratios as follows, α : β = e2(pt

i|I) : e1(pt
i|I), α : γ = e3(pt

i|IE) : e1(pt
i|I), α : δ =

e4(pt
i|pt

j) : e1(pt
i|I), α : ζ = e5(pt

i|pt
j) : e1(pt

i|I), α : η = 1 : e1(pt
i|I), where pt

i and
pt

j are the true poses of parts i and j in the training image I, respectively. IE

is the edge map of I. We further set α = 1, and then the six parameters can
be determined. Since the importances of each term are roughly the same, we
equalize the weights of each term according to the values from the true poses.

There are some other minor parameters to be estimated. For instance, the
lower and upper thresholds of the neighbor connected region growing can also
be set according to the example data since we know the range of intensity of
ventricles in the ground truth.

3 Experiments and Validation

In the experiments, we have applied the proposed methodology to the segmen-
tation of deep brain structures. We focus on the segmentation of six gray matter
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brain structures, i.e., left and right caudate nuclei, putamina and thalami. These
six deep brain structures are often studied in brain anatomy [2, 3, 4, 5, 8, 10,
11, 12, 13, 15]. However, they are difficult to segment automatically due to their
blurry boundary and small sizes.

The testing data sets were obtained from the Internet Brain Segmentation
Repository (IBSR), which includes 18 high-resolution brain MR (T1-weighted)
scans with the expert segmentations of internal structures. The MR brain data
sets and their manual segmentations were provided by the Center for Morpho-
metric Analysis at the Massachusetts General Hospital, U.S.A. The resolution
of each scan is 256×256×128 voxels. More information about the data sets can
be found at http://www.cma.mgh.harvard.edu/ibsr/.

We took the ground truth of one data set randomly in the database as the
shape template and treated the other 17 sets as the target (testing) images. Note
that even in the same database, the data sets bear some extents of dissimilarity
in terms of voxel size, intensity profiles and intracranial structure morphology
because the data sets were attained from different subjects. We implemented
the proposed framework under the help of Insight Toolkit (ITK) 3.0.1. using
C++ on the platform of Microsoft Visual C++ .NET 2003. The computational
time on each data set is around an hour on a 2.13GHz CPU with 1GB memory.
Note that all the model parameters are estimated once for ado and the results
of different input data sets are based on the same set of parameters.

We have compared the results with the expert segmentations available from
the IBSR project, which we considered as the “gold standard”. The extent of
the overlapping of the experimental results and the ground truth was measured
by a widely used index, i.e., Dice similarity coefficient (DSC). It is defined as,
DSC = 2||A�B||

||A||+||B|| , where A and B are two point sets to be compared. || · ||
denotes the number of points in the point set. DSC reflects the extent of the
overlapping of two point sets. The larger the measure is, the more overlapping
the two sets have. The range of DSC is [0, 1]. Besides, we calculated the mean
distance of the segmentation results to the ground truth, which is defined as
[6, 7], Sm =

�
a∈A minb∈B D(a,b)

||A|| , where A and B are the segmentation result and
ground truth, respectively, and D(·, ·) denotes the Euclidean distance of two
points. Mean distance also embodies the difference of two shapes in space. The
smaller it is, the more similar the two shapes are. We calculated DSC and mean
distance for each structure in the 17 testing data and the overall performance
is listed in Tab. 1. From the results, we find that all six structures segmented
by the proposed method have a good overlapping (DSC > 0.75) with the expert
segmentations.

In addition to the quantitative performance, we present a visual inspection
of the experimental results. In Fig. 1, we show the results on some of the IBSR
data sets at approx. the same slice location. Although the intensity profile, shape
appearance of the structures and location of the brain are different among these
images, our method is able to detect the poses of brain structures and perform
satisfactory segmentations. From both 2D and 3D inspections, we observe that
the results from the proposed method resemble the expert segmentations though
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Table 1. The measures of six brain structures of the proposed segmentation results
on 17 IBSR data sets as compared to the expert ground truth. The average measures
and their standard deviations are shown. LCN(RCN) = left(right) caudate nucleus.
LP(RP) = left(right) putamen. LT(RT) = left(right) thalamus.

LCN LP LT RCN RP RT
DSC 0.78 ± 0.04 0.76 ± 0.04 0.75 ± 0.09 0.77 ± 0.03 0.76 ± 0.06 0.78 ± 0.05

Sm (mm) 0.34 ± 0.12 0.53 ± 0.15 0.73 ± 0.51 0.34 ± 0.09 0.40 ± 0.15 0.56 ± 0.21

Fig. 1. (Color Images) Two sets of data, their ground truth and segmentation results
around the middle slice. For each group, the left image is the original data. For each
subgroup, the up row on the right is the ground truth and 3D surface visualization.
The down row is the segmentation.

the boundaries are smoother. But abrupt change in segmented object boundaries
is a common problem of 3D object segmentation if it is performed manually on
a slice by slice basis (see an example of the thalami in 3D view of the second
data set in Fig. 1). The proposed method seems to alleviate this problem.

4 Discussion and Conclusion

It is worth pointing out that it is very difficult to compare the proposed method
with other related works experimentally due to the unavailability of the source
codes of the related works. So we only compare the proposed method with other
related works conceptually if the quantitative results on the same database were
not reported in those works. The work of [7] reported quantitative results of the
segmentation of the deep brain structures on the same IBSR data sets (failed
in 3 sets and the following results of theirs were from the other 14 sets). The
thalamus segmentation of the proposed method is slightly better than the refer-
ence work [7] (DSC is the same (0.77 vs. 0.77) and Sm is much shorter (0.65 vs.
1.79)), while our segmentation accuracies of putamina and caudate nuclei are
significantly higher (DSC: 0.76 vs. 0.65 for caudate nuclei and 0.75 vs. 0.70 for
putamina. Sm: 0.34 vs. 1.71 for caudate nuclei and 0.47 vs. 1.46 for putamina).
The reason is that the proposed method has a more flexible architecture to model
the interrelations among neuroanatomical structures for dealing with the small
and subtle objects in deep brains than that in [7]. For the other related works
[3, 5, 16], they did not report the quantitative results of the segmentation. An
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advantage of the proposed method over those methods is that we circumvents
the intractable blurry boundaries of brain structures, such as thalami, by em-
phasizing the relative position to other deep brain structures. On the contrary,
the level-set-based methods used in [3, 5, 16] may not be able to perform the seg-
mentation of thalami when facing objects with weak edges and gradients. Even
the use of the idea of “active contours without edges” [17] cannot significantly
improve the methods [3, 11] to find the missing boundaries of thalami because
the thalami are located in the clutter environment in brains. Some voxels outside
the thalami are darker than the thalami, e.g. CSF and background. Other voxels
outside the thalami are brighter, e.g. white matter. The average intensity of the
outside region is close to the average intensity of the inside region, which may
not evolve the contours correctly.

We introduce the idea of detection into the segmentation of deep brain struc-
tures. This is the first time, to the best of our knowledge. The detection tech-
niques greatly improve the automation of the proposed method. There is no
need to initialize the algorithm by hand. In contrast, the level set based methods
[3, 5, 7, 10, 11] need to initialize the active contours inside or close to every struc-
ture of interest. On the other hand, registration-based methods [2, 12, 13, 15, 18]
can obviate the problem of contour initialization but unfortunately, it is chal-
lenging to build an informative and effective atlas for brain structures and warp
the atlas to input brain images using non-rigid registration.

In the literature [4, 5, 8, 11, 12], the segmentation experiments were all per-
formed under a condition that the training set is not smaller than the testing set.
The extreme is the “leave-one-out” experiment [5, 8, 11]. In the pool of data sets
(usually more than ten data sets), all except for one data set are used as training
data and the remained one as testing. This leave-one-out experiment is fine for
cross validation but is not enough for practical validation. In practical use, if
most of the data are segmented manually and only a few data are processed by
an automatic computer program, it is not meaningful for labor-saving. There-
fore, the less need of hand segmentation, the better for practical use. However,
if the training set is largely reduced, those works that were only validated by
leave-one-out experiments may not be stable or reliable because they need to
acquire prior information as much as possible. This dilemma makes important
our method, which only needs a single example of ground truth to complete a
set of satisfactory segmentations.
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