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Abstract. Inspired by the motion of a solid surface under liquid pres-
sure, this paper proposes a novel deformable surface model to segment
blood vessels in medical images. In the proposed model, the segmented
region and the background region are respectively considered as liquid
and an elastic solid. The surface of the elastic solid experiences various
forces derived from the second order intensity statistics and the surface
geometry. These forces cause the solid surface to deform in order to seg-
ment vascular structures in an image. The proposed model has been
studied in the experiments on synthetic data and clinical data acquired
by different imaging modalities. It is experimentally shown that the new
model is robust to intensity contrast changes inside blood vessels and
thus very suitable to perform vascular segmentation.

1 Introduction

Vascular segmentation is essential to the clinical assessment of blood vessels.
To extract vasculatures from medical images, the deformable surface models
have been actively studied in the past decade. Lorigo et al. have proposed the
CURVES algorithm in [1]. CURVES makes use of the minimal curvature to aid
the detection of thin vessels. Vasilevskiy and Siddiqi [2] have introduced the
image gradient-flux to deform surfaces for the segmentation of vascular struc-
tures. The image gradient-flux encapsulates both the image gradient magnitude
and direction. It is capable of detecting small and low contrast vasculatures.
Rochery et al. have devised the higher order active contour model in [3]. The
higher order active contour model factors in the image intensity, the geometry
of target structures and the contour smoothness to extract tubular structures.
Klein et al. [4] have presented the use of a B-Spline based deformable surface
model to segment vessels. Yan and Kissim have elaborated the capillary action
[5] for segmentation of vessels. The capillary force aims at pulling the evolving
surface into thin and low contrast vessels. Nain et al. devised the shape driven
flow [6] to reduce the chance of false positive detection when segmenting vessels.

In this paper, a novel deformable surface model is proposed. The deformable
surface can be viewed as the surface of an elastic solid (the background region)
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that is in contact with the liquid (the segmented region). The surface is rep-
resented as a level set function. It experiences forces derived from the second
order intensity statistics and the surface geometry. These forces are related by
the force equilibrium equation of a solid-liquid interface [7]. The dynamics of
the surface are governed by the net force acting on the surface. The surface
deformation equation can inspect the second order intensity change along the
surface tangential plane as well as the surface normal direction. It helps deform
the surface to propagate through the position where changes of object intensity
contrast happen.

The proposed model is studied using a synthetic and numerical image volume.
It is also compared against a well founded vascular segmentation approach, the
CURVES algorithm [1], by using the clinical datasets consisting of three differ-
ent imaging modalities. It is experimentally shown that the proposed model is
suitable to perform segmentation of vascular structures.

2 Methodology

2.1 The Proposed Model

In the proposed model, the segmented region and the background region are
respectively regarded as liquid and an elastic solid (Fig. 1). As such, the solid
surface is the boundary that separates the segmented region and the background
region. There are three kinds of forces acting on the solid surface. First, the
liquid exerts pressure on the solid surface. Second, the surface of the elastic solid
has surface stress which opposes the change of the surface area of the solid.
Third, an external bulk stress is acted on the surface of the solid. These forces
are derived based on the second order intensity variation and the geometry of
the solid surface. Given P is the pressure exerted by the liquid, s and B are
symmetric tensors which represent the surface stress force and the bulk stress
force at the solid surface respectively, at the force equilibrium position, these
forces are related as [7],

(P − divss)n + Bn = 0, (1)

where divs is surface divergence and n is the inward surface normal of the solid.
By placing an initial surface inside the target vessels, the proposed model

allows the solid surface to deform according to the net force acting on it. This
aims at seeking the force equilibrium position of the surface. Denote C be the
solid surface, the change of the surface with respect to time t is determined by
the net force acting on the surface,

Ct = (P − divss)n + Bn. (2)

The liquid pressure and the bulk stress experienced by the solid surface are
devised based on the second order intensity statistics, which are widely used
for the detection of vasculatures [8] [9] [10]. The pressure exerted by the liquid
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is defined as P = −ΔI. Inside tubular structures, the Laplacian responses are
negative and with large magnitudes. A large negative Laplacian response results
in a high liquid pressure inside tubular structures to push the solid surface.
On the other hand, the bulk stress acting on the solid surface B is defined as
the negative second order intensity change along the surface normal, i.e. B =
−αInnnnT , where α determines the strength of the stress force. Since the second
order intensity changes are large along the vessel cross-sectional planes, and small
along the vessel direction, this bulk stress force intends to pull the solid along
the vessel cross-sectional planes.

The second order intensity change magnitudes decrease at the positions away
from the vessel centers and thus, the stress force as well as the liquid pressure
decline accordingly. The bulk stress and the liquid pressure finally become small
or vanish at the vessel boundaries. The surface receives very small or no force at
the vessel boundaries where the deformation of the surface is therefore stopped
at the vessel boundaries. Besides, the surface stress of the solid which opposes to
the change of the solid surface area is designed to be constant and isotropic. As
discussed in Section 2.3, such a constant and isotropic surface stress leads to a
smooth resultant surface. Given u and v are two arbitrary orthogonal tangential
directions of the surface, the tensor of the constant and isotropic surface stress
can be written as, s = γ[u v][u v]T , where γ controls the surface stress strength.

Assigning the aforementioned forces to Eqn. 2, we have Ct = (−ΔI − divs

(γ[u v][u v]T ))n − αInnnnT . Since ΔI = Tr(H) and divs([u v][u v]T ) =
−2κn [11] for the Euclidean mean curvature of the surface κ,

Ct = (−Tr([u v]T H[u v]) + 2γκ)n − (1 + α)(InnnnT )n. (3)

For the simplicity of discussion, denote γ′ = 2γ, α′ = 1 + α, G(H; n) =

(nT Hn)(nnT ) = InnnnT , M =
[

Iuu Iuv

Iuv Ivv

]
=

[
uT Hu uT Hv
uT Hv vT Hv

]
= [u v]T H[u v],

Ct = (−Tr(M) + γ′κ)n − α′G(H; n)n. (4)

2.2 Vessel Specific Image Features and Multiscale Detection

If the surface is deforming along a vessel, the surface tangential plane is equiv-
alent to the cross-sectional plane of the vessel. The eigenvalues of M would be
negative and with large magnitudes. Furthermore, vessels are mainly in tubular
shape with roughly circular cross-sections. Therefore, the ratio and the signs of
these two eigenvalues are exploited to suppress the surface deformation speed
in the structures producing non-negative eigenvalues or large difference between
the two eigenvalues. The surface deformation equation (Eqn. 4) is refined as
Ct = (−f(H; u, v) + γ′κ)n − α′G(H; n)n, and

f(H; u, v) =

{
Tr(M) exp

(
1 − ξ2

ξ1

)
if ξ1 < 0 and ξ2 < 0,

0 otherwise,
(5)

where ξ1 and ξ2 are the eigenvalues of M and |ξ1| ≤ |ξ2|.
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Since vessel sizes vary in practice, the second order intensity statistics are
computed on the images smoothed by Gaussian kernels with various scales (de-
fined by the value of σ as shown in Fig. 2a) for multiscale detection. The scales
are sampled logarithmically as discussed by Sato et al. in [10]. Suppose the Hes-
sian matrix obtained at the scale σ is Hσ and the associated Hessian matrix
along the surface is Mσ, the surface deformation equation becomes,

Ct = −f(Harg maxσ |Tr(Mσ)|; u, v)n − α′G(Harg maxσ |nT Hσn|; n)n + γ′κn, (6)

where the terms arg maxσ |Tr(Mσ)| and argmaxσ |nT Hσn| select the scales that
exhibit the largest second order intensity changes along the surface tangential
plane and along the surface normal, among a set of pre-defined scales.

The solid surface is represented as the zero boundaries of the level set function
[12]. The evolution of the level set function was implemented according to the
description by Whitaker [13] and based on the Insight-Toolkits [14]. The level set
function evolution was stopped when the change of the level set function was less
than 0.0001 per segmented voxel over 40 evolution iterations. When the level set
function is evolving, H in one scale is obtained in a 3∗3∗3 local window by taking
central difference on one buffered image, which is Gaussian-smoothed before the
evolution begins. M is retrieved from H and the surface tangents u and v.
Bilinear interpolation is used at the positions with non-integer coordinates. This
procedure is repeated for each scale. The complexity of evaluating Eqn. 6 for
one voxel is linear with respect to the number of scales used.

2.3 Properties of the Proposed Model

The function f(·) (Eqn. 5) has a large magnitude when the eigenvalues are neg-
ative, with large and similar magnitudes. This corresponds to the scenario that
the surface is deforming along the vessel, as illustrated in Case 1 of Figs. 2b-d. In
Cases 2 and 3 of Figs. 2b-d, the magnitudes of either one of or both of the eigen-
values of Mσ are small. In such cases, the resultant values of f(·) are suppressed
by the exponential term. The surface is deformed according to the second and the
third terms in the right hand side of Eqn. 6. The surface beyond vessel boundaries
in Case 2 and the solid surface approaching the vessel boundary in Case 3 are ex-
panded and shrunk respectively, according to the value of nT Hn. The surface is
in turn converged to the vessel boundary. Besides, Case 4 of Fig. 2 corresponds to
the situation that the surface reaches the vessel boundary and the second order in-
tensity variations along all directions are small. The deforming surface is therefore
halted at the vessel boundary.

Regarding the parameters of the proposed model, the solid stress strength α′

is used to specify how much the second order intensity change along the surface
normal influences the speed of surface deformation. A small value of α′ reduces
the surface deformation speed induced by the second order intensity change
along the surface normal. It causes the surface deforming aggressively along
tubular structures. Enlarging the value of α′ increases the chance of detecting
non-tubular structures, such as, high curvature vessels or junctions. On the other
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Fig. 1. The proposed deformable surface model
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Fig. 2. (a) A plot of the second derivative of a Gaussian function along u. (b) An
example showing various situations when the surface is deforming to segment a vessel.
(c) The surface tangential planes in different cases in (b). The black lines show the
positions where the vessel boundary crosses the tangential planes. (d) The descriptions
of various terms appeared in the definitions of f(·) and G(·). σ is assumed to be the
same as the vessel radius.

hand, the surface stress term of the solid (the third term in the right hand side
of Eqn. 6) is analogous to the curvature regularization term which is commonly
utilized in active contour methods. The value of γ′ determines the smoothness
of the resultant surface.

As the proposed model makes use of a 2D-circular-constraint (Eqn. 5), it
exhibits extra flexibility on handling branches as compared to Hessian based
methods which have a more restrictive 3D-tubular-constraint. Meanwhile, the
proposed method inspects the second order intensity changes along the surface
tangential plane and the surface normal direction separately. This makes our
method more robust when the vessel intensity contrast varies rapidly along the
vessel. The rapid change of vessel contrast can be caused by image noise or closely
located objects with intensity similar to the vessels. A rapid change of vessel
intensity contrast can significantly alter the directions of the image gradient
and the principle directions of the Hessian matrix. It can undesirably terminate
the deformation of the moving surface inside vessels in some deformable surface
models, which are grounded on the image gradient [1][5] or the Hessian matrix
[15]. For the proposed model, the intensity variations are measured along the
directions defined by the deforming surface. When the surface is deforming along
and inside vessels, the surface tangential plane at the evolving tip of the surface
is equivalent to the vessel cross-sectional plane. Inspecting the intensity changes
along the surface tangential plane is therefore able to capture the second order
intensity changes along vessel cross-sectional plane. It consequently keeps the
surface deforming along vessel despite of the rapid change of intensity contrast.
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Fig. 3. The synthetic and numerical image volume with the size of 20×20×60 voxels,
consists of a vertical tube with a radius of 2 voxels. (a) The x = 10 slice of the image
volume. (b) The intensity values in different parts of the image volume. (c) The initial
surface. (d-f) The surface deformation results of Ct = −f(Harg maxσ |Tr(Mσ)|; u, v)n ;
Ct = −G(Harg maxσ |nT Hσn|; n)n ; the proposed model using α′ = 1 and γ′ = 0.

3 Experimental Results

The proposed method is validated by using four volumetric images: a numerical
image volume consisting of a synthetic tube (Fig. 3a), an intracranial phase con-
trast magnetic resonance angiographic (PCMRA) image1(Fig. 4a), an intracra-
nial time-of-flight magnetic resonance angiographic (TOFMRA) image 1(Fig. 4d)
and a cardiac computed tomographic angiographic (CTA) image 2(Fig. 4g).

3.1 Synthetic Data

In this section, we employ a synthetic tube (Figs. 3a and b) which exaggerates
a rapid change of intensity contrast along a vessel. With this rapid change of
vessel intensity contrast, we demonstrate the behavior of the term involving
the second order intensity change along the surface tangential plane, and the
term involving the second order intensity change along surface normal in the
surface deformation equation. These two terms are f(·)n and G(·)n in Eqn. 6
respectively.

In this experiment, an initial surface is placed at the bottom of the tube (Fig. 3c).
Two resultant surfaces are obtained by deforming this initial surface according to
Ct = −f(Harg maxσ |Tr(Mσ)|; u, v)n and Ct = −G(Harg maxσ |nT Hσn|; n)n. Five
logarithmic scale samples are taken from the range of 1 to 5 voxel length. The resul-
tant surfaces are shown in Figs. 3d and e respectively. Since the surface tangential
plane at the evolving tip corresponds to thevessel cross-sectional plane, thedeform-
ing surface can propagate through the position where the tube intensity contrast
changes. However, it cannot segment the entire tube as f(·) is small or zero when
the surface tangential plane does not correspond to the vessel cross-sectionalplane,
where ξ1 and ξ2 are not both negative and with similar magnitudes (see Eqn. 5).

1 Acquired using a Philips 3T ACS Gyroscan MR scanner without the use of contrast
agent, at the University Hospital of Zurich, Switzerland.

2 Rotterdam Coronary Artery Algorithm Evaluation Framework,
“http://coronary.bigr.nl/”
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Fig. 4. (a, d, g) The three clinical datasets used in the experiments, an intracranial
PCMRA image with 512×512×46 voxels and voxel size of 0.39mm×0.39mm×0.8mm;
an intracranial TOFMRA image with 512 × 512 × 60 voxels and voxel size of
0.39mm×0.39mm×0.95mm; and the z = 190 slice of a cardiac CTA image with
512 × 512 × 190 voxels and voxel size of 0.34mm×0.34mm×0.4mm, the white arrow
points at the position where the initial surface/contour is placed. (b, e, h) The segmen-
tation results using the CURVES algorithm. (c, f, i) The segmentation results using
the proposed method.

Besides, in Fig. 3e, the deforming surface is halted by the rapid change of intensity
contrast. Finally, by making use of both f(·)n and G(·)n, deforming the surface
based on Eqn. 6 can segment the entire tube Fig. 3f, despite of the large change of
tube intensity contrast.
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3.2 Clinical Data

We have applied both our method and the CURVES algorithm [1] to segment the
vasculatures in the three clinical datasets (Figs. 4a, d, g). The initial surface and
contour of the proposed method and CURVES in the first and the second cases
are obtained by thresholding the regions with 0.5% of the highest intensity in the
entire image. In the CTA dataset, a single-voxel region manually placed in the
right coronary artery is employed as the initial surface for the proposed method
and the initial contour for CURVES. Five scale samples are obtained analogous
to the synthetic experiment for the multiscale detection of the proposed model.
The values of the parameters α′ and γ′ are 0.75 in all cases. For CURVES, in
each dataset, we only show the segmented region which gives no leakage and
that region has the largest number of segmented voxels among those obtained
using various parameter values in the evolution equation of CURVES.

Comparing Figs. 4b and c, the proposed method is capable of segmenting more
vessels in the PCMRA image. The main reason is that the analysis of the second
order intensity variation along the surface tangential plane helps the surface
deform along vessels, despite the present of intensity contrast variations along
vascular structures. In the TOFMRA image and the CTA image, we have found
that the evolving contours of CURVES leak frequently at the boundaries where
adjacent tissues with intensity similar to vessels present. CURVES could only
segment a small portion of the vessels (see Figs. 4e and h) before leakages happen.
Besides, the proposed method has no problem to extract the vasculatures from
the TOFMRA and the CTA images (Figs. 4f and i).

4 Discussion and Conclusion

The surface dynamics described in Eqn. 2 is a simplified case of the motion of a
solid surface under liquid pressure in practice [16]. For instance, in the proposed
model, the solid surface is assumed to be purely elastic and the bonding between
the atoms on the solid surface does not break during deformation. Nevertheless,
the proposed model based on the simplified deformation dynamic of the solid
surface well serves the purpose of segmentation of vessels. Meanwhile, handling
stenoses or aneurysms, and quantitative evaluation for a specific applications
will be the future research directions of this work.

In summary, this paper proposes a novel physics-based deformable surface
model for segmenting blood vessels in medical images. By considering the sec-
ond order intensity statistics as various forces acting on the deforming surface,
the proposed method allows the surface to propagate along vessels despite the
presence of undesired intensity contrast fluctuations along vessels. The proposed
method has been studied in the experiments using synthetic data, and compared
with a classic deformable surface model, the CURVES algorithm [1], in the ex-
periments using medical images acquired by various imaging modalities. It is
demonstrated that the proposed method is well suited to segment vasculatures
from medical images.
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