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Abstract. In this paper, we propose a new feature based non-rigid im-
age registration method for dealing with two important issues. First, in
order to establish reliable anatomical correspondence between template
and subject images, efficient and distinctive region descriptor is needed as
intensity information alone maybe insufficient. Second, since interference
factors such as monotonic gray-level bias fields are commonly existed
during the imaging process, the registration algorithm should be robust
against such factors. There are two main contributions presented in this
paper. (1) A new region descriptor, named uniform gradient spherical
pattern (UGSP), is proposed to extract the geometric features from input
images. UGSP encodes second order voxel interaction information. (2)
The UGSP feature is rotation and monotonic gray-level bias field invari-
ant. The proposed method is integrated with the Markov random field
(MRF) labeling framework to formulate the registration process. The α-
expansion algorithm is used to optimize the corresponding MRF energy
function. The proposed method is evaluated on both the simulated and
real 3D databases obtained from BrainWeb and IBSR respectively and
compared with other state-of-the-art registration methods. Experimen-
tal results show that the proposed method gives the highest registration
accuracy among all the compared methods on both databases.

1 Introduction

Non-rigid image registration is an active research topic during the last decade.
It plays an important role in group analysis, image-guided surgery, atlas super-
position and etc. During the last decade, many novel methods were proposed to
tackle the non-rigid image registration problem. They can be generally classified
into three categories: (1) Landmark based methods; (2) Intensity based methods
and (3) Feature based methods. Landmark based registration methods [1,2] first
select a set of landmark points from template and subject images. Then the opti-
mum transformation is estimated based on the features extracted from those land-
mark points. In order to produce accurate registration results, a large number of
landmark points are required, which brings additional computation burdens. In-
tensity based registration methods are usually fully automatic. They define simi-
larity measure metrics based on the intensity distributions of input images to guide
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registration [3,4]. However, intensity similarity does not necessarily equivalent to
anatomical similarity. Feature based registration methods use feature vectors to
represent each voxel and the registration process is modeled as a feature match-
ing and optimization problem. HAMMER [5] is a representative of this class of
methods. The registration accuracy heavily depends on the feature vectors used.

Though the non-rigid image registration problem has been intensively studied
during the last decade, it still remains as a challenging task. More precisely, two
important issues arise in recent years: First, using intensity information only
to characterize anatomical properties of brain images may be insufficient as
analyzed in [6]. Therefore, new anatomical descriptor is needed to capture the
geometric properties of different anatomical structures. Second, the registration
approach should be robust against monotonic gray-level bias fields. Otherwise
the algorithm may prefer to align the bias fields between two images instead of
aligning their anatomical structures as stated in [7].

To this end, a new feature based non-rigid image registration method is pro-
posed in this paper to deal with these two issues. The major contributions of
this paper lie in the following aspects. First, a new region descriptor, named
uniform gradient spherical pattern (UGSP), is designed as signatures for each
voxel. UGSP encodes second order voxel interaction information. Second, UGSP
is rotation and monotonic gray-level bias fields invariant. The UGSP feature is
integrated with the Markov random field (MRF) labeling framework to formu-
late the registration process in this paper. The α-expansion algorithm is used to
optimize the corresponding energy function. The proposed method is evaluated
on both the simulated and read 3D datasets obtained from BrainWeb and IBSR
respectively. Experimental results show that the proposed method achieves the
highest registration accuracy among all the compared methods.

2 Uniform Gradient Spherical Patterns

In this section, we describe the new region descriptor, called uniform gradient
spherical patterns (UGSP), which is derived based on the local binary patterns
(LBP) [8], analyze its properties and show how to use it to represent each voxel
as signatures.

Suppose for an input image G. For each voxel vc ∈ G a spherical neighborhood
is defined centered at vc with radius R. Also, N samples are taken on the surface
of the sphere by using the sampling method proposed in [9], denote them as vi

(i=1,2,...,N). For vi (i=1,2,...,N) which does not exactly fall in the 3D image
grid its intensity is interpolated by tri-linear interpolation. Let ∇vi denote the
gradient of vi. Then a rotation invariant gradient orientation measure of each
neighboring voxel vi is defined by Equation 1, which is the angle between ∇vi

and vc − vi, denote as θvi .

θvi = arccos
∇vi · (vc − vi)
|∇vi| · |vc − vi| , (1)

where |∇vi| and |vc − vi| denote the magnitudes of ∇vi and vc − vi respectively.
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Fig. 1. A 2D example demonstrating the rotation invariant property of θvi . vc is the
center voxel, vi is a neighboring voxel. The black arrow pointing out from vi denotes
the gradient vector of vi. It is shown that the θvi remains the same before and after
rotating 45 degrees anti-clockwise.

θvi is rotation invariant as it is the angle of the gradient of vi relative to the
direction of vc−vi. Figure 1 shows a 2D example of θvi before and after rotation
of 45 degrees. It is shown that θvi remains the same.

Then, the space of θvi is uniformly partitioned into four subspaces. Each voxel
is assigned with a label based on which subspace of θvi it belongs. That is, each
neighboring voxel is assigned with a label according to Equation 2:

l(vi) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if θvi ∈ [0, π
4 ),

2, if θvi ∈ [π
4 , π

2 ),
3, if θvi ∈ [π

2 , 3π
4 ),

4, if θvi ∈ [ 3π
4 , π].

(2)

Then the basic gradient spherical pattern (BGSP) is defined based on Equations
1 and 2:

Definition 1. Basic gradient spherical pattern (BGSP) is the labeled spherical
surface obtained from the original spherical neighborhood centered at the refer-
ence voxel by using Equations 1 and 2.

Besides rotation invariance, BGSP is also monotonic gray-level transformation
invariant. As monotonic gray-level transformations affect the gradient magnitude
of each voxel, the orientation of the gradient remains the same. Therefore, the
angle θvi between the directions of the gradient vector of vi and the vector vc−vi

also remains the same.
However, some of the BGSPs’ occurrences are too sparse to reliably reflect

the geometric features of input images. Therefore, a subset of BGSPs which
represent the fundamental image structures, named uniform gradient spherical
patterns (UGSP), are used as signatures of each voxel. Before we define UGSP,
we first give the definition of ”uniform region” as follows:

Definition 2. Uniform region is the area on the surface of BGSP where all the
voxels belong to this area have the same label defined in Equation 2.

Then, UGSP is defined as follows:



Non-rigid Image Registration with Uniform Gradient Spherical Patterns 699

(a) (b) (c)

Fig. 2. (a) An example of UGSP, its surface can be covered by only one uniform region;
(b) An example of UGSP, its surface can be covered by two uniform regions; (c) An
example of non-UGSP, its surface cannot be covered by less than or equal to two
uniform regions. Different colors represent different labels of each voxel.

Algorithm 1. Determining whether a BGSP is a UGSP
Input: A BGSP with radius R and N neighboring voxels on the surface.

Output: true or false (whether the input is a UGSP or not).

1. Initialize all the neighboring voxels as unflagged.
2. FOR j = 1 to 2
3. IF all the neighboring voxels are flagged
4. Break;
5. ElSE
6. Randomly select an unflagged neighboring voxel vi on the surface of the input BGSP.
7. Find the largest connected component Cj starting from vi based on its label l(vi)

using the Breadth First Search (BFS), set a flag for each voxel belonging to that
largest connected component. Two neighboring voxels vm and vn are
considered to be connected if and only if l(vm) == l(vn).

8. END IF
9. END FOR
10. IF all the neighboring voxels are flagged
11. Return true
12. ElSE
13. Return false
14. END IF

Definition 3. Uniform gradient spherical patterns (UGSPs) are BGSPs whose
surfaces can be covered by AT MOST two uniform regions.
For instance, Figure 2(a) is a UGSP as its surface can be covered by only one
uniform region. Figure 2(b) is also a UGSP as its surface can be covered by two
uniform regions. Figure 2(c) is not a UGSP as its surface cannot be covered by
less than or equal to two uniform regions.

UGSP has physical meaning to mirror fundamental image structures. For
example, Figure 2(a) denotes that there is an edge at a specific direction as all
the neighboring voxels’ gradient orientation measures are the same. Figure 2(b)
represents that there is a corner formed by two edges. In this paper, all the
non-uniform gradient spherical patterns are treated as a single type of pattern.
Algorithm 1 is the procedure to determine whether a BGSP is a UGSP or not.

UGSP encodes second order information. The gradient orientation measure
defined in Equation 1 already contains the first order interaction information
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Algorithm 2. Calculate the UGSP Feature for each Voxel
Input: An input image G, a local cubic square window W for each voxel, the UGSP
radius R and the number of neighboring samples N .

Output: A vector image K, each voxel is represented by a UGSP signature.

1. FOR each voxel v ∈ G
2. SubV olume = (W center at v)
3. Initialize a new feature histogram, H [0...(N − �N

2
� + 1)] = 0

4. FOR each voxel t ∈ SubV olume
5. Calculate its corresponding BGSP Qt with parameters R and N
6. Determine whether Qt is a UGSP or not using Algorithm 1
7. IF Qt is a UGSP
8. S = Size of the largest connected component in Qt

9. PatternID = S − �N
2
�

10. H [PatternID] = H [PatternID] + 1
11. ELSE
12. H [N − �N

2
� + 1] = H [N − �N

2
� + 1] + 1

13. END IF
14. END FOR

15. Normalize H [0...(N − �N
2
� + 1)] such that

∑N−� N
2 �+1

i=0 H [i] = 1
16. K(v) = H [0...(N − �N

2
� + 1)]

17. END FOR
18. Return K

between voxels. During the operation of finding the connected components in
Algorithm 1, higher order voxel information is considered based on the first order
information embedded in the label of each voxel. While LBP [8] only considers
the first order information as it only compares the intensity differences between
the neighboring voxels and the center voxel. Therefore, UGSP has higher order
information layer than LBP.

In this paper, the type ID of a UGSP is determined based on the size of the
largest connected component of the UGSP (e.g. max(|C1|, |C2|), C1 and C2 are
calculated in operation 7 in Algorithm 1, |C1| and |C2| respectively denote the
sizes of C1 and C2). The procedure for calculating the UGSP feature signatures
for each voxel of the input image is presented in Algorithm 2.

A more detail UGSP type classification can be achieved if we also consider
the label type and shape of the largest connected component. However, it will
make the UGSP feature histogram too sparse as there are too many possible
combinations and some of the pattern’s occurrence frequency are too small.
Radius R in the Algorithm 2 affects the scale of interest. In this paper, the
radius R is set by the best scale selection principle in [10].
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3 MRF Modeling for Registration

In recent years, it is shown that the registration process can be robustly for-
mulated as a MRF labeling problem [11]. In this paper, the UGSP feature is
integrated with the MRF framework to drive the registration.

The general form of the MRF energy function can be defined by Equation 3:

Ef = Edata + Esmoothness

=
∑

p∈Ω

Dp(lp) +
∑

(p,q)∈N

Vp,q(lp, lq), (3)

where Ω is the set of voxels, N is the neighborhood system defined in Ω. In
this paper, the 4-connected neighborhood system is used. Dp(lp) is the energy
function associated with the data term. It penalizes the cost of assigning label
lp to voxel p. Vp,q(lp, lq) is the energy function associated with the smoothness
term, and it penalizes the cost of label discrepancy between two neighboring
voxels.

The registration problem is transformed to the MRF labeling problem by
quantizing the deformation space. A discrete set of labels L ∈ {l1, l2, ..., ln} is
defined. Each label li (1 ≤ i ≤ n) corresponds to a displacement vector di.
Assigning the voxel p with label lp means moving p to a new position by the
displacement vector dlp . We follow the quantization step in [12], where each
voxel can be moved from the original position bounded by a discretized window
Ψ = {0,±s,±2s, ...,±ws}d of dimension d.

The energy function Dp(lp) associated with the data term is defined based on
the UGSP features as:

Dp(lp) = Dp(Gtemplate(p), Gsubject(p + dlp)
= Dp(Ktemplate(p), Ksubject(p + dlp))
= JSD(Ktemplate(p)||Ksubject(p + dlp)), (4)

where Gtemplate is the template image, Gsubject is the subject image, Ktemplate

and Ksubject are the UGSP feature images of Gtemplate and Gsubject respectively
at the current iteration calculated by Algorithm 2. JSD(·) is the Jensen-Shannon
divergence measure.

The smoothness energy function Vp,q(lp, lq) is defined as:

Vp,q(lp, lq) = min(λ, |dlp − dlq |), (5)

where λ is a constant represents the maximum penalty. It is the piece-wise
truncated absolute distance.

The alpha-expansion algorithm [13] is applied to minimize the energy function
defined in Equation 3 with the data term energy function and smoothness term
energy function defined in Equations 4 and 5.
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4 Experimental Results

The proposed method is evaluated on both the simulated and real 3D databases
obtained from BrainWeb1 and IBSR2 respectively. In all experiments, the sub-
volume window sizes W was set to 16 × 16 × 16 in Algorithm 2, the number
of neighboring samples N for each UGSP was 60. The 3D displacement win-
dow used in this paper was Ψ = {0,±1,±2, ...,±12}3. The maximum penalty
parameter λ defined in Equation 5 was set to 20. The proposed method is also
compared with three widely used approaches: FFD [3], Demons [4] and HAM-
MER [5]. In all the experiments, the control point spacing of FFD was set to
2.5mm. For Demons, the displacement field was smoothed by a unit variance
Gaussian kernel. The elementary demon forces were computed by the optical
flow equation [4].

4.1 Experiment on Simulated Data

Twenty image volumes from different subjects were obtained from BrainWeb.
One of the image volumes was selected as the template image, and the others
were used as the subject images. The resolution of each image was 256×256×181
voxels. The segmentation results of each image for three classes of tissues: white
matter (WM), gray matter (GM) and the cerebrospinal fluid (CSF) are also
provided by the BrainWeb. The skull of each brain image was removed before
registration by using the software Brain Suite version 2 obtained from USC 3 as
it is a required step for HAMMER [5] to be compared in this paper.

The tissue overlap of GM, WM and CSF between the template and trans-
formed subject images [14] was adopted as the evaluation function. The evalu-
ation function is defined as P = N(A∩B)

N(A∪B) , where A and B denote the regions of
a specific tissue in two images. The average values and standard deviations of
P for GM, WM and CSF before registration, registration after using FFD [3],
Demons [4], HAMMER [5] and the proposed method are listed in Table 1.

It is observed in Table 1 that the proposed method has the highest value of P
among all the methods in this comparison. It reflects that the proposed method
can give high registration accuracy.

4.2 Experiment on Real Data

The proposed method was also evaluated on the real datasets obtained from
IBSR. Twenty skull-stripped image volumes with segmentation results were ob-
tained from IBSR. The size of each volume was around 256 × 256 × 64 voxels.
The experimental settings were similar to the settings described in Section 4.1.
Again, the tissue overlap evaluation function was used to measure the registra-
tion accuracy of different approaches. Table 2 lists the tissue overlap function
value of P for various methods.
1 http://www.bic.mni.mcgill.ca/brainweb/
2 http://www.cma.mgh.harvard.edu/ibsr/
3 http://brainsuite.usc.edu/
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Table 1. The mean values of P and SDs of GM, WM and CSF with different methods
on the simulated 3D database. BR denotes before registration.

Tissue BR FFD Demons HAMMER UGSP

Gray 0.41923±0.07 0.75284±0.05 0.78522±0.04 0.80273±0.05 0.84452±0.04
White 0.48344±0.03 0.76409±0.06 0.78376±0.05 0.81296±0.04 0.83201±0.07
CSF 0.37025±0.06 0.72936±0.06 0.75784±0.04 0.76553±0.05 0.80146±0.05

Table 2. The mean values of P and SDs of GM, WM and CSF with different methods
on the real 3D database. BR denotes before registration.

Tissue BR FFD Demons HAMMER UGSP

Gray 0.54082±0.06 0.75193±0.05 0.77631±0.05 0.79063±0.06 0.83167±0.05
White 0.52147±0.05 0.76728±0.07 0.77382±0.06 0.80274±0.04 0.83639±0.04
CSF 0.33094±0.07 0.73425±0.05 0.76813±0.05 0.77153±0.05 0.80125±0.05

It is shown that the proposed method still has the largest value of P among all
the methods in the comparison and it strongly implies the registration accuracy
of the proposed method.

5 Conclusion

In this paper, a new feature based non-rigid image registration method is pro-
posed. The proposed method is based on a new type of image feature, named
uniform gradient spherical patterns (UGSP). UGSP encodes second order infor-
mation to capture the geometric properties around each voxel. UGSP is rotation
invariant and monotonic gray-level transformation invariant. The UGSP feature
is integrated with the Markov random field (MRF) labeling framework to for-
mulate the registration process. The proposed method is evaluated on both the
simulated and real 3D datasets obtained from BrainWeb and IBSR respectively.
It is also compared with other state-of-the-art registration methods. Experimen-
tal results show that the proposed method has the highest registration accuracies
among all the compared methods on both the simulated and real 3D datasets.
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