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Abstract. In this paper, we present a novel graph-based method for
segmenting the whole 3D vessel tree structures. Our method exploits a
new adaptive cylinder flux (ACF) based connectivity framework, which
is formulated based on random walks [8]. To avoid the shrinking prob-
lem of elongated structure, all existing graph-based energy optimization
methods for vessel segmentation rely on skeleton or ROI extraction. As
a result, the performance of these vessel segmentation methods then de-
pends heavily on the skeleton extraction results. In this paper, with the
help of ACF based connectivity framework, a global optimal segmen-
tation result can be obtained without extracting skeleton or ROI. The
classical issues of the graph-based methods, such as shrinking bias and
sensitivity to seed point location, can be solved effectively with the pro-
posed method thanks to the connectivity framework.

1 Introduction

Blood vessel disease is one of the major causes of death around the world. For
treating the vessel diseases, segmentation technique has been playing an impor-
tant role since it is an essential tool for diagnosis and treatment planning. A
variety of vessel segmentation methods have been proposed in recent years [12].

Graph-based methods, such as graph cuts [4,5], random walks [8] and power-
watershed [6] have become a group of widely used image segmentation meth-
ods because global optimal segmentation can be performed efficiently by energy
minimization. Therefore graph-based methods have been extended in many ap-
plications and promising results have been shown in [9,14,16]. However graph-
based segmentation methods cannot give superior performance on some specific
medical applications, such as vessel segmentation which is a challenging task.
For elongated structures, energy optimization methods can have the problem of
shrinking bias [10,16]. This problem is usually solved by providing more seed
points or structure skeletons. But with the advanced developments of 3D image
acquisition techniques, image resolution increases significantly and it is difficult
for users to provide many accurate seeds for vessels with large extension area.
Besides, it is difficult to model the intensity change from the root to the distal
parts. Sometimes the distal parts may be indistinguishable from the background
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area since the intensity is low and similar. These specific issues set a barrier
for using the graph-based methods despite of the advantages of those methods.
As a result, there are not many graph-based methods [3,7,14,15,17] proposed
for vessel segmentation. In [14,15,17], the optimization can be obtained only for
single branches. Methods in [3,7] work for vessel tree structure by first extract-
ing the skeleton and ROI before segmentation. All these graph-based methods
depend on skeleton extraction, and the extraction errors can lead to fatal and
irretrievable mistakes in the segmentation process.

Paper Contributions. We propose a new random walks based method for
vessel tree structure segmentation with the help of adaptive cylinder flux (ACF )
based connectivity. There are four superior properties of the proposed method.
(i) With ACF , the connectivity for edges with high probability being in the vessel
center and having the same direction with the vessel is embedded in the new
objective function and it is evaluated to be effective in increasing the accuracy
and reducing the adverse effect of shrinking bias. (ii) The optimization is done
on the whole 3D image without extracting ROI. As a result, the performance
of the proposed method does not depend on the skeleton extraction results. (iii)
The global optimal segmentation result can be obtained. (iv) Bifurcations of
vessel tree structure do not require extra consideration in our method.

2 Background

The proposed method is developed based on the random walks framework [8].
The basic definition and some equations of random walks will be described in
this section. We define the undirected graph as G = (V,E), in which V and E
are node set and edge set respectively. wij is the weight assigned to the edge
eij , and for undirected graph, wij = wji. In random walks [8], the combinatorial
formulation of the Dirichlet integral for segmentation is defined as,
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∑

eij∈E

wij(xi − xj)
2, (1)

in which L (combinatorial Laplacian matrix) and A (edge-node incidence matrix)
are defined as,

Lij =

{
di if i = j;
−wij if eij ∈ E;
0 otherwise.

and Aeij ,vk =

{
+1 if i = k;
−1 if j = k;
0 otherwise.

(2)

C is an edge-edge incidence diagonal matrix with the weights of edges along
the diagonal direction. xi is the probability for walkers starting from vi first
arrive at foreground seed vs rather than background seed vb, as a result, xvs = 1
and xvb = 0. The probabilities (or potentials in circuit) x = (x1, x2...xn)

T is
estimated by minimizing D[x], and then the label for each node vi is determined
according to xi. di is the sum of wij for eij ∈ E.

3 Proposed Method

In this section, a new feature, namely adaptive cylinder flux (ACF ), is first
proposed for enhancing the edge connectivity. Then a new framework with
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connectivity enhancement is defined for vessel segmentation based on random
walks, and the method for the optimization of the new framework will also be
described.

3.1 Adaptive Cylinder Flux

Fig. 1. Geometric Graph

In this section, adaptive cylinder flux (ACF ) is proposed for enhancing the graph
connectivity for random walks based segmentation of the whole vasculature.
Inspired by [11], in which the flux through sphere is measured to determine
whether a pixel is located near the tube center, we propose an adaptive cylinder
flux as a feature to measure whether two neighboring pixels, for example, pi and
pj in Fig. 1, are in a tube with the direction n ij along the direction of the tube.
First, the flux through cylinder side surface is defined as follows,

f(eij , r, λ) =
1

4πL

∫ L

−L

∫ 2π

0

g(x(l, θ)) · (−A(θ))dθdl,

where L = r × λ(L > 0), g(·) is gradient vector, and
x(l) =

pi + pj
2

+ nij · l, x(l, θ) = x(l) + rA(θ), nij =
(pj − pi)

|pj − pi| .

eij is an edge connecting two neighboring voxel vi and vj , and the coordinates
of the two voxels are pi and pj . A(θ) is the unit vector from the center point
x(l) to cylinder surface point on the cross section perpendicular to nij and with
x(l) on it, and we have A(θ + π) = −A(θ). For measuring symmetry, we define
a feature symmetric with the cross section centers,

s(eij , r, λ) =
1

2πL

∫ L

−L

∫ π

0

|(g(x(l, θ + π)) + g(x(l, θ))) ·A(θ)|dθdl.
For edges in a tube and with direction nij along the tube direction, f(eij , r, λ)
should be large and s(eij , r, λ) should be small. Assume flux(x(l, θ)) = g(x(l, θ))·
(−A(θ)), we define the adaptive cylinder flux as,

ACF (eij) = max
r

{f(eij , r, λ)− s(eij , r, λ)},

= max
r

1

2πL

∫ L

−L

∫ π

0

min(flux(x(l, θ + π)), flux(x(l, θ)))dθdl.
(3)

This feature is adaptive since the length of cylinder changes according to the
tube radius. λ is a constant value so here in function ACF we omit it and
use ACF (eij) for short. Random walks is a graph-based method and we give a
discrete version of ACF , named as DACF ,
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DACF (eij) = max
r

{ 1

4L′N

L′−1∑

l=−L′

2N−1∑

k=0

g(x′(l,
πk

N
)) · (−A(

πk

N
))

− 1

2L′N

L′−1∑

l=−L′

N−1∑

k=0

|(g(x′(l,
πk

N
)) + g(x′(l,

πk

N
+ π))) ·A(

πk

N
)|},

= max
r

{ 1

2L′N

L′−1∑

l=−L′

N−1∑

k=0

min{flux(x′(l,
πk

N
)), flux(x′(l,

πk

N
+ π))}},

(4)

where L′ >= 1 and,

L′ = � r × λ

|pi − pj | + 0.5�, x′(l, θ) =
pi + pj

2
+ (l + 0.5) × (pj − pi) + rA(θ).

It is noted that the discrete ACF can be viewed as an extension of Mflux [13], in
which only one cross section is considered. The length of the cylinder is changed
adaptively according to the tube radius. In an extreme case, when L′ = 1, two
cross sections with vi and vj are considered. f(eij) itself can be used to detect
tube with uniform intensity background. However, f(eij) may be very large for
the nodes near the boundary of organs without vessel. While ACF can have a
good response of vessels near organ boundary and its value is around zero for
the nodes near boundary without vessel. Meanwhile, since the proposed feature
considers the adaptive length of the vessel, it should be more robust to noise.

3.2 ACF Connectivity Enhanced Random Walks

Random walks [8] is designed for segmentation on 2D and 3D images. However,
for vessel segmentation, the vessel points far from vessel seed vs may have low
probability to reach the vs first because of the intensity change along the vessel.
As a result, those points may be labeled wrongly as background. In this paper,
we propose a new connectivity enhanced framework (Equation 5) based on the
random walks framework so as to solve the problem for vessel segmentation.

x = argmin
x

D[x] = argmin
x

1

2
(

∑

eij∈Eo

wij(xi − xj)
2 +

∑

eij∈Erg

cij(xi − xj)
2),

s.t. x(vs) = 1, x(vb) = 0.

(5)

Here Grg = {Vrg, Erg} is DACF growing graph, cij = δ · DACF (eij), vs and
vb are the vessel and background seeds. Actually, given vs, vb can be detected
automatically, as a result, only seed point vs near the root of the tree is essential.
To construct a good vessel connectivity graph, DACF based growing is first
used to construct the graph Grg, and this graph is merged with the 3D lattices
(Go) constructed by all voxels in the image by summing up the weights of the
corresponding edges in Grg and Go. The method for constructing the new graph
is described as Algorithm 1, in which Go = (Vo, Eo), Vo is the set of voxels
in I, Eo includes edges connecting neighboring voxels in I, β is a parameter for
calculating weights, τ is a threshold for DACF region growing, Ii is the intensity
of voxel vi in I.
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Algorithm 1. DACF Based Connectivity Enhanced Graph Construction

1: INPUT: I – image voxels, vs – vessel seed, vb – background seed.
2: INITIALIZATION: Vrg = vs, Erg = φ,Array = {vs}.
3: while Array! = φ do
4: Pop one node vi from Array.
5: for each neighbor voxel vj of vi do
6: if vj /∈ Vrg then
7: calculate DACF (eij) with Equation 4, eij is the edge connecting vi and vj .
8: if DACF(eij) ≥ τ then
9: add vj into Array and Vrg , add eij into Erg .

10: G = Go, calculate Wo = {woij
= exp(−β(Ii − Ij)

2)}.
11: for eij ∈ Eo do
12: if eij ∈ Erg then wij = woij

+ cij
13: else wij = woij

14: W = {wij}
15: OUTPUT: G and W

After obtaining the new graph G and W , the optimization of Equation 5 can
be performed same as the optimization of Equation 1. Similar with the method
in [8], the Equation 1 is decomposed into,

D[xU ] =
1

2

[
xT
M xT

U

] [ LM B

BT LU

] [
xM

xU

]
=

1

2
(xT

MLMxM + 2xT
UB

TxM + xT
ULUxU ),

xM and xU here correspond to the potentials of seeded and unseeded nodes,
respectively. Here we omit the definitions of other variables due to the space
limitation. Please refer to [8] if needed. By differentiating D[xU ] with respect
to xU , we may have LUxU = −BTxM . Then to obtain xU , we use conjugate
gradient method for solving the linear system since it is difficult to solve it
directly due to the large size of LU . It is obvious that the objective function
(Equation 5) can be optimized with the proposed method. Random walks and
electrical circuit works similarly in some respects, here we give a circuit theory
interpretation of the proposed method.

Circuit Theory Interpretation: Since all complex circuits can be simplified
to an equivalent simple circuit, here we just take the simple circuit in Fig. 2 as
an example. In the circuit (Fig. 2), the voltages in the two ends are fixed, with
voltage(vs) = 1 and voltage(vb) = 0, the segmentation is then equal to labeling
the nodes with voltage greater than 0.5 to foreground object and background
otherwise. According to the circuit theory, adding new resistor (new edge weight
of connectivity) between vi and vj can also be interpreted as increasing the
conductance of Rij from original conductance woij to wij = woij + cij . This
procedure is similar with the graph merging procedure of Algorithm 1. According
to the Ohm’s law (I ·R = V), if the voltage V is fixed, decreasing the resistivity
R can cause the current I increased. As a result, in the circuit of Fig. 2, adding a
new resistor between vi and vj can cause the voltage of vj increased, and similarly
the probability of the vj being foreground object will be increased. Therefore,
enhancing connectivity for the edges in Erg can lead to the sequentially increase
of the potentials for the nodes covered by the DACF based growing. Similarly,
in the perspective of the random walks, increasing the weights of these edges can
increase the probability of the walkers to walk across the edges in Erg.
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Fig. 2. Circuit Interpretation

4 Experiments

For evaluation, we have compared the proposed method with other closely related
segmentation methods on both synthetic images and clinical images. First, a
group of experiments have been carried out on synthetic tree (Fig. 3(a)) and
synthetic tube (Fig. 3(c)) with intensity and radius change. Gaussian noise was
added to generate a series of noisy synthetic images for evaluation.

Fig. 3. Experiments on Synthetic Images: (from left to right: Synthetic Image 1, pro-
posed method result (σ = 400), Synthetic Image 2, proposed method result(σ = 200))

The proposed method was compared with the random walks [8], power-
watershed method [6] and graph cuts [4] on two groups of synthetic images.
We have also performed a comparison with the power-watershed and graph cuts
method by providing the same connectivity enhanced graph obtained with the
proposed method. For evaluating the segmentation accuracy, the percentage of
voxels being labeled correctly is not an ideal measure, so we employ a widely
used statistic measure, namely F-measure (or F-Score) with α = 1, which is
equivalent to Dice Coefficient.

Table 1. F-1 Score (DICE) on Synthetic Image 1

σ (noise level) WithoutNoise 100 200 300 400

Our method 100% 96.88% 95.19% 90.66 % 88.43%
WaterShed [6] 99.99% 97.80% 10.03% 1.76% 1.76%
GraphCut [4] 100% 98.01% 14.76% 0.02% 1.74%

RandomWalks[8] 100% 98.29% 92.32% 76.04% 54.73%
WaterShed with DACF 100% 97.93% 83.09% 35.82% 1.41%
GraphCut With DACF 100% 98.98% 1.74% 1.32% 1.32%
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By providing reasonable edge connectivity based on DACF , which can reduce
the shrinking risk, the proposed method can have good performance on noisy
images, as can be seen in Table 1 and Table 2. Fig. 3(b) and 3(d) show the surface
obtained with the proposed method for noisy images with σ = 400 and σ = 200.
The accuracy of the other methods drops quickly as the noise level increases.
For graph cuts method, DACF connectivity cannot help to avoid shrinking to
the background seed or a small number of voxels near the seed.

Table 2. F-1 Score (DICE) on Synthetic Image 2

σ (noise level) WithoutNoise 80 100 200 300

Our method 100% 100% 97.58 % 92.42 % 79.20%
WaterShed [6] 100% 100% 91.54% 4.71% 4.71%
GraphCut[4] 100% 100% 95.49% 4.78% 4.79%

RandomWalks[8] 100% 100% 73.14% 49.52% 24.21%
WaterShed with DACF 100% 100% 99.62% 4.83% 4.83%
GraphCut With DACF 100% 100% 99.79% 4.78% 4.78%

The performance of Watershed method can be better with DACF connec-
tivity. However, the method emphasizes too much on edge cost and the un-
predictable intensity changes in noisy image can cause the power-watershed to
build “dam” and make the segmentation result unpredictable. Different from
maximum-flow, which assumes x as integers 0 or 1, random walks and the pro-
posed method regard the resulting label x in Equation 1 as a real number ranges
from 0 to 1. As a result, x for neighboring voxels with high connectivity will
always have similar values. So the segmentation never shrinks to seed points and
F-score for random walks does not drop to very low value with DACF connec-
tivity. In all experiments, the weight λ for calculating DACF was set to 1.5. β in
Algorithm 1 was set to 0.005 in the synthetic experiments and 0.05 for the real

(a) Comparision on CTA images (from left to
right: our method, results from [3] and [7] )

(b) Results on MRA

Fig. 4. Experiments on Clinical CTA and MRA Images
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images because this parameter is closely related to boundary intensity change.
τ was set to 100 for synthetic images, 40 for CTA and 60 for MRA images. δ for
calculating cij set to 0.02.

Due to the difficulty of obtaining the ground truth segmentation for whole ves-
sel tree structures, we conduct the experiments on clinical images and compare
the methods qualitatively. The proposed method is first compared with two up-
to-date graph-based vessel segmentation methods [3,7] on clinical CTA images
from Rotterdam Framework([1] with permission) for coronary artery segmenta-
tion(Fig. 4(a)). The experiments are carried out on a number of CTA images.
Due to the space limitation, we only present the experiment results on 3 images
here. The experiment is also done with power-watershed [6] and graph cuts meth-
ods. However, the segmentation results shrink to small areas near the background
seed, so we do not present the results here. For method in [3,7], the centerlines of
three major vessels are first detected and the voxels with their smallest distance
to any centerline points within 1.5 radius are assumed as candidate voxels. For
the proposed method, power-watershed method, and graph cuts method, only a
vessel seed point and a background point near it are provided. As shown in the
figure, good segmentation results for the tree structure can be obtained with the
proposed method without using vessel skeleton or ROI, and it does not suffer
from shrinkage to centerline points as [3] does. In the experiments for all meth-
ods, to avoid leakage to heart, a “block” is built in CTA images only with the
help of the provided vessel seed near the root of the vascular tree.

Some experiments are also carried out on MRA images from OsiriX [2] and
the segmentation results of lower limbs vessels and cerebral vessels are presented
in Fig. 4(b). From the figure we can see that good segmentation results can be
obtained with the proposed method, and the issue of intensity brightness near
boundary for MRA images can be resolved by finding maximal ACF response
for different radii.

5 Conclusion

In this paper, we have presented a novel graph-based segmentation method for
3D vessel tree structures. Our method exploits a new adaptive cylinder flux
(ACF ) based connectivity framework, which is formulated based on random
walks [8]. With the help of the ACF based connectivity framework, a global op-
timal segmentation result can be obtained without extracting skeleton or ROI.
The proposed method has been compared with classical graph-based image seg-
mentation methods and two up-to-date 3D vessel segmentation methods and
promising results have been reported on both CTA and MRA images.

We would like to acknowledge the financial support of the Hong Kong Re-
search Grants Council under grant 612011.
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