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Abstract. In this paper, we present a novel label inference method that
integrates registration and patch priors, and serves as a remedy for la-
belling errors around structural boundaries. With the initial label map
provided by nonrigid registration methods, its corresponding signed dis-
tance function can be estimated and used to evaluate the segmentation
confidence. The pixels with less confident labels are selected as candidate
nodes to be refined and those with relatively confident results are settled
as seeds. The affinity between seeds and candidate nodes, which consists
of regular image lattice connections, registration prior based on signed
distance and patch prior from the warped atlas, is encoded to guide the
label inference procedure. For method evaluation, experiments have been
carried out on two publicly available data sets and it only takes several
seconds for our method to improve the segmentation quality significantly.

1 Introduction

Due to poor contrast condition and intensity inhomogeneity in brain magnetic
resonance (MR) images, it is challenging to provide a reliable segmentation re-
sult. Manual labelling is tedious and time-consuming, which also suffers from
inter- and intra-labeler variability [13]. Various automatic labelling methods
have been proposed and atlas-based segmentation approaches become widely
used owing to the relatively high accuracy. With manually labelled atlas, the
label map for the target image can be propagated from the atlas based on non-
rigid registration [9]. To obtain a reasonable deformation field, smoothness or
regularization term is conventionally enforced during registration [6,14]. How-
ever, because of the anatomical variability among subjects, the enforcement of
regularization can lead to labelling errors near the object surfaces.

Patch-based method is first introduced for image denoising [4] and later em-
ployed in medical image segmentation. In [11], with the similarity values calcu-
lated from a kernel function as weights, the small patches inside a region weighted
vote for the labels of the target image. In this process, no nonrigid registration
is required and all information provided by the small patches will be utilized. To
reduce the adverse impact from dissimilar patches, an extension is proposed in
[3], by first ranking these small patches based on structure similarity and then
combining the selected ones together for the final labelling.
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As pointed out in [15], patch-based methods can fail to provide accurate
labels close to boundaries and one label inference approach based on Gaussian
processes has been proposed by estimating contour-driven distribution over label
maps. However, as a result of poor contrast and weak boundaries, the contour is
difficult to extract in brain MR images. In this paper, we present a novel label
inference method integrated with registration and patch priors, to help correct
the label errors around structural boundaries. Experiments on two public data
sets indicate that the proposed label refinement method (label inference) can
improve the segmentation quality significantly and efficiently.

2 Methodology

In this paper, label inference is formulated on an undirected weighted graph,
with nodes selected automatically from the target image based on confidence
evaluation. Besides the typical image lattice connections, registration prior based
on signed distance and patch prior from the warped atlas image are encoded to
assist the refinement procedure. Under the framework of Random Walker, label
inference can be viewed and solved as the discrete Dirichlet problem.

2.1 Confidence Evaluation

In Fig. 1, the segmentation result for the left hippocampus provided by one
benchmark registration method ANTs is shown in blue. As compared with the
ground truth displayed in red, it can be observed that label errors mainly lie
around the boundary of the subcortical structure. In other words, the segmenta-
tion results for pixels or voxels close to the structural border have low confidence
level as compared with those far away from the perimeter. In this paper, a new
label inference method is proposed to improve the atlas-based extraction of one
subcortical structure in brain MR images. Signed Distance Function (SDF) [12]
is employed as shape representation and utilized to help evaluate the segmen-
tation confidence of the warped label map. The SDF for one binary image can
be constructed by calculating the Euclidean distance between one pixel and its
nearest pixel on the object boundary. Each pixel in the image has its correspond-
ing signed distance and negative or positive value indicates inside (foreground)
or outside (background) the object respectively.

For one pixel located around the boundary, the absolute value of its signed
distance approaches 0 and its confidence of the current label is relatively low.
In our approach, we assume that the segmentation confidence of one pixel is
proportional to the absolute value of its signed distance. Given one positive
value ρ, the pixels with signed distance −ρ < d < ρ are regarded as candidate
nodes, whose labels have low confidence level and need to be refined. The labels
for the pixels with signed distance d ≥ ρ or d ≤ −ρ are regarded as confident
results and these pixels can be viewed as foreground or background seeds.

We use xi to represent the probability that one node belongs to the foreground
(xF = 1 for the foreground seed and xB = 0 for the background seed). By
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Fig. 1. (a) Comparison of segmentation results from ANTs (Blue) and manually la-
belled ground truth (Red). (b) Blue curve: boundary of the object with signed distance
d = 0; Red curve: the layer inside the object with signed distance −(ρ+ ε) ≤ d ≤ −ρ;
Black curve: the layer outside the object with signed distance ρ ≤ d ≤ ρ+ ε.
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Fig. 2. (Colour Image) (a) Illustration of encoding lattice connections (blue dashed
lines) and registration prior (red and black lines). (b) Illustration of encoding patch
prior from the atlas (gray dashed lines) and rater reliability (red and black lines).
Virtual nodes vik (k = 1, · · · ,K) are associated with candidate node vi.

encoding the relationship between candidate nodes and seeds into one graph
G = (V,E), we try to seek the optimal solution for xi and improve the current
segmentation quality. V refers to the set of nodes, which consists of nodes selected
from the target image (foreground seeds VF , background seeds VB and candidate
nodes VC) and virtual nodes VV generated from the warped atlas. The foreground
seeds VF are obtained by selecting pixels with signed distance −(ρ+ε) ≤ d ≤ −ρ,
and the background seeds VB are chosen from the pixels with signed distance
ρ ≤ d ≤ ρ+ε, as shown in Fig. 1(b). To balance the influence from foreground and
background seeds on candidate nodes, we randomly select background seeds to
make the numbers of two kinds of seeds equal. As for the virtual nodes VV , they
act as mediators between candidate nodes and seeds, which will be illustrated
in detail later. E ⊆ V × V refers to the set of edges connecting two nodes i and
j, with wij as edge weight.

2.2 Registration Prior

With the foreground and background seeds settled, we can propagate the influ-
ence of seeds to candidate nodes through image lattice. For the candidate node
vi ∈ VC , we consider the affinity between vi and its neighbors, with the edge
weight wij assigned with the common Gaussian function,

∀ vj ∈ N (vi), wij = exp(−β1(IT (vi)− IT (vj))
2), (1)
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where N (vi) refers to the 6-nearest neighbors of vi in 3-D images, IT (·) is the
intensity value for the pixel in the target image and β1 is one tuning parameter.
In Fig. 2(a), the blue dashed lines refer to the edges connecting candidate nodes
(blue dots) and some of their 6-connected lattice neighbors, with edge weights
which are defined in Equation (1).

Besides the regular lattice connections, registration prior is also exploited to
guide the label inference procedure according to the signed distances of candidate
nodes. For one node with a smaller signed distance, more impacts are supposed
to be received from the foreground seed and vice versa. To involve the regis-
tration prior in the graph, direct edges between the candidate node and seeds
are appended, as the red and black lines shown in Fig. 2(a). The red dot is one
foreground seed (F ∈ VF ) and the black dot is one background seed (B ∈ VB).
We define wiF and wiB using the sigmoid function,

wiF =
1

1 + edi
, wiB =

1

1 + e−di
, (2)

in which di is the signed distance for candidate node vi. With the definitions
above, 0 < wiF < 1, 0 < wiB < 1, wiF + wiB = 1 can be inferred. To some
extent, wiF can represent the probability implied by registration prior that vi
belongs to the foreground, similarly for wiB . For the candidate nodes located at
the boundary (di = 0), the impacts of registration prior from the foreground and
background seeds are equal and then other prior knowledge can dominate the
label inference of these nodes, in such way the boundary errors can be suppressed.
In our approach, the SDF can help choose candidate nodes to be refined and
assist the utilization of the registration prior accordingly.

2.3 Patch Prior

Based on the deformation field determined in the registration procedure, the
label map of the atlas can be deformed to provide the segmentation result for
the target image. At the same time, the intensity profile of the atlas can also
be warped based on the deformation field. Due to regularization or smoothness
term utilized during registration, the warped intensity profile of the atlas differs
with that of the target image. As such, it is reasonable to see that the warped
label map is inaccurate for the target image at some pixels, especially around
the structural boundaries. In this paper, we propose to use patch prior from the
warped atlas to assist the label inference procedure of the target image and to
relax the constraint brought by regularization during registration.

For one candidate node vi in the target image, the intensity information
around it, in terms of patch, P1(vi) is taken into consideration. Similar patches
for P1(vi) are searched inside a larger patch P2(vi) in the warped atlas image. In
3-D MR image segmentation, the sizes of P1 and P2 are (2r1+1)3 and (2r2+1)3

respectively, where r2 > r1 > 0. The similarity between two patches is defined
as follows,

∀ P1(vik) ⊂ P2(vi), S(vi, vik) =
∑

x∈P1(vi), y∈P1(vik )

(IT (x)− IA(y))
2, (3)
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where IT and IA are the intensity profiles of the target image and warped atlas
respectively, vik is one pixel in the warped atlas such that patch P1(vik) is inside
the larger patch P2(vi). After performing sorting on the similarity values, we can
pick up K patches P1(vik ) (k = 1, · · · ,K, K ≥ 2) which are similar with P1(vi),
to decrease the adverse impact from dissimilar patches. The central pixels vik of
these similar patches are added as virtual nodes to the graph, connected with
corresponding candidate node vi, as shown in Fig. 2(b). The edge weight wiik

between candidate node vi and one of its virtual nodes vik is defined based on
the patch similarity,

∀ vik ∈ VV (vi), wiik =
1

Z(vi)
S(vi, vik)

−β2 , (4)

where VV (vi) is the set of virtual nodes associated with vi. As experimentally
demonstrated in [1], the above weight gives better performance as compared
with other related similarity metrics. β2 is one tuning parameter and Z(vi) is a

normalization constant to guarantee
∑K

k=1 wiik = 1.
To deal with the manual labelling inconsistency [13] for the prior provided by

the warped atlas, we introduce one term α to encode this kind of uncertainty.
The edge weights between the virtual point and the seeds are given as follows,

wikF = αL(vik), wikB = 1− αL(vik), (5)

where α is one tuning parameter related to the rater reliability, L(·) is the label
of a node, with 1 or 0 standing for foreground or background respectively.

2.4 Label Inference

The basic energy function for target image segmentation [10] is given as follows,

E(x) = Eunary(x) + Ebinary(x),

=
∑

vi

(wq
iF |xi − 1|p + wq

iB |xi − 0|p) +
∑

eij

wq
ij |xi − xj |p, (6)

where the first unary term measures the data cost of each node independently
and the second term is the pair-wise potential through edges. By assigning var-
ious values to p and q, the general energy function can be deformed to different
models, like Graph Cut, Random Walker, Power Watershed, etc. Considering
shrunk surface emerged in Graph Cut and rough boundary acquired by Power
Watershed, we herein choose to model label inference under the framework of
Random Walker, with p and q set to 2. By combining the two graphs shown in
Fig. 2, the objective function of the label inference problem can be written as,

min
x

∑

vi

[w2
iF (xi − 1)2 + w2

iBx
2
i ] +

∑

eij

w2
ij(xi − xj)

2+

∑

vik

[w2
ikF (xik − 1)2 + w2

ikBx
2
ik ] +

∑

eiik

w2
iik (xi − xik)

2,

s.t. xF = 1, xB = 0.

(7)
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The first term involves the registration prior based on signed distance and the
second term is the nodal affinity through 6-connected image lattice. As for the
third and forth terms, the patch prior from the warped atlas is introduced as
virtual points, setting up intermediate connections between candidate nodes and
seeds. According to Equation (7), label inference is a discrete Dirichlet problem
and can be solved as the Laplace equation with Dirichlet conditions using Graph
Analysis Toolbox [7]. With the unique solution obtained for xi, the labels of
candidate nodes can be updated, L(vi) = 1 if xi ≥ 1

2 and L(vi) = 0 otherwise.
It is worth noting that the proposed label refinement method is not limited

to single-atlas based segmentation and it can be extended to multi-atlas based
segmentation with minor changes in the following two steps. Since multiple at-
lases can produce different label maps, majority voting is first carried out to
obtain the initial segmentation result for the target image. As for the selection
of virtual nodes, we will take the patch similarity values from all atlases into
consideration and select K similar patches after ranking.

3 Experiments

The performance of our label inference (LI) method has been evaluated on
two publicly available data sets – IBSR (www.cma.mgh.harvard.edu/ibsr) and
LPBA40 (www.loni.ucla.edu/Atlases/LPBA40). IBSR consists of 18 T1-weighted
MR brain images with 84 labeled structures and LPBA40 includes 40 subjects
with 56 structures delineated. Given various modes existed in a large population
[2], we first divided each data set into subgroups based on Affinity Propagation
(AP) clustering [5] using Mutual Information and selected the central image of
each cluster as the atlas. For the rest of the images in each subgroup, histogram
matching with Insight Toolkit (www.itk.org) and affine transformation using
FLIRT [8] were carried out as pre-processing.

In the experiments, our LI method was applied to the initial label maps pro-
vided by two benchmark methods – ANTs and IRTK, which rank high in the
evaluation of 14 nonrigid registration methods [9]. During implementation, the
intensity distance (IT (vi)− IT (vj))

2 in wij has been normalized to [0, 1] and the
parameter settings used in the evaluation are listed as follows, β1 = 5, β2 = 0.5,
ρ = 2, ε = 1, α = 0.9 and K = 2.

Dice Coefficient (DC) was employed to assess the labelling accuracy on sub-
cortical structures and each structure was divided into left/right, with DC values
calculated respectively. Quantitative segmentation results measured with DC on
two data sets are listed in Table 1 and Table 2, with the highest value written
in bold. It can be observed that with the assistance of LI, the segmentation
accuracy of ANTs and IRTK can be improved considerably (1.8% and 2.9% on
IBSR, 3.0% and 2.9% on LPBA40).

To provide a comprehensive evaluation, we tested the performance of our
extended label inference (ELI) method in multi-atlas based segmentation. The
parameter settings were remained unchanged expect for K, which was set to
the number of atlases. To fuse the label maps generated by multiple atlases,
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Table 1. Label Inference on IBSR data set

Methods Thalamus Caudate Putamen Pallidum Hippocampus Amygdala Average 

ANTs  0.870-0.868 0.822-0.794 0.851-0.856 0.780-0.790 0.741-0.756 0.677-0.660 0.789±0.028 

ANTs+LI 0.884-0.883 0.851-0.824 0.864-0.878 0.789-0.805 0.769-0.779 0.684-0.672 0.807±0.026 

IRTK 0.855-0.840 0.792-0.759 0.786-0.763 0.684-0.666 0.687-0.678 0.609-0.573 0.724±0.106 

IRTK+LI 0.873-0.863 0.825-0.780 0.811-0.793 0.717-0.696 0.722-0.715 0.638-0.599 0.753±0.097 

Table 2. Label Inference on LPBA40 data set

Methods Putamen Caudate Hippocampus Average 

ANTs  0.794-0.803 0.756-0.751 0.779-0.782 0.777±0.040 

ANTs+LI 0.824-0.832 0.790-0.785 0.805-0.807 0.807±0.040 

IRTK 0.777-0.778 0.766-0.763 0.773-0.761 0.770±0.042 

IRTK+LI 0.811-0.810 0.794-0.790 0.799-0.788 0.799±0.044 

Table 3. Extended Label Inference on IBSR data set

Methods Thalamus Caudate Putamen Pallidum Hippocampus Amygdala Average 

ANTs+MV  0.894-0.896 0.839-0.826 0.884-0.888 0.825-0.826 0.794-0.807 0.742-0.719 0.828±0.023 

ANTs+WV 0.894-0.899 0.850-0.837 0.887-0.889 0.819-0.821 0.793-0.805 0.737-0.709 0.828±0.016 

ANTs+ELI 0.906-0.910 0.870-0.859 0.893-0.901 0.831-0.839 0.814-0.825 0.757-0.738 0.845±0.017 

IRTK+MV 0.873-0.868 0.820-0.802 0.847-0.831 0.767-0.752 0.753-0.750 0.702-0.662 0.786±0.053 

IRTK+WV 0.874-0.870 0.820-0.805 0.854-0.839 0.768-0.756 0.756-0.758 0.699-0.663 0.788±0.044 

IRTK+ELI 0.892-0.887 0.857-0.840 0.873-0.863 0.794-0.781 0.789-0.787 0.730-0.694 0.816±0.039 

Table 4. Extended Label Inference on LPBA40 data set

Methods Putamen Caudate Hippocampus Average 

ANTs+MV  0.862-0.858 0.828-0.821 0.841-0.835 0.841±0.028 

ANTs+WV 0.861-0.857 0.834-0.828 0.840-0.836 0.843±0.029 

ANTs+ELI 0.867-0.863 0.845-0.841 0.847-0.842 0.851±0.025 

IRTK+MV 0.845-0.838 0.832-0.825 0.827-0.814 0.830±0.035 

IRTK+WV 0.844-0.837 0.833-0.828 0.830-0.817 0.832±0.035 

IRTK+ELI 0.859-0.852 0.845-0.841 0.840-0.828 0.844±0.030 

we utilized classic majority voting (MV), with the results of intensity weighted
voting (WV) provided for reference. As shown in Table 3 and Table 4, our ELI
method can obtain better DC values consistently. All experiments were run on
a 3.30 GHz, Dual-Core CPU with 20 GB RAM. Given the average computation
time consumed by pair-wise deformation, 32 minutes for ANTs and 22 minutes
for IRTK, it only takes around 9 seconds to finish the label inference procedure,
which demonstrates that the proposed method can improve the segmentation
quality efficiently.
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4 Conclusion

In atlas-based image segmentation, the quality of labels around structural bound-
aries is usually poor. To deal with this problem, in this paper, we propose a novel
method to refine these labels. By employing signed distance function to evaluate
the initial label map, we can pick up the nodes whose labels need to be refined
and select nodes with confident results as seeds. Registration prior based on
signed distance and patch prior generated from the warped atlas are encoded in
the label inference procedure, together with the nodal affinity through lattice in
the target image. Experimental results on two public data sets indicate that the
proposed method can improve the labelling quality effectively and efficiently.
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