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Abstract. This paper presents an extended version of the fully auto-
mated 3D cerebral vessel reconstruction algorithm developed by Wilson
and Noble [11] which is applicable to time-of-flight (TOF) and phase
contrast (PC) magnetic resonance angiography (MRA) images. We in-
troduce a Rician distribution for background noise modelling and use a
modified EM (Expectation-Maximisation) algorithm for the parameter
estimation procedure. The proposed algorithm is applied to PC-MRA
images. It is shown that the estimated Rician distribution gives a bet-
ter quality-of-fit to the observed background noise distribution than a
Gaussian distribution. In the experiments reported, the segmented 3D
vasculature is shown to be qualitatively comparable with the results ob-
tained from higher resolution TOF MRA images.
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1 Introduction

Three dimensional vascular segmentation is an essential prior step for brain
aneurysm characterisation which has been shown, for example, to be extremely
useful for pre-GDC (Guglielmi detachable coil) treatment planning [12]. Pre-
treatment vessel examination is commonly performed using magnetic resonance
angiography (MRA) because the image intensity is flow related and MRA does
not require the use of contrast agent as for example X-ray analysis does. Two
typical and major groups of MRA techniques are phase contrast (PC) and time-
of-flight (TOF). The main advantage of PC-MRA over TOF-MRA is that it not
only gives information about vascular morphology but also provides, addition-
ally, directional-flow images in each orthogonal direction. This work is entirely
driven by the growing need of PC-MRA image segmentation. This paper extends
the fully automated 3D cerebral vessel reconstruction algorithm developed by
Wilson and Noble [11] from TOF-MRA to PC-MRA. PC-MRA is employed for
capturing the flow rate (both magnitude and directions) information spatially
within a region of interest (ROI) at a particular time. Similar to TOF-MRA, the
voxel intensity is flow-encoded [8]. Intensity and flow rate are positively corre-
lated in PC-MRA. However, unlike TOF-MRA, which shows detail anatomical
structures, a PC-MRA image displays two major and high contrast voxel types:
vessel and background. It is common to assume that the background intensities
are Gaussian distributed. However, in this paper, we adopt a Rician distribution



as the statistical representation of the background intensities because, theoreti-
cally, the background intensities follow a Rician distribution [4, 1, 9]. The exper-
iments we present show that the Rician distribution gives a better quality-of-fit
than a Gaussian distribution. We present a method for estimating parameters
based on modified EM (Expectation-Maximisation) algorithm [2]. The proposed
algorithm is tested on PC-MRA images and segmentation results are shown.

2 The Algorithm

This section briefly explains the statistical models of each voxel type based on the
image formation process and physical characteristics of blood flow. These models
are combined additively, and their parameters are estimated via a modified EM
algorithm. Segmentation criteria are then described.

2.1 Derivation of the background noise and vessel models
We assume the following background noise model to describe the intensity
characteristics of the voxels having approximately zero flow rate, i.e. air back-
ground or tissues with stationary flow rate. For PC-MRA, the flow-rate of each
voxel is encoded separately in three orthogonal directions. The three orthogo-
nal velocity components, vx, vy and vz, are then combined to obtain the flow

speed v =
√

v2
x + v2

y + v2
z . These velocity components are complex numbers.

Each component is computed by the difference between positive and negative
gradient Fourier transformed images along the component direction [1, 7]. We
assume that the real and imaginary parts of these complex components are in-
dependently Gaussian distributed with different means µk, k = 1 . . . 6, and the
same variance σ2. The probability density function (p.d.f.) of the flow v is then
governed by a Rician distribution, which describes the distribution of the square
root of the squared-sum of Gaussian random variables. Since the voxel intensity
i and flow v are linearly related, the p.d.f. of the background voxel intensity fb(i)
is also Rician distributed and given by,
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where A2 =
∑N

k=1 µ2
k, I is the modified Bessel function of real order, u is the unit

step function and N is the number of independent Gaussian random variables.
N = 6 for the rest of the paper. A plot of Rician distributions with difference
Signal-to-Noise (SNR) ratios A

σ = 0.001, 1, 2 . . . 5 and their corresponding skew-
ness measures γ are shown in Figure 1a. It shows that a Rician distribution with
small SNR tends to be positively skewed and that with large SNR it is symmetric
and approximately Gaussian.

We assume a vessel model, in which the intensity characteristics of the
vessel voxels are assumed to exhibit a laminar flow pattern. The velocity profile
across the circular vessel cross-section is then parabolic [3], as shown in Figure
1b. Hence, the intensity profile is i = C(1 − r2

R2 ), where i is the intensity, C is
a constant, R is the vessel radius and r is the distance from vessel centre to
the boundary. The p.d.f. fv(i) for a vessel voxel that has intensity i is directly
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Fig. 1. (a) A plot of Rician distributions with different SNR and their corresponding
skewness measures (A

σ
, γ). This shows that a Rician distribution with small SNR tends

to be positively skewed and that with large SNR it is symmetric and approximately
Gaussian. (b) A typical laminar flow pattern. a(x ≥ i) is the area having intensity
x larger than i. The probability that a voxel has intensity equal to i is then given by
| da(x≥i)

di
|.

proportional to the area a(x = i). fv(i) is calculated as the rate-of-change of
area having intensity greater than or equal to i, i.e. fv(i) ∝ |da(x≥i)

di |. The area
a(x ≥ i) is given by πR2(1− i

C ). Therefore, the p.d.f. fv is constant and can be
regarded as a uniform distribution, fv(i) = 1

imax
, where imax is the maximum

intensity in the frequency histogram. Although, in practice, the vessel voxel
intensity mainly spreads over the high intensity region the number of vessel
voxels is only a small proportion (1%) of the frequency histogram. Hence, for
the sake of simplicity, we assume that the uniform distribution spreads over the
entire intensity range (0 . . . imax).

The background noise and vessel models can be combined into a mixture
model. The modified EM algorithm [2] can be used to estimate the parameters
for the mixture f(i) = wbfb(i|b) + wvfv(i|v), where fb(i|b) and fv(i|v) are the
conditional probabilities that a voxel has intensity i given that it is a background
noise and vessel voxel respectively, and wb and wv are the prior probabilities of
a background noise and vessel voxel respectively. In other words, wb and wv are
the weights of the background and vessel models respectively, and wb+wv = 1. A
procedure for estimating the model parameters is outlined in the next subsection.

2.2 Parameter estimation procedure
This subsection concerns parameter estimation of a mixture density. Given a
mixture model of a Rician and uniform distributions, there are four unknown
parameters: wb, wv, A and σ2 that need to be estimated. The modified EM
algorithm is an iterative procedure that can be used to estimate the parameters
which maximizes the log-likelihood of the mixture distribution in each iteration
[2]. The iterative procedure terminates when the change in log-likelihood or the
parameters is sufficiently small.

Let the log-likelihood function be L =
∑imax

i=0 h(i) log f(i), where h(i) is the
frequency histogram of the observations and f(i) is the mixture p.d.f.. The
change in log-likelihood function is given by

Lk+1 − Lk =
imax∑

i=0

h(i) log
(

fk+1(i)
fk(i)

)
, (2)



where index k represents the kth iteration step. We aim to maximize the change of
log-likelihood Lk+1−Lk until the change is sufficiently small. Suppose that, given
an intensity i, the posterior probabilities that a voxel belongs to the background
noise and vessel are p(b|i) and p(v|i) respectively. Then p(b|i) = wbfb(i|b)/f(i).
The same applies to p(v|i). Also p(b|i) + p(v|i) = 1. Equation (2) can be re-
written as

Lk+1 − Lk =
imax∑

i=0

h(i) log

(
pk(b|i)wk+1

b fk+1
b (i|b)

fk(i)pk(b|i) + pk(v|i)wk+1
v fk+1

v (i|v)
fk(i)pk(v|i)

)
(3)

by expanding fk+1(i) and multiplying pk(b|i) and pk(v|i) to both numerator and
denominator. By Jensen’s inequality, log(λ1x1+λ2x2) ≥ λ1 log x1+λ2 log x2 and
λ1 + λ2 = 1. Let λ1 = pk(b|i) and λ2 = pk(v|i). Then from Equation (3), we
have

Lk+1 − Lk ≥
imax∑

i=0

h(i)

(
pk(b|i) log

wk+1
b fk+1

b (i|b)
fk(i)pk(b|i) + pk(v|i) log

wk+1
v fk+1

v (i|v)
fk(i)pk(v|i)

)
.(4)

Therefore, maximizing the right-hand-size of the inequality in Equation (4) is
equivalent to maximizing the change in log-likelihood until the log-likelihood
converges to a stationary point.

Maximisation with respect to wk+1
b and wk+1

v : the right-hand-side of
Equation (4) can be rearranged to isolate the terms related to wk+1

b and wk+1
v .

Let

Qw =
imax∑

i=0

h(i)
(
pk(b|i) log wk+1

b + pk(v|i) log wk+1
v

)
. (5)

Then we need to maximize Qw under that constrain wk+1
b + wk+1

v = 1, i.e.
maximize Qw + λ(1−wk+1

b −wk+1
v ), where λ is the lagrange multiplier. Setting

the derivatives with respect to wk+1
b and wk+1

v to zero gives,

λwk+1
b =

imax∑

i=0

h(i)pk(b|i) and λwk+1
v =

imax∑

i=0

h(i)pk(v|i) (6)

Summing Equations (6) gives λ = M , which M is the total number of voxels.
Hence, we obtain

wk+1
b =

1
M

imax∑

i=0

h(i)pk(b|i) and wk+1
v =

1
M

imax∑

i=0

h(i)pk(v|i). (7)

The initial values of w0
b and w0

v we have used in our experiments are 0.99 and
0.01 respectively.

Maximisation with respect to Ak+1 and σ2
k+1 : the right-hand-side of

Equation (4) can be rearranged to isolate the terms related to Ak+1 and σ2
k+1.

QA,σ2 =
imax∑

i=0

h(i)pk(b|i) log fk+1
b (i|b). (8)

Setting the derivatives of QA,σ2 with respect to Ak+1 and σ2
k+1 to zero gives



∂QA,σ2

∂Ak+1
= 0 ⇒

imax∑

i=0

h(i)pk(b|i)
[(

1− N

2

)
1

Ak+1
− Ak+1

σ2
k

+
I
′
v

Iv

i

σ2
k

]
= 0, (9)

∂QA,σ2

∂σ2
k+1

= 0 ⇒
imax∑

i=0

h(i)pk(b|i)
[

i2 + A2
k − 2σ2

k+1

2σ4
k+1

− I
′
v

Iv

iAk

σ4
k+1

]
= 0, (10)

where v = N
2 − 1, Iv = Iv(y), I

′
v = dIv

dy . For Equation (9), y = iAk+1

σ2
k

. For

Equation (10), y = iAk

σ2
k+1

.
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Fig. 2. (a) and (b) show that the curves of derivatives versus Ak+1 and σ2
k+1 are

monotonic decreasing, which implies that the curves of QA,σ2 with varying Ak+1 and
σ2

k+1 are convex and have a unique maximum.

Figures 2a and 2b show that the curves of derivatives of QA,σ2 with respect
to Ak+1 and σ2

k+1 versus Ak+1 and σ2
k+1 are monotonic decreasing, which im-

plies that the curves of QA,σ2 with varying Ak+1 and σ2
k+1 are convex and have a

unique maximum. Hence, the solutions Ak+1 and σ2
k+1 of Equations (9) and (10)

will maximize the value of QA,σ2 . Equations (9) and (10) can be solved numer-
ically to find Ak+1 and σ2

k+1 using, for example, the Newton-Raphson method.
As shown in Figures 2a and 2b, both curves are approximately linear for a wide
range of Ak+1 and σ2

k+1. Given the initial guesses of Ak and σ2
k, the Newton-

Raphson method converged after approximately 2 iterations in practice. The
initial values of A0 and σ2

0 we have used in our experiments are
√

E[i2]−Nσ2

and σ2 the histogram variance respectively, where E[i2] is the expected value
of i2. The termination criterion for Newton-Raphson method was found empir-
ically. The termination conditions in the Newton-Raphson method were set to
be |Ak+1 − Ak| ≤ 0.1 and |σ2

k+1 − σ2
k| ≤ 5. These choices were found to keep

the change in QA,σ2 approximately 0.5% per iteration of the EM algorithm.
The EM algorithm applies the same termination criteria and converged after
approximately 15 iterations.
2.3 Results
Figure 3a and 3b show a typical EM estimation result when the background voxel
intensity fb is assumed to be Rician and Gaussian respectively. Estimations were
performed in each of the 64 slices of a PC-MRA volume. Figure 3c displays the
absolute errors of the Rician (solid) and Gaussian (dashed) distributions versus
slice number. Absolute error is defined as the absolute difference between the



observed and estimated histograms
∑imax

i=0
1
M |hobserved(i)−hestimated(i)|×100%.

Note that the Rician distribution consistently gives a better quality-of-fit (about
5%) for the background noise distribution than a Gaussian distribution. This is
because of the low signal-to-noise ratio (SNR) of the background. Low SNR
magnifies the contributions of Gaussian noise in each orthogonal component
to the background signal. Therefore, the background distribution is corrupted
from a Gaussian to a Rician distribution. A Gaussian distribution is still a good
approximation when the SNR is significantly large (A

σ ≥ 3) [4].
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Fig. 3. (a) and (b) show the estimation results when fb is assumed to be Rician and
Gaussian respectively. The solid line is the observed histogram and the dotted line is
the estimated histogram. For 64 slices of a PC MRA volume, (c) shows the absolute
errors (%) of the Rician (solid) and Gaussian (dashed) distributions versus the slice
number. This shows that the Rician distribution gives a consistent better quality-of-fit
for the background noise distribution than a Gaussian distribution.

2.4 Segmentation Criteria
Given an estimated mixture model, a volume of PC-MRA can be segmented
statistically on the basis of the MAP (Maximum-A-Posterior) criterion, which
is conceptually different from the criteria of feature-based methods demanding
the extraction of relevant spatial features, e.g. edge, curvature [5, 6] or intensity
variance, or velocity coherence among neighbouring voxels [10], as the criteria for
vessel segmentation. Using MAP, a voxel is classified as a vessel voxel when the
vessel probability wvfv(i|v) is greater than the background probability wbfb(i|b).
Therefore, a threshold it can be found by the intersection of the two probability
distributions.
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Fig. 4. (a) shows that the histogram frequency increases as the intensity decreases.
This is because the number of relatively slow flow (low intensity) small vessel voxels is
greater than that of fast flow large vessel voxels. As shown in (b), which is an X-ray
image of the same brain, most of the small subsidiary vessels lead from a single major
vessel. The threshold is found by finding the point at the maximum planar curvature.
In (a), the maximum curvature is at intensity value 198.



The threshold it cuts the observed histogram into two portions. The high in-
tensity portion describes the intensity distribution of the vessel voxels, as shown
in Figure 4a. Note that the high intensity portion of the histogram follows the
uniform distribution and is consistent with the vessel model. However, note also
that the histogram frequency increases as the intensity decreases. This is because
the number of relatively slow-flow (low intensity) small-vessel voxels is greater
than that of fast-flow large-vessel voxels. As shown in Figure 4b, most of the
small subsidiary vessels lead from the single major vessel. Therefore, when the
intensity decreases, the number of voxels increases because of the increase in the
number of low-intensity small vessels, which in turn causes an increase in the
histogram frequency. This change in frequency can be found by finding the point
i
′
t at the maximum planar curvature of the smoothed curve. Curvature is defined

as d2h(i)
di2 /[1 + (dh(i)

di )2]
3
2 . In Figure 4a, it and i

′
t are approximately 120 and 198

respectively.
Figure 5a shows a sub-image from a PC-MRA slice. Figure 5b shows the

segmentation results using the threshold i
′
t. In this figure voxels with intensity

greater than i
′
t are labelled white. Figure 5c shows the segmentation results

using the threshold it. Here voxels with intensity between it and i
′
t are labelled

white; those greater than i
′
t labelled grey. This example illustrates that slow-flow

small-vessel voxels are now detected and appear adjacent to the fast flow large
vessel voxels. This means the estimated size of major vessels is larger without
the correction.

(a) (b) (c)

Fig. 5. (a) shows a sub-image from a PC-MRA slice; (b) shows the segmented image

using the corrected threshold I
′
t ; (c) shows the segmented image using the threshold It

(found by MAP). Slow flow small vessel voxels are detected and appear adjacent to
the fast flow large vessel voxels. This means the size of major vessels is overestimated
without the correction.

3 Results

Intracranial scans (both PC-MRA and TOF-MRA) of a volunteer (without an
aneurysm) were performed using a 1.5 T Siemens Magnetom Vision MR scan-
ner at the Radcliffe Infirmary, Oxford. The volume size was 192x256x48 voxels
and voxel size 0.82mm x 0.78mm x 1.46mm. The segmentation algorithm was
applied to the whole PC-MRA volume. The segmented 3D vasculature is shown
in Figure 6a. A high resolution TOF-MRA image of the same volunteer was
also acquired (voxel size 0.67mm x 0.39mm x 1.46mm and 225x512x48 voxels).
The segmentation method [11] was applied to the data. The result is shown in
Figure 6b. Observe that although PC-MRA is acquired at a lower scanning reso-
lution, as compared with TOF-MRA, all the major vessels are clearly shown and
reconstructed. To verify the aneurysm detection ability of the new algorithm,
PC-MRA data from a patient with two small aneurysms was acquired at the



same resolution and volume size. Figure 6c shows a 3D vascular segmentation of
the data. The two aneurysms are clearly detected (pointed by the arrows). The
computational time of the current implementation of the algorithm is approxi-
mately 10 seconds on a SGI 200MHz workstation.

(a) PC-MRA (b) TOF-MRA (c) PC-MRA
Without an aneurysm Without an aneurysm With two aneurysms

Fig. 6. Segmentation Results
4 Conclusion
We have presented an extended version of the fully automated 3D cerebral vessel
segmentation algorithm [11] applicable to PC-MRA. Conceptually, the proposed
algorithm falls into a probabilistic framework, in which the two major voxel
types: background and vessel are statistically modelled. Statistical models were
derived on the basis of the signal formation process and physical characteristics
of the flow pattern. We show that a threshold found by the intersection of the
two probabilistic distributions enables a good segmentation of the large major
vessels to be performed. The results show that the estimated distribution well
approximates the true (observed) background and vessel distributions. The main
advantage of PC-MRA over TOF-MRA is that it gives additional directional flow
images in the three orthogonal directions. Our next step is to perform directional
velocity mapping on the segmented 3D vasculature such that the flow pattern
around the region of aneurysm can be visualized and intensively studied.
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