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Abstract

Performing segmentation of vasculature with blurry and
low contrast boundaries in noisy images is a challenging
problem. This paper presents a novel approach to segment-
ing blood vessels using weighted local variances and an ac-
tive contour model. In this work, the vessel boundary orien-
tation is estimated locally based on the orientation that min-
imizes the weighted local variance. Such estimation is less
sensitive to noise compared with other common approaches.
The edge clearness is measured by the ratio of weighted lo-
cal variances obtained along different orientations. It is
independent of the edge intensity contrast and capable of
locating weak boundaries. Integrating the orientation and
clearness of edges, an active contour model is employed to
align contours that match the contour tangent direction and
edge orientation. The proposed method is validated by two
synthetic images and two real cases. It is experimentally
shown that our method is suitable for dealing with noisy
images which consist of structures having blurry and low
contrast boundaries, such as blood vessels.

1. Introduction

Active contour models have been used widely for seg-
mentation of medical images, e.g. vessel segmentation in
angiograms. To partition vascular structures, it is common
to use image gradient as a criterion to locate vessel bound-
aries. For instance, Lorigo et al. [7] presented a gradient
magnitude based vessel segmentation technique which uti-
lizes the level set framework [9] to represent and evolve
contours. The evolution of the moving contours is governed
by a speed term that is inversely proportional to the im-
age gradient magnitude. As such, the contours eventually
halt over the object boundaries. Xu and Prince proposed
the Gradient Vector Flow [13] which models gradient mag-
nitude as the source of attractive forces for drawing con-
tours to the object boundaries having high gradient magni-

tude. However, for some noisy images, e.g. digital subtrac-
tion angiography (DSA) and retinal angiography, the vessel
boundaries are blurry and with low contrast. These factors
can lead to low gradient magnitude on the object bound-
aries and affect adversely the segmentation accuracy of the
gradient magnitude based active contour approaches.

To deal with low contrast object boundaries in noisy im-
ages, Chan and Vese [2] demonstrated that the task of seg-
mentation can be achieved by solving the minimal partition
problem. Instead of using gradient information, this ap-
proach separates target objects from the image background
by minimizing the global sum variance calculated from the
regions that are inside and outside contours. Nevertheless,
due to the inhomogeneous intensity values of vessels and
image background, the resultant contours can enclose both
the dark vessel portions and bright background regions as
the same region. In addition, the regularization term based
on total contour length for noise elimination tends to anni-
hilate elongated contours.

Without using region statistics and length regularization
term, Vasilevskiy and Siddiqi introduced the Flux Maximiz-
ing Geometric Flows [11] which incorporate both the gra-
dient magnitude and direction information to detect weak
edges. By maximizing the inward (or outward) flux, the
contour evolution is guided by the edge orientation and fi-
nally stopped on the zero-crossing boundaries of the dis-
crete approximated Laplacian operation. The major advan-
tage is that it is sensitive to weak edges and robust to noisy
structures. Along the same research line, Xiang et al. pro-
posed an elastic interaction model [12] which also employs
information of both edge orientation and magnitude. This
method is highly sensitive to low contrast boundaries. As it
will be shown later in the experiments, the intensity varia-
tion inside vascular structures generates significant intensity
gradient along the long and narrow vessels. This undesired
discontinuity can halt the contour evolution at these regions.
On the other hand, the Gaussian operation smooths the ves-
sel boundaries and, at the same time, can cause contour
leakage though the noisy region attached to vessel bound-
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Figure 1. Top: Gσ=4. Middle: g1,θ(x, y). Bottom: g2,θ(x, y).

aries.
In this paper, we propose to use the weighted local vari-

ances and an active contour model for vessel segmenta-
tion. Edge orientation in an image is defined by the ori-
entation that minimizes the weighted local variance. The
corresponding edge clearness is calculated using the ratio
of variances obtained along different orientations. Based
on the estimated edge information, including edge orienta-
tion and clearness, a new energy functional is formulated to
draw contours to minimize the angular difference between
the contours and object boundaries. The major advantage
of this work is that the proposed method is less sensitive to
intensity fluctuation by noise and intensity variation along
vessels, and is able to locate weak and low contrast bound-
aries. The weighted local variance based edge orientation
estimation is compared with two edge orientation estima-
tors using synthetic images. Our method is tested on two
real images including a DSA image and a retinal angiogram.
It is experimentally shown that the weighted local variance
based edge information and active contour approach is suit-
able for dealing with elongated vasculature with blurry and
low contrast boundaries in noisy images.

2. Methodology

2.1. Weighted Local Variance

To extract edge information based on weighted local
variance (WLV), including edge orientation and clearness,
we first consider the Heaviside function,

Hθ(x, y) =




0 if tθ(x, y) ≤ −ε,
1
2 (sin πtθ(x,y)

2ε + 1) if |tθ(x, y)| < ε,
1 if tθ(x, y) ≥ ε,

(1)
where tθ(x, y) = xcosθ + ysinθ, orientation θ represents
the gradient direction of the Heaviside function, and ε is a
small constant. This function creates a straight line oriented
along θ⊥, where θ⊥ = θ + π

2 , for smoothly separating a
region into two half planes, one has values of ’1’ and the
other plane has values of ’0’. At each pixel (x, y), WLV is
calculated within a small, local region using two half sided
Gaussian kernels,

g1,θ(x, y) = Gσ(x, y) · Hθ(x, y),
g2,θ(x, y) = Gσ(x, y) · (1 − Hθ(x, y)), (2)

where Gσ is a Gaussian kernel with detection scale equals
to σ. It shows that each half plane, as defined and separated

by the Heaviside function (Equation 1), is multiplied with a
Gaussian kernel. The scale parameter of the Gaussian ker-
nel, σ, determines the size of objects to be detected. In
our application, segmentation of vasculature, the value of σ
should be defined roughly smaller than the widths of ves-
sels. Examples of g1,θ and g2,θ with ε = 0.1, σ = 4, and
different orientations θ are illustrated in Figure 1. Using the
half sided Gaussian kernels in Equation 2, given an arbitrary
orientation θ, WLV at pixel (x, y) is defined as

Varθ(x, y) =
∫

{g′1,θ(u, v) ·
(I(x + u, y + v) − µ1,θ(x, y))2 + g′2,θ(u, v) ·
(I(x + u, y + v) − µ2,θ(x, y))2}dudv, (3)

where I(x, y) represents the intensity at (x, y), g′1,θ and g′2,θ

are the normalized versions of g1,θ and g2,θ respectively,

g′i,θ(x, y) =
gi,θ(x, y)∫

gi,θ(u, v)dudv
, i = {1, 2}, (4)

and µ1,θ(x, y) and µ2,θ(x, y) are the weighted intensity av-
erages of their corresponding half planes separated by a
straight line along orientation θ⊥,

µi,θ(x, y) =
∫

g′i,θ(u, v) · I(x+u, y +v)dudv, i = {1, 2}.
(5)

The weighted local variance (WLV), Varθ(x, y) (Equa-
tion 3), can be viewed as a weighted sum of squared dif-
ferences between the intensity of the neighboring pixels
around (x, y) and its corresponding weighted intensity aver-
age, µ1,θ or µ2,θ. A small value of WLV along a particular
orientation θ implies that pixels are well partitioned into two
groups by a straight line along the orientation θ⊥. WLV at
each pixel changes as θ varies and attains minimum when
the orientation of the straight line aligned with the object
boundaries. Therefore, we formulate the relation between
WLV and the edge orientation ω(x, y) at (x, y) as,

ω(x, y)

= arg min
θ∈[0,π)

{Varθ(x, y)} +
π

2

= arg min
θ∈[0,π)

{
∫
{g′1,θ(u, v) ·

(I(x + u, y + v) − µ1,θ(x, y))2 + g′2,θ(u, v) ·
(I(x + u, y + v) − µ2,θ(x, y))2}dudv } +

π

2
.(6)

As we shall see in Section 3, estimation of edge orien-
tation using WLV is less sensitive to noise. Our method
is different from other conventional operators such as first
derivative of Gaussian, Laplacian operators or quadrature
filters [3, 4, 6]. When estimating the edge orientation, since
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Figure 2. An example of polar space for a pixel. K = 24, the α is found
according to V1, V2, ..., V24. The numbers and the gray lines represent the
orientation of θk . The black crosses are the points (

�
Varθk

, θk), where
k ∈ {1, 2, ..., 24}. The solid line and the dotted line are the straight lines
(r, α1), (r, α2) respectively.

noisy pixels can boost the values of WLV along all orienta-
tions, there is little impact on finding the orientation by min-
imizing WLV. It is because pixels are weighted isotropically
in the calculation of WLV. Thus, the noisy pixels affect the
values of WLV by roughly the same amount disregard to the
kernel orientation. This situation holds unless noisy pixels
form a group and create an edge which has higher contrast
than the object boundary.

The edge orientation ω(x, y) can be estimated using the
relation stated in Equation 6. However, this equation can-
not be solved analytically. In this paper, we propose to dis-
cretize θ as θk = kπ

K , k ∈ {1, 2, ...,K} and estimate ω(x, y)
in a continuous fashion. A very accurate estimation requires
θ being discretized in a high angular resolution. However,
probing the WLV in a high angular resolution for a discrete
estimation is computationally expensive. Without using a
high angular resolution, we set K = 24 in this work.

To estimate the continuous edge orientation ω(x, y) at
a pixel, we first employ polar space to observe the relation-
ship between WLVs obtained along all discrete orientations.
The WLVs are represented as points using the polar coordi-
nates (

√
Varθk

, θk) in polar space (See Figure 2). When
the orientations θk are close to the perpendicular direction
of the edge (i.e. θk + π

2 is the edge orientation), the val-
ues of WLV become smaller than those parallel to the edge.
As shown in Figure 2, the points along these orientations are
packed closely to the origin and sparsely along the other ori-
entations. To capture this relation, we use the sum squared
perpendicular distances from the points (

√
Varθk

, θk) to a
straight line passing though the origin along an orientation
α. The distance is defined as,

D(x,y)(α) =
K∑

k=1

Varθk
(x, y) cos2(θk − α). (7)

Therefore, the edge orientation can be computed using the

above equation which approximates the Equation 6 ,

ω(x, y) = arg max
α∈[0,π)

{D(x,y)(α)},

= arg max
α∈[0,π)

K∑
k=1

Varθk
(x, y) cos2(θk − α).(8)

The solution of Equation 8 is obtained by computing the
zero occurrence of the first derivative of D with respect to
the orientation α,

tan 2α =
∑K

k=1 Varθk
(x, y) · sin 2θk∑K

k=1 Varθk
(x, y) · cos 2θk

, α ∈ [0, π). (9)

Solving the above equation, two solutions α1 and α2 can
be found analytically for each pixel. The angles α1 and α2

are orthogonal to each other. They represent the edge and
gradient orientation respectively. An graphical example of
solving α is given in Figure 2. In this example, in terms of
the perpendicular distance, the points are packed closer to
the line along the orientation α1. It implies that the vari-
ances along the orientation α2 are smaller, hence, α2 is the
gradient orientation and α1 is the edge orientation in this
example.

Apart from the edge orientation estimation, WLVs along
different orientations also reflect the confidence about the
estimated orientation. For instance, the difference between
the WLV values along the edge orientation and gradient
orientation should be large for a sharp straight edge. In
contrast, such difference should be small for a noisy edge.
Therefore, it is natural to measure the edge clearness us-
ing the sum squared perpendicular distances along edge and
gradient orientations. We therefore define a ratio,

M(x, y) =
|D(x,y)(α1) − D(x,y)(α2)|

D(x,y)(α1) + D(x,y)(α2) + ρ
, (10)

where ρ is a small constant to prevent singularity in homo-
geneous regions that WLVs are zero along all orientations.
The Equation 10 measures the ratio between the difference
and sum of the sum squared perpendicular distances along
edge and gradient orientations. As the WLV values vary
largely in different orientations for sharp and clear edges,
the ratio M (Equation 10) can give a large value. On the
other hand, a pixel with small value of ratio M belongs to
noise or an unclear edge.

An important property is that the ratio M does not de-
pend on the intensity contrast. It can be illustrated by con-
sidering two arbitrary image patches S and R which have
different intensity contrast and brightness but are related by
R = c · S + b. The terms c and b are constants repre-
senting the differences in intensity contrast and brightness
respectively. Hence, it can be shown that VarRθ (x, y) =
c2 · VarSθ (x, y) and DR

(x,y)(α) = c2 · DS
(x,y)(α). The con-

stant term c is finally canceled in Equation 10, for calcula-
tion of the clearness of edges. Distinct from other common
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edge detectors or operators such as Sobel, Roberts, Prewitt,
Laplacian operators and quadrature filters [3, 4], the clear-
ness of edge of WLV does not depend on intensity contrast.
This is particularly essential to deal with the vascular im-
ages that consist of both low contrast vessels and noisy ves-
sels.

2.2. Active Contour Model

In the previous section, we derive a WLV approach to
estimating edge orientation and clearness of edges. We now
formulate an active contour model which employs the es-
timated edge orientation and clearness for performing seg-
mentation on vascular images. Let C(l) = [x(l) y(l)]T

be a closed curve parameterized by the length parameter l,
where 0 ≤ l ≤ L. The tangent direction of this curve is
denoted as γ(l), where −π ≤ γ(l) < π,∀l. As such, the
optimal contours should minimize the angular discrepan-
cies between ω(C(l)) and γ(C(l)) along the curve. How-
ever, the edge direction is ambiguous along two directions,
ω(C(l)) and ω(C(l)) − π. Such ambiguity can be elim-
inated by comparing the average intensity of the local re-
gions in two different sides of the edge. The edge di-
rection is defined as ω(x, y) + π · (S(x,y)

2 − 0.5), where
S(x, y) = sign(µ1,ω(x,y)(x, y) − µ2,ω(x,y)(x, y)).

The desired resultant curve is designed to align in the
same direction as the object boundaries, which maximizes
the following functional,

F (C) =
∮

C

cos{γ(C(l)) − (ω(C(l))

+π(
S(x, y)

2
− 0.5))}dl,

=
∮

C

S(C(l)) · {cos(γ(C(l))) cos(ω(C(l)))

+ sin(γ(C(l))) sin(ω(C(l)))}dl. (11)

We make this functional favor clear edges by giving
large weights for those boundaries having high value in
Equation 10, and substitute cos(γ(C(l))) = ∂

∂lx(l) and
sin(γ(C(l))) = ∂

∂ly(l),

FM (C) =
∮

C

S(C(l)) · M(C(l)) ·

{cos(ω(C(l)))
∂

∂l
x(l)

+ sin(ω(C(l)))
∂

∂l
y(l)}dl. (12)

Applying the Green’s theorem, we have,

FM (C) =
∫

Inside(C)

{ ∂

∂x
(S(x, y)M(x, y) sin(ω(x, y)))

− ∂

∂y
(S(x, y)M(x, y) cos(ω(x, y)))}dxdy. (13)

Using the zero level of a level set surface [9] to represent
moving contours , the motion of the level set surface is φt =
E|∇φ|, where E is the scalar value of the curve evolution
speed in its normal direction. Solving E = δFM (C)

δC , we
have,

E(x, y) = { ∂

∂x
(S(x, y)M(x, y) sin(ω(x, y)))

− ∂

∂y
(S(x, y)M(x, y) cos(ω(x, y)))}.(14)

As a result, the term E represents the rate of change of the
edge information including the change of the orientation
and clearness. It has large value inside objects and near the
clear and straight boundaries. Therefore, the initial contour
can be chosen by thresholding a proportion of regions that
has the highest E values. In practice, we smooth the term
E slightly before preforming thresholding, and smooth the
resultant contours obtained from thresholding using a cur-
vature flow to ensure the initial seeds are located only in the
major vessels but not noisy regions.

2.3. Implementation

In our implementation, WLV is computed along 24 dis-
crete orientations and K = 24 for Equation 7 and Equation
9. It requires calculation of WLVs 24 times at each pixel.
To speed up the calculation, the integration in Equation 3
is reformulated in the form of convolution, which can be
computed in the Fourier domain efficiently,

Varθ(x, y)

=
∫

{g′1,θ(u, v) · (I(x + u, y + v) − µ1,θ(x, y))2

+ g′2,θ(u, v) · (I(x + u, y + v) − µ2,θ(x, y))2}
dudv,

since g′1 and g′2 are sum-to-one,

=
∫
{g′1,θ(u, v) · I2(x + u, y + v) − µ1,θ

2(x, y)

+ g′2,θ(u, v) · I2(x + u, y + v) − µ2,θ
2(x, y)}

dudv,

flipping g′1 and g′2 and writing as convolution,

= {g′1,θ(x, y) + g′2,θ(x, y)} ∗ I2(x, y) (15)

−{g′1,θ(x, y) ∗ I(x, y)}2 − {g′2,θ(x, y) ∗ I(x, y)}2.

Therefore, the integration in Equation 3 is formulated as
convolution and calculated as multiplication in the Fourier
domain. The running time of calculating WLVs along
K different orientations is reduced from O(KN2) to
O(KN log N) for an image having N pixels.
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Figure 3. (a) From top to bottom, a clear horizontal edge and the image
is corrupted using Gaussian noise with SNR= ∞, 10, 5, 2, 1. (b) Plots
of WLVs and filtering responses of the first derivatives of Gaussian along
different orientations. The orientation estimation results are marked as
circles and crosses for WLV and the first derivatives of Gaussian respec-
tively.

3. Experiments

In this section, we study the accuracy in orientation es-
timation by weighted local variance (WLV) and show the
segmentation results obtained by the active contour model
using WLV. Two synthetic images are utilized to illustrate
the robustness of WLV-based orientation estimation against
noise. Besides, using two real angiograms, the proposed
active contour model has been compared with three other
active contour approaches.

3.1. Edge orientation estimation

The first experiment used a horizontal edge, as shown
in Figure 3a. By adding different levels of Gaussian noise
(no noise, SNR=10, 5, 2 and 1) on this image, we measured
the values of

√
Varθ at the center pixel (x1, y1) along 512

discrete orientations, θ, ranging from 0 to π (Figure 3b).
The angles that minimize

√
Varθ in different noise levels

are marked in the figure. The result is compared with the

WLV The first derivatives of Gaussian
No noise 0 0
SNR=10 4.90 × 10−5 0.045001
SNR=5 0.000413 0.081156
SNR=2 0.025881 0.119140
SNR=1 0.056744 0.123655

Table 1. Average absolute acute angular differences (in radians) between
the estimated orientation and the orientation of the horizontal edge .
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Figure 4. Top: A 128 × 128 synthetic image. Bottom: The angular dis-
crepancies between the estimated orientation and the reference orienta-
tion. Zero angular difference at the left side of the x-axis represents a
correct estimation (no discrepancy), π/2 means the estimated orientation
is perpendicular to the reference orientation. ”Frequency” in the y-axis
represents the number of occurrences of a particular orientation discrep-
ancy. High number of occurrences in low discrepancy implies better per-
formance.

first derivatives of Gaussian, which are commonly used for
detecting intensity discontinuities [1, 8]. Considering the
relation between the filtering responses, I ∗ Gy = (I ∗ G)y

and I ∗ Gx = (I ∗ G)x, the orientation estimation by the
first derivatives of Gaussian can be viewed as the orienta-
tion of the gradient vector obtained from a smoothed image.
Hence, such information is also widely utilized in different
active contour models, such as [11, 12]. The first derivatives
of Gaussian along x-direction and y-direction are given by,

Gx = − x

2πσ4
e−

x2+y2

2σ2 and Gy = − y

2πσ4
e−

x2+y2

2σ2 ,

respectively. We convolved the image with these two fil-
ters and their responses are denoted as A0(x1, y1) and
Aπ/2(x1, y1). The filtering responses in other orientations
θ were synthesized by Aθ = A0 cos θ + Aπ/2 sin θ. The
edge orientation for maximizing the absolute filtering re-
sponse magnitude was computed using arctan I∗Gy

I∗Gx
in the

quadrant of [0, π).
The scale of the Gaussian functions for both methods

was set to be 2. In Figure 3b, we can see how noise affects
the edge orientation estimation by WLV and the first deriv-
atives of Gaussian. The estimated orientations according to
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Aθ are inaccurate in the noisy images. In contrast, although
the values of Varθ are increased in the noisy images, the
estimation using WLV is more accurate. As mentioned in
the previous section, noisy pixels can boost the values of
WLV along all orientations. But it has little impact on the
accuracy in estimating the orientation that minimizes Varθ.
To further investigate the performance of WLV, the same
experiment was iterated 1000 times. The absolute acute an-
gular discrepancies |θestimated − θtruth| were measured each
time for both methods. Its average values are listed in Ta-
ble 1. WLV yields lower discrepancies in all noisy cases. It
shows that the orientation estimation by WLV is more ac-
curate than those by the first derivatives of Gaussian.

The performance of WLV was now examined using a
more complicated synthetic image (Figure 4). This image
contains tubular structures with different widths and inten-
sity values (0.2 for the gray regions and 1 for the white
regions). It also consists of curved boundaries, junctions
and corners. In this experiment, WLV was compared with
the first derivatives of Gaussian and ”Orientation Tensor”
[6] (OT). For OT-based method, the edge orientation is esti-
mated by performing eigen decomposition on an orientation
tensor, which is calculated from the filter responses of three
complex valued quadrature filters. The bandwidth and cen-
ter frequency were set to be 2 and π/2

√
2 according to [4].

The scale parameter of the Gaussian function used by WLV
and the first derivatives of Gaussian was 2.

The edge orientation estimation by the three methods
were measured at the positions of the object boundaries.
Comparison was performed on the images which were cor-
rupted by a Gaussian noise with different values of standard
deviation σ. The histograms of |θreference − θestimated| for dif-
ferent noisy images are shown in Figure 4. θreference was ob-
tained according to the intensity gradient on the smoothed
version of the synthetic image in the quadrant of [0, π) (by
a Gaussian filter, scale parameter equals to 1). For the im-
age without noise, σ = 0 in Figure 4, all methods show only
small discrepancies which were caused by the differences in
handling corners and junctions. Comparing the results be-
tween the noisy images and the image without noise, more
occurrences of large discrepancies are observed for noisy
images. It is found that the orientation estimation by WLV
is more accurate than the other two methods as WLV has
generally lower discrepancies.

3.2. Real Image Segmentation

The proposed active contour model using WLV is ap-
plied on the real images. A DSA image (Figure 5a) ob-
tained from the Department of Diagnostic Radiology and
Organ Imaging, Prince of Wales Hospital, Hong Kong, and
a retinal angiogram (Figure 7a) provided by the ”DRIVE
database” [10] were selected for the experiments. In the
images, four intensity profiles for different lines of interest

are plotted to illustrate intensity variations in vessels and
background for understanding the behaviors of different ap-
proaches. Two comparisons were performed between the
proposed method and three different approaches including
(1) ”Active Contours without Edges” (ACWE) [2], (2) ”A
New Active Contour Method based on Elastic Interaction”
(ACEI) [12] and (3) ”Flux Maximizing Geometric Flows”
(FM) [11].

Figure 5 shows a DSA image which consists of a verti-
cal vessel with limited background noise. The intensity in-
side the vessel is dropped significantly in several positions
(see Figures 5b-f for lines of interest and their correspond-
ing intensity profiles). Consistently, all approaches have no
leakage because of the low level of background noise. How-
ever, ACWE (Figure 6a) only selects the brightest segment
of the vessel because of the large intensity variations in the
vessel. For ACEI, the resultant contour (Figure 6b) halts
at two positions (Figures 5c and 5f). For FM, several posi-
tions inside the vessel was recognized as vessel boundaries
(Figure 6c). The disconnected contours cannot be merged
to enclose the entire vessel. In contrast, WLV does not pre-
fer relatively weak edges across the vessel. Therefore, the
proposed method can handle intensity variations inside the
vessel, and the contour can propagate through the dim re-
gions to capture the whole vessel (Figure 6d).

The second experiment includes a retinal angiogram, as
shown in Figure 7a. The background intensity increases,
as shown along the line of interest (Figure 7c). Figure 7f
shows an intensity drop inside a small vessel branch. The
results of ACWE are shown in Figure 8a. ACWE selects
the bright background region in the right side of the image
as vessel region. Several dim vessel portions are excluded.
For ACEI, the contour initialization, as mentioned in [12],
mixes up the vessel and background regions in the right part
of the image. Thus, two initial contours were placed man-
ually inside the vessels. Leakage occurred in several posi-
tions (Figure 8b), especially in the right portion of the im-
age, where the boundary contrast is small (see Figures 5b,
5d and 5e for lines of interest and their corresponding in-
tensity profiles). For FM, since there is no leakage (Figure
8c), the performance of FM is better than that of ACEI and
ACWE. But, its contour halts at the position marked by line
f in Figure 7b (see Figure 7f for its intensity profile). For
the proposed method, neither leakage nor undesired discon-
tinuity is found and both vessels are successfully captured
(Figure 8d).

4. Conclusion and Discussion

In this paper, we have presented the use of the weighted
local variance (WLV) for extracting edge information, in-
cluding edge orientation and clearness, to perform the ac-
tive contour based vessel segmentation. The edge orienta-
tion using WLV is demonstrated to be robust to noise in
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Figure 5. (a) A 256× 256 DSA image. (b) Showing the lines of interest where intensity profiles are plotted in (c-f). (c) The intensity profile is plotted along
line c in (b) from left to right. (d-f) The intensity profiles are plotted along the corresponding lines in (b) from top to bottom.

(a) (b) (c) (d)
Figure 6. Top row: Initial contours. Bottom row: Final results. (a) ACWE, manually selected initial contour, µ = 0.001 · 2552, λ1 = λ2 = 1, ν =
0, h = 1. (b) ACEI, initial contour obtained automatically as in [12], σ1 = 2, σ2 = 10, µ = 0.0015. (c) FM, r = {1, 2, 3, 4}, image pre-processed
with Gσ=2 initial contour obtained automatically from regions with highest 5% inward flux which is further smoothed under curvature flow for 500 steps.
(d) The proposed method, σ = 2, ρ = 0.0001, ε = 0.1, initial contour obtained automatically from smoothing the term E using Gσ=1 and choosing the
regions with highest 5% value of E which is further smoothed under curvature flow for 500 steps.

the two synthetic image experiments. Using the estimated
edge information, the active contour based segmentation
has been validated using two real angiograms and compared
with three related approaches. It shows that our method is
suitable for handling vasculature having blurry and low con-
trast boundaries in noisy images.

If we consider a vector field, [u v]T , which integrates
both the edge orientation and clearness of WLV, [u v]T =
S ·M [cos(ω + π

2 ) sin(ω + π
2 )]T , where ω + π

2 is the gradi-
ent direction, the energy functional in Equation 13 becomes∫

Inside(C)
(∂u

∂x + ∂v
∂y )dxdy. It yields an interesting relation to

the work in [5] on edge integration based on the Laplacian

operation, where the vector field [u v]T mentioned above
can be utilized to substitute the vector field of the image
gradient. Subsequently, it is possible to formulate the WLV-
based edge information as a vector field and be incorpo-
rated in other works which employ image gradient, such as
[5, 11, 12].
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