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Abstract

In this paper, a novel electric current flow (ECF) based
model is proposed to perform feature based non-rigid brain
image registration. The ECF features simultaneously cap-
ture both voxel intensity and inter-voxel distance informa-
tion. In the proposed ECF framework, each voxel is re-
garded as exhibiting electric potential proportional to voxel
intensity. Voxels are connected by conductive wires in a
pairwise manner. Each conductive wire has resistance, in
which the resistance value is proportional to the length of
the wire. The electric potential difference among connected
pixels induces electric current passing through their con-
nected wire. The amount of the electric current is the ratio
between the voxel potential difference and the wire resis-
tance. The potential difference and resistance are respec-
tively proportional to the voxel intensity difference and the
inter-voxel distance. By analyzing the electric current in-
duced by the connection between a reference voxel and its
counterparts in a given range, the ECF algorithm searches
for the most salient connection to construct the ECF fea-
tures. The ECF features are incorporated in the Markov
random field labeling framework for non-rigid image reg-
istration. The registration quality of the proposed method
has been evaluated intensively on both BrainWeb and IBSR
databases. It is compared with four related approaches. Ex-
perimental results illustrate that the proposed method con-
sistently achieves the highest registration accuracy among
all the compared methods on both databases.

1. Introduction
A variety of non-rigid image registration approaches

have been developed for medical image analysis. Inten-
sity based approaches have widely been used for registering
template and subject images based on inter-image intensity
similarity estimated from image joint intensity distributions.
However, intensity similarity does not necessarily equiva-
lent to anatomical similarity. As pointed out in [9], the mere

use of intensity information is possibly ineffective to dis-
tinguish between different brain anatomical structures. On
the other hand, feature based registration methods use fea-
ture vector as anatomical signature for each voxel, where
the registration problem is formulated as a feature matching
problem. Observing intensity or gradient similarity between
subject and template images are common criteria for finding
correspondences [4]. Apart from voxel intensity and local
image gradient, as will be demonstrated in this paper, it is
beneficial to consider inter-voxel relation between distant
voxels rather than relation between adjacent voxels. It is
because the distant voxel relation offers additional intensity
and geometric information within a predefined region of a
voxel. A new feature, namely Electric Current Flow (ECF),
is proposed for representing both the geometric information
(inter-voxel distance) and intensity information (voxel in-
tensity difference) at various scales. The ECF feature is in-
tegrated with the Markov random field deformation model
to perform non-rigid image registration. It is evaluated on
two publicly available databases - BrainWeb and IBSR. The
proposed method is compared with four state-of-the-art reg-
istration approaches.

2. The electric current flow (ECF) feature
Each pair of voxels, denoted as ~v1 and ~v2, is assumed

to be connected by a conductive wire. At each voxel posi-
tion, it is assumed that its electric potential is represented by
the its intensity, denoted as G(~v1) and G(~v2), respectively.
The relationship between ~v1 and ~v2 is established based on
the Ohm’s law. The voltage between ~v1 and ~v2 is there-
fore the absolute value of the potential difference between
them, which is expressed as V (~v1, ~v2) = |G(~v1)−G(~v2)|.
The resistance between ~v1 and ~v2 is modeled by their voxel
distance, which is given by R(~v1, ~v2) = |~v1 − ~v2|. It is
therefore assumed that the resistance increases proportional
to the distance between two voxels. Such assumption re-
flects the physical phenomenon that the longer the wire, the
larger the resistance. Then, the amount of current passing
through ~v1 and ~v2 is obtained by dividing the voltage value
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by the resistance according to the Ohm’s law which is given
as

I(~v1, ~v2) =
V (~v1, ~v2)

R(~v1, ~v2)
=
|G(~v1)−G(~v2)|
|~v1 − ~v2|

. (1)

In this paper, it is assumed that the larger the amount of cur-
rent passing through ~v1 and ~v2, the more salient the anatom-
ical information encoded in the inter-voxel relationship be-
tween ~v1 and ~v2. For a reference voxel ~v, voxel ~̄v is called
the ECF source point of ~v if the amount of current calcu-
lated by Equation 1 passing through ~v and ~̄v is maximized
with respect to ~v. The ECF source point ~̄v of ~v can be ex-
pressed by Equation 2,

~̄v = arg max
~v′∈Ω

I(~v′, ~v), (2)

where Ω represents the image domain. The amount of cur-
rent passing through ~v and ~̄v is used as the voxel signature
for ~v, which is defined by Equation 3

ECF (~v) = I(~̄v, ~v), (3)

where ~̄v is the ECF source point of ~v calculated by Equation
2.

As pointed out in [10], feature saliency is closely related
to the scale from which it is extracted. Extracting features
from only a single scale of interest generally is insufficient
to capture all the anatomical information around the ref-
erence voxel. To extract the ECF features from different
scales, the search domains for finding the ECF source points
in Equation 2 are confined in spheres centered at ~v with dif-
ferent values of radius r instead of the whole image domain,
denoted as ∆~v

r , where r reflects the scale of interest. There-
fore, now the ECF signature of ~v with scale of interest r is
defined as,

ECF (~v, r) = I( ~̂vr, ~v) =
V ( ~̂vr, ~v)

R( ~̂vr, ~v)
, (4)

where ~̂vr is the ECF source point of ~v with scale of interest
r, it is defined as:

~̂vr = arg max
~v′∈∆~v

r

I(~v′, ~v). (5)

The ECF feature signature of each reference voxel is
obtained by concatenating the ECF features calculated
by Equation 4 from different scales r. Algorithm 1
summarizes the procedure of calculating the ECF feature
signatured image F with k scales of interest. The ECF
feature has several distinctive properties.

Property 1: The ECF feature is 3D rotation invari-
ant. It is given that the ECF feature is the maximum
amount of current passing through the reference voxel and

Algorithm 1 Computation of the ECF feature signature
Input: Input image G, k scales of interest: r1,...,rk .
Output: The ECF feature signatured image F of G.

1. FOR each voxel ~v ∈ G

2. Initialize an empty feature vector ~Y .
3. FOR i ∈ (1...k)
4. Calculate the ECF feature of voxel ~v

at scale ri by Equation 4, and the calculated ECF feature is denoted as ~fi.
5. ~Y = [~Y ; ~fi].
6. END FOR
7. F (~v) = ~Y .
8. END FOR
9. Return F .

its corresponding ECF source point within a local spherical
search domain, as stated in Eqns 4 and 5. Although the
image is rotated, the ECF source point remains the same
within such spherical search domain because the maximum
current is still the same between the reference voxel and its
original ECF source point. Thus the ECF feature remains
the same, despite of image rotation.

Property 2: The conventional gradient magnitude
feature is a special case of the ECF feature. It should be
noted that the ECF source point is calculated based on
Equation 5, where the ECF source point is found within
a spherical search domain centered at the reference voxel
with a specified scale of interest r (i.e., the radius of the
spherical search domain). When r equals one, it means
that the ECF source point is now only found within the
immediate neighboring voxels with respect to the reference
voxel. In this case the denominator of Equation 4 is equal
to one, and the numerator of Equation 4 now specifies the
largest intensity changes between the reference voxel and
its immediate neighboring voxels. This is exactly the physi-
cal meaning of the conventional gradient magnitude feature.

Property 3: The maximum distance gradient magni-
tude (MDGM) feature [2] is a special case of the ECF
feature. The MDGM feature is defined based on the
distance gradient operator ∇d between two arbitrary
different voxels ~v1 and ~v2, which is defined as [2]:
∇dG(~v1, ~v2) = (G(~v1) − G(~v2)) · ~v1− ~v2

| ~v1− ~v2|2 , where G

denotes the input image, G(~v1) and G(~v2) denote the
input image intensity values at positions ~v1 and ~v2, respec-
tively. Then the MDGM feature for voxel ~v is defined as,
MDGM(~v) = |∇dG(~̄v, ~v)|, where ~̄v is the MDGM source
point of ~v defined as: ~̄v = arg max~v′∈Ω |∇dG(~v′, ~v)|,
where Ω is the image domain of G. Therefore, the ECF
feature becomes exactly the MDGM feature when the
spherical search domain in Equation 5 to find the ECF
source point is large enough to cover the whole image
domain.
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Figure 1. (a) An image obtained from BrainWeb, the features of the voxel highlighted with the green cross is compared with the features
of other voxels; (b) The difference map of image shown in (a) using ECF, blue indicates high similarity; (c) The difference map obtained
by comparing the ECF feature of the highlighted voxel in (a) with all the voxels in the image shown in (d); (d) An image obtained from
BrainWeb with a different patient from (a). The green cross in (d) denotes the voxel in the image (d) with the most similar ECF feature
compared to the highlighted voxel in (a); (e) and (f) are the intra-patient and inter-patient difference maps using MDGM [2] respectively.
The red cross in (g) denotes the voxel in the image (d) with the most similar conventional MDGM feature compared to the highlighted
voxel in (a). Please refer to the electronic version of this paper for better visualization.

We now demonstrate the superior discriminant power
of the ECF feature signature over the MDGM feature.
Figure 1a is an MR image obtained from BrainWeb,
and the green cross in Figure 1a denotes the referencing
voxel ~vref . The ECF feature signature of this referencing
voxel is compared with the ECF feature signatures of
other voxels. Figure 1b is the color-coded difference map
of the image shown in Figure 1a with the ECF feature
signatures calculated from three different scales r1 = 3,
r2 = 5, r3 = 8 for each voxel. Figure 1b shows that
(from the blue voxels) the ECF features of ~vref in Fig.
1a are only similar to a small number of voxels with
similar anatomical properties with ~vref (i.e., near the
ventricle corner). It reflects the discriminant power of ECF
feature signature to identify different anatomical structures.
Moreover, voxels of similar anatomical positions across
different patients should have similar feature signatures
for establishing reliable correspondences. The difference
map between the ECF feature signatures of ~vref in Figure
1a and all the voxels in the image shown in Figure 1d is
also calculated and shown in Figure 1c. The MR image

shown in Figure 1d is also obtained from BrainWeb but
with a different patient from the one shown in Figure 1a.
It is observed that the ECF feature signatures of ~vref in
Figure 1a are only similar to the voxels in Figure 1c which
are also located near the ventricle corner. For the image
shown in Figure 1d, the voxel with the most similar ECF
feature signature compared to ~vref in Figure 1a is also
highlighted with a green cross. It is also located near the
ventricle corner. Thus, the ECF feature signatures can
also provide reliable correspondences between voxels with
similar anatomical properties across two patients. The
difference map generated by the MDGM feature [2] is
also included for comparison. Figures 1e and f are the
intra-patient and inter-patient difference maps obtained
by the MDGM feature with the same referencing pixel in
Figure 1a respectively, and lots of false similarity matches
are identified. The voxel with the most similar MDGM
feature of the image shown in Figure 1d compared to ~vref
in Figure 1a is highlighted with a red cross shown in Figure
1g, which is obviously located at a different anatomical
position. Therefore, the higher discriminant power of ECF
over MDGM is implied in this example.
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3. Deformation Model for ECF

In this paper, the ECF signatured image is integrated
with the Markov random field (MRF) labeling framework
[3, 7] to conduct registration. The general form of the MRF
energy function is defined as,

Ef = Edata + Esmoothness

=
∑
p∈Ω

Dp(lp) +
∑

(p,q)∈N

Vp,q(lp, lq), (6)

where Ω is the image domain, and N is the neighborhood
system. The 6-connected neighborhood system is used in
this paper. Dp(lp) denotes the cost function of the data
term. It represents the cost of assigning label lp to voxel
p. Vp,q(lp, lq) is the cost function of the smoothness term,
and it penalizes the cost of label discrepancy between two
neighboring voxels. The deformation space is quantized
into a discrete set of labels L ∈ {l1, l2, ..., ln}. Each la-
bel li (1 ≤ i ≤ n) corresponds to a displacement vec-
tor ~di. Labeling the voxel p with label lp denotes mov-
ing p to a new position by the displacement vector ~dlp .
The quantization step described in [7] is adopted in this
paper, where each voxel can move from the original po-
sition to a new position bounded by a discretized window
Ψ = {0,±s,±2s, ...,±ws}d with dimension d. In this pa-
per, we set s = 1. The cost functionDp(lp) of the data term
is defined based on the ECF features:

Dp(lp) = Dp(Gtemplate(~p), Gsubject(~p+ ~dlp)

= Dp(~Ftemplate(~p), ~Fsubject(~p+ ~dlp))

= ||~Ftemplate(~p)− ~Fsubject(~p+ ~dlp)||L2
,(7)

where Gtemplate and Gsubject denote the template and sub-
ject images, ~Ftemplate and ~Fsubject are the ECF feature sig-
nature images of the template and subject images respec-
tively calculated from different scales of interest by Algo-
rithm 1 at the current iteration. || · ||L2

denotes the L2 dis-
tance. The piece-wise truncated absolute distance is used
as the smoothness cost function given by Vp,q(lp, lq) =

min(λ, | ~dlp − ~dlq |), where λ is a constant representing the
maximum penalty, and it was set to 20 in this paper. The
α-expansion algorithm [11] is used to minimize the energy
function defined in Equation 6 in this paper and it guaran-
tees that the solution is within a known constant range of
the global minimum.

4. Experimental Results

We have evaluated the proposed method on both the sim-
ulated and real 3D databases obtained from BrainWeb 1

1http://www.bic.mni.mcgill.ca/brainweb/

and IBSR 2, respectively. The proposed method was com-
pared with three widely used methods: FFD [5], Demons
[8] and HAMMER [6]. For comparison purpose, the re-
sults obtained by using the MDGM feature [2] with the
same MRF based deformation model are included. In all
the experiments, five different scales were used for the ECF
features: r1 = 3, r2 = 5, r3 = 8, r4 = 10, r5 = 12.
The 3D displacement window used in this paper was Ψ =
{0,±1,±2, ...,±12}3. The control point spacing for FFD
[5] was set to 2.5mm as suggested in [1]. Each image was
preprocessed by a skull stripping process using the Brain-
suite software 3 as it is a required step for the HAMMER [6]
method compared in this paper. Affine registrations were
first applied to register the subject images to the template
image before conducting the non-rigid image registration.
All the experiments were run on a 3GHz duo core CPU,
2GB RAM computer. The FFD and Demons algorithms
were implemented based on ITK 4. For HAMMER, its soft-
ware provided by the authors of HAMMER was adopted 5.
The proposed method was also implemented based on ITK.

For the BrainWeb dataset, all twenty brain MR images
were obtained. Each image has volume size of 256× 256×
181 voxels and the segmentation results of each image, in-
cluding white matter (WM), gray matter (GM) and cere-
brospinal fluid (CSF), are provided by BrainWeb. One of
the images was selected as the template image, and oth-
ers were used as subject images. To visualize the registra-
tion accuracy, the same cross section of the average brain
images reconstructed from the warped subject images ob-
tained by using different approaches are shown in Figure
2. The same cross section of the template image is also
included in Figure 2a for reference. It is observed from Fig-
ure 2 that the average brain image obtained by using the
proposed method is most similar to the template image than
those obtained via other methods. The tissue overlap mea-
sure proposed in [1] was also adopted to quantitatively eval-
uate the registration accuracy of different methods. It is de-
fined as P = N(A∩B)

N(A∪B) , where A and B denote the regions
of a specific tissue in two images. The mean values and
SDs of P for WM, GM and CSF are listed in Table 1 for
various methods. It is observed that the proposed ECF fea-
ture achieves the highest value of P among all the compared
methods. The average computation times for FFD, Demons,
MDGM, HAMMER and ECF are 4.8hr, 2.6hr, 18.5hr, 5.4hr
and 5.2hr, respectively.

Then, we evaluated the proposed method on the IBSR
dataset with all twelve brain MR images. Each image has
size of 256 × 256 × 128 voxels. The expert segmentation
results of WM, GM and CSF are provided by IBSR. The ex-

2http://www.cma.mgh.harvard.edu/ibsr/
3http://brainsuite.usc.edu/
4http://www.itk.org/
5https://www.rad.upenn.edu/sbia/software/index.html
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(a) Template (b) Our Method (c) MDGM

(d) HAMMER (e) FFD (f) Demons

Figure 2. (a) The template image; From (b) to (f): The average brain images obtained by using the proposed method, MDGM [2],
HAMMER [6], FFD [5] and Demons [8] respectively for the BrainWeb database. Regions with significant differences are highlighted
with green circles. Note that the skulls of input images had already been removed by using the Brainsuite software.

Tissue BR FFD Demons MDGM HAMMER ECF
Gray 0.402±0.04 0.771±0.03 0.782±0.06 0.696±0.03 0.814±0.06 0.824±0.04
White 0.462±0.07 0.748±0.04 0.760±0.08 0.712±0.06 0.807±0.05 0.811±0.06
CSF 0.393±0.05 0.737±0.07 0.755±0.05 0.701±0.02 0.785±0.03 0.807±0.01

Table 1. The mean values of P and SDs of GM, WM and CSF with different methods on the simulated 3D database. BR denotes before
registration.

periment setting is similar to the setting in the experiments
on BrainWeb datasets. The means and SDs of P are listed
in Table 2 for various methods. It is observed that the pro-
posed method consistently achieves the highest value of P
among all the compared methods, and the robustness of the
proposed method is strongly implied. The average com-
putation times for FFD, Demons, MDGM, HAMMER and
ECF are 3.1hr, 1.5hr, 13.7hr, 4.6hr and 3.9hr, respectively.
It should be noted that the MDGM feature [2] does not give
very good registration accuracies on both the BrainWeb and

IBSR datasets, which reflects the importance of extracting
anatomical features from input images with multiple scales.

5. Conclusion
A feature, namely Electric Current Flow (ECF), is pro-

posed for feature based non-rigid image registration. The
ECF feature aims at modeling the inter-voxel relationship
as the electric current flow. It is demonstrated that both the
conventional gradient magnitude and the recently proposed
maximum distance gradient magnitude feature are the spe-
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Tissue BR FFD Demons MDGM HAMMER ECF
Gray 0.427±0.03 0.724±0.02 0.748±0.08 0.657±0.03 0.771±0.06 0.796±0.06
White 0.464±0.04 0.708±0.04 0.735±0.03 0.638±0.05 0.783±0.05 0.791±0.05
CSF 0.403±0.03 0.723±0.06 0.703±0.02 0.604±0.05 0.765±0.03 0.783±0.06

Table 2. The mean values of P and SDs of GM, WM and CSF with different methods on the real 3D database. BR denotes before
registration.

cial cases of the proposed ECF feature. The ECF features
are integrated with the Markov random field based defor-
mation model to drive the non-rigid registration process.
The proposed method has been compared with four related
registration approaches (FFD, Demons, MDGM and HAM-
MER) on both the simulated and real 3D image databases.
It is shown that the proposed method consistently achieves
the highest registration accuracies among all the compared
methods and its computation efficiency is comparable.
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