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We present a graph-cuts based method for non-rigid medical image registration on brain magnetic resonance

images. In this paper, the non-rigid medical image registration problem is reformulated as a discrete labeling

problem. Based on a voxel-to-voxel intensity similarity measure, each voxel in the source image is assigned a

displacement label, which represents a displacement vector indicating which position in the floating image it

is spatially corresponding to. In the proposed method, a smoothness constraint based on the first derivative is

used to penalize sharp changes in the adjacent displacement labels across voxels. The image registration

problem is therefore modeled by two energy terms based on intensity similarity and smoothness of the

displacement field. These energy terms are submodular and can be optimized by using the graph-cuts

method via a-expansions, which is a powerful combinatorial optimization tool and capable of yielding either

a global minimum or a local minimum in a strong sense. Using the realistic brain phantoms obtained from

the Simulated Brain Database, we compare the registration results of the proposed method with two state-of-

the-art medical image registration approaches: free-form deformation based method and demons method. In

addition, the registration results are also compared with that of the linear programming based image

registration method. It is found that the proposed method is more robust against different challenging non-

rigid registration cases with consistently higher registration accuracy than those three methods, and gives

realistic recovered deformation fields.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Image registration has been actively and extensively studied
and applied in the field of medical image analysis. By the nature
of the image transformation, image registration can be classified
into rigid image registration and non-rigid image registration.
Rigid image transformation consists of a translation followed by a
rotation in the 3D space. As such, in a rigid transformation, the
degree of freedom is relatively low and the techniques for rigid
image registration are becoming mature. Methods based on the
maximization of mutual information [1,2] and normalized mutual
information [3] are widely used in rigid medical image registra-
tion. A recent overview and more applications of the mutual-
information-based medical image registration methods can be
found in [4]. In contrast, non-rigid image registration is an
ill-posed problem due to its supernormal high degree of freedom
and inherent requirement of smoothness in the deformation field.
The topic is still under active research because there are many
useful applications including (1) construction of atlas across a
ll rights reserved.

(A.C. Chung).
population or a specific patient group [5], (2) recovery of deforma-
tion field during surgery with respect to a pre-treatment image [6],
(3) analysis of anatomical variations across patients or during
growth [7], and (4) atlas-based segmentation [8]. Overviews of
the non-rigid image registration methods can be found in [9–12].

1.1. Basics for image registration problem

The task of image registration is to find spatial correspon-
dences between two images, I and J. This is usually done by
finding a transformation T such that I and T(J) are spatially
matched, according to an image-to-image dissimilarity measure,
C(I,T(J)). I and J are referred as the source image and the floating
image, respectively, and T(J) refers to the resultant image after
applying T to J. Mathematically, the registration problem can be
defined as finding the optimal transformation T� such that

T� ¼ argmin
T

CðI,TðJÞÞ: ð1Þ

Note that a minimization is used since we assume Cð�,�Þ increases
with the degree of dissimilarity.

For non-rigid image registration, there is a variety of methods
proposed in the literature regarding how the transformation T

should be modeled. Some parametric models restrict T to be of
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low degree of freedom, such as affine, polyaffine [13] or control-
points interpolated deformation [14] models. These models
intrinsically constrain T to be smooth or elastic. They are usually
capable of representing an intra-subject deformation across time
because, in this case, there is a real physical underlying deforma-
tion between the images and this deformation is usually governed
by physical properties such as tissue elasticity.

However, in the case of inter-subject image registration, there is
no underlying physical deformation between the images and thus
the registration result is just a transformation that restores the
spatial correspondences of anatomical structures. Since anatomical
structures can vary significantly across different subjects both
geometrically and topologically, a transformation of low degree of
freedom may not have enough flexibility to represent these complex
structural variations. Therefore, in principal, any hard constraints on
the domain of T should not be imposed. However, this will naturally
create another problem. Recall that, in Eq. (1), C(I,J(T)) is optimized
without considering the behavior of the transformation T. With the
domain of T being unrestricted, T can map any points in J to any
points in I and the mapping results of two adjacent points can be
totally uncorrelated. One can imagine that if either sum of squared
difference (SSD) or sum of absolute differences (SAD) is used as the
dissimilarity function C, the optimization is equivalent to finding the
transformation that brings any point p in J to a point in I, which has
the nearest intensity to p’s. This registration result can be less useful
and unrealistic if the recovered deformation field is not smooth.
Thus, T needs regularization by adding a penalizing function S(T) to
penalize those transformations T, which are unrealistic. By modify-
ing Eq. (1), we obtain

T� ¼ argmin
T

CðI,TðJÞÞþlSðTÞ, ð2Þ

where l is a positive constant that controls the level of penalty for
unrealistic transformation T. If T is considered as a displacement
vector field, which translates any point from its original position by
a vector, an unrealistic T usually means a non-smooth displacement
vector field. Therefore, S is often referred as the smoothness
function. In practice, the integrated magnitude of different deriva-
tives is usually used as a criterion of smoothness. Since images I and
J are usually acquired from the same imaging modality in the
non-rigid image registration tasks, it is adequate to use SSD or
SAD as the dissimilarity function C.

1.2. Graph-cuts method

Graph-cuts method is a powerful combinatorial optimization
tool for solving energy minimization problems. Using two-dimen-
sional multi-labels with graph-cuts method has been successfully
applied into image processing and computer vision problems,
such as image segmentation [15], visual correspondence for
stereo, motion and image restoration [16,17], and object classifi-
cation [18]. Unlike general purpose techniques such as simulated
annealing, the graph-cuts method yields either a global minimum
or a local minimum in a strong sense in polynomial time, under
some specific conditions [16,19]. Summaries of such conditions
and details of graph constructions can be found in [16,19].

In general, the graph-cuts method is used to solve discrete
labeling problems by minimizing energy function Ef in the
following standard form [16,19]:

Ef ¼
X
pAP

DpðfpÞþ
X
ðp,qÞAN

Vp,qðfp,fqÞ: ð3Þ

In the above Eq. (3), P is the set of voxels, N is a neighborhood
system defined on P, f : P-L is a labeling function, where L is a
set of labels, and fiAL is the label of a voxel i in f. The term DpðfpÞ

measures the penalty of assigning label (fp) to voxel p and the
term Vp,qðfp,fqÞ measures the penalty of assigning labels (fp) and
(fq) to the neighborhood voxels p and q, respectively. The first
summation is usually referred as the data term, since it is usually
calculated from the observed data. The second summation is
usually referred as the smoothness term, as it penalizes the
discontinuity of labels across adjacent voxels.

1.3. The proposed method

In this paper, based on our prior work presented in MICCAI
2007 [20], we formulate the non-rigid medical image registration
framework as a discrete three-dimensional labeling problem in
which the energy system can be optimized by using the graph-
cuts method. During the non-rigid registration process, each pixel
in the source image is assigned a three-dimensional displacement
label, which represents a displacement vector indicating its
corresponding position in the floating image, according to a
similarity measure. A smoothness constraint based on the first
derivative is used to penalize sharp changes in the displacement
labels across pixels. As such, the framework consists of two
energy terms and they are based on voxel intensity similarity
and smoothness of the displacement vector field. It is shown in
this paper that the whole energy system is submodular and can
be optimized by using the graph-cuts method via a-expansions
[16]. The optimization process with the graph-cuts method is not
easily trapped in local minima and the solution is guaranteed to
be within a known factor of the exact minimum. This can improve
the registration robustness and accuracy of the proposed
approach significantly, as demonstrated though extensive experi-
ments on magnetic resonance image volumes in this paper.

1.4. Outline

The remaining sections will be organized as follows. In Section 2,
two state-of-the-art techniques and a linear programming based
method for non-rigid image registration will be described. In
Section 3, details about our proposed approach, including methodol-
ogy and the underlying theory, will be sketched. Results of the
experiments on brain magnetic resonance images obtained from
the Simulated Brain Database and interpretations of the results
obtained by using the two state-of-the-art methods, the linear
programming based method and the proposed method will be
provided in Section 4. Finally, a conclusion will be given in Section 5.
2. Related works on non-rigid image registration

This section describes two state-of-the-art and widely used non-
rigid image registration methods: free-form deformations based
method (FFD) [14], Demons based method (DEMONS) [21], and
also a method which also formulates the non-rigid image registra-
tion problem as a discrete labeling problem: linear programming
based method (LP) [22]. In addition, along with the closely related
works, a feature based non-rigid image registration method, namely
hierarchical attribute matching mechanism for elastic registration
(HAMMER) [23], is also described in this section.

2.1. Free-form deformations based method (FFD)

Rueckert et al. [14] proposed a method for performing non-rigid
registration on breast MR images. The deformation was modeled
by a global affine transformation plus a local deformation. The local
deformation was described by free-form deformation (FFD) based
on B-splines. In FFD, a regular grid of control points on the image
are first allowed to displace freely. The displacement of each voxel
is then evaluated as a weighted sum of neighborhood control point
displacements via the B-spline interpolation. Hard constraints are
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imposed on the transformation T, so that its degree of freedom is
limited by the number of control points. In this work, normalized
mutual information (NMI) [3] was used as the dissimilarity
function, sum of squared second-order derivatives was used as
the smoothness function, and the optimization was done by using
the iterated gradient descent of the transformation parameters.
Since the degree of freedom of the local deformation is determined
by the number of control points, it is important to choose whether
to have a sparse or dense set of control points. However, both
sparse and dense sets have limitations. If a sparse set of control
points is used, the transformation may not allow flexible voxel
movements within the grid box in order to represent complicated
deformations. We will show this effect in the Experimental Results
section. If a dense set of control points, e.g. each for a voxel, is used,
the optimization can be both computationally inefficient and local-
minima-sensitive since a tiny step size will be required for the
gradient descent method.
2.2. Demons based method (DEMONS)

Thirion [21] proposed a diffusion-based approach to non-rigid
image registration. No hard constraints were imposed on the
transformation T, so that each voxel can have its own displacement.
The method is based on the concepts of optical flow [24]. In each
iteration, the movement of any voxel in the floating image is based
on its local intensity gradient and its intensity difference with the
source image at the same position. It will naturally guarantee a
decrease in SSD or SAD by each iteration, if the movement steps are
sufficiently small. Since all voxels can move freely, a Gaussian
smoothing step is applied at the end of iteration in order to
regularize the transformation. However, since the regularization is
done at each iteration but not incorporated into the cost function,
large displacements of voxels or sharp changes in the displacement
field are not penalized but are just smoothed. Moreover, since the
voxel motions are heavily depending on local intensity gradient, this
method is highly sensitive to local artifacts. For example, if the
boundaries of different anatomical structures are overlapping in the
initial images, an incorrect voxel movement may be generated and
thus the registration result may be problematic. This effect will be
shown in the Experimental Results section.
2.3. Linear programming based method (LP)

Glocker et al. [25,22] formulated the non-rigid image registra-
tion problem as a discrete three-dimensional labeling problem
using the Markov random field (MRF) model with linear program-
ming optimization method. The MRF energy which contains the
data term and smoothness term was optimized by the primal-dual
schema of linear programming [26]. LP uses a regular control point
grid to reduce the dimensionality on the variables and smooth the
transformation T. The data term is the similarity measure projected
on the control points, and the smoothness term is the magnitude
difference of the vectors on the deformation field according to a
neighborhood system on the control point grid. Similar to FFD, a
set of control points are first displaced, then the displacement of
each voxel is restricted based on the interpolation of the displace-
ments of neighborhood control points. Therefore, the degree of
freedom of LP is also limited by the number of control points.
Hence, like FFD, it is facing a dilemma of choosing the number of
control points and the trade-offs will be shown in the Experimental
Results section. High space capacity is one of the reasons for LP to
use control point grid in order to reduce dimensionality of the
variables. In Section 3.3, we will analyze the space capacity of LP as
well as our proposed method.
2.4. Hierarchical attribute matching mechanism for elastic

registration (HAMMER)

Feature based methods use feature vectors that characterize
the anatomical properties around each voxel as the signatures of
that voxel. The registration process is then formulated as a feature
matching and optimization problem. Shen et al. [23] proposed a
feature based non-rigid registration method, namely hierarchical
attribute matching mechanism for elastic registration (HAMMER).
The intensity value of each voxel, the edge type and geometric
invariant (GMI) features of the gray matter (GM), white matter
(WM) and cerebrospinal fluid (CSF) were utilized by HAMMER to
form a feature vector for each voxel. Therefore, the HAMMER
algorithm requires the input images that have already been
segmented into three classes of tissues (i.e., GM, WM and CSF)
before registration. Then HAMMER formulates the registration
process in a hierarchical manner. A set of voxels with more salient
feature vectors are selected as active points from both source and
floating images. These voxels are first used to drive the registra-
tion in the initial stage to estimate the transformation. During the
registration process, more and more active points are added for
consideration to refine the estimated transformation. At the last
stage, all voxels are considered as active points.
3. Theory and methodology

3.1. Formulation of the energy function

Let I and J be, respectively, the source image and the floating
image of dimension d. In this paper, we only consider I and J of the
same dimension d. Without loss of generality, let X¼ ½0,1�d be the
continuous domain for both images. For any spatial point
x¼ ðx1,x2, . . . ,xdÞAX, IðxÞ and JðxÞ are the intensity values (or
feature vectors in general) at x for both images. Consider again
Eq. (2), which is the most general form of function to be optimized
in the non-rigid image registration problems. T(J) represents the
transformed floating image. In the proposed formulation, T is
represented by a displacement vector field D that displaces every
point x in J away from its original position by the displacement
vector DðxÞARd to the new point xþDðxÞ. In principle, T(J) cannot
be obtained, but instead we can obtain a pullback from I to J, T�1ðIÞ,
that can be obtained by IðXþDÞ. Therefore, in order to obtain the
transformed floating image as the final product, we need to
formulate D as the displacement vector field that displaces points
in I. By modifying Eq. (2), we can get

D� ¼ argmin
D

CðIðXÞ,JðXþDÞÞþlSðDÞ: ð4Þ

In general, C can be any image-to-image dissimilarity measure.
Here, we tighten C as an integral of point-to-point dissimilarity
measure, among the whole image domain. We further tighten this
point-to-point dissimilarity measure to be an absolute difference,
jIðxÞ�JðxþDðxÞÞj, where j � j is the L1-norm operator. Note that the
second restriction is not a strong one as IðxÞ and JðxþDðxÞÞ can be
image feature vectors in general. Furthermore, we use the first
derivative terms as the smoothness function. It yields

D� ¼ argmin
D

Z

X

jIðxÞ�JðxþDðxÞÞjdXþl
Xd

i ¼ 1

Z

X

JDðxiÞJ dX, ð5Þ

where DðxiÞ
is the first derivative of D along direction xi and the

differential element dX¼ dx1dx2 . . . dxd, and J � J is the L2-norm
operator. Since everything is in the continuous domain, D can have
infinite degree of freedom theoretically. Here, we introduce the
first discretization step, by discretizing X into voxels. This is a
natural discretizing step as the images are usually acquired in a
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discretized form. For simplicity, although not limited to, we
now also restrict our analysis in three-dimensional (d¼ 3) cases.
Therefore, X becomes f1,2, . . . ,Nxg � f1,2, . . . ,Nyg � f1,2, . . . ,Nzg,
where Nx, Ny and Nz are the spatial resolutions of the 3D images.
By replacing all integrals by summations and all derivatives by
finite differences, Eq. (5) now becomes

D� ¼ argmin
D

XNx

i ¼ 1

XNy

j ¼ 1

XNz

k ¼ 1

jIði,j,kÞ�Jð½i,j,k�þDði,j,kÞÞj

þl
XNx�1

i ¼ 1

XNy

j ¼ 1

XNz

k ¼ 1

JDði,j,kÞ�Dðiþ1,j,kÞJ

þl
XNx

i ¼ 1

XNy�1

j ¼ 1

XNz

k ¼ 1

JDði,j,kÞ�Dði,jþ1,kÞJ

þl
XNx

i ¼ 1

XNy

j ¼ 1

XNz�1

k ¼ 1

JDði,j,kÞ�Dði,j,kþ1ÞJ: ð6Þ

Note that at this stage, Dði,j,kÞAR3 is still not discretized.
Therefore, ½i,j,k�þDði,j,kÞ in Eq. (6) can be a non-integer valued
vector, and Jð½i,j,k�þDði,j,kÞÞ needs to be computed using an inter-
polation function. Also, when ½i,j,k�þDði,j,kÞ is outside the image
domain, a pre-assigned background intensity value can be used. In
Eq. (6), the first term is contributed by the differences between the
image I and the transformed J. The last three terms are contributed
only by the internal properties of the displacement vector field D.
Specifically, the second to fourth terms penalize the non-smooth-
ness of D across the image in different spatial directions.

In principle, Eq. (6) can be optimized by any iterative optimization
tools instead of using the graph-cuts method. However, in practice,
the degree of freedom of D can still be as high as a billion since it is
proportional to the number of voxels in the image volume. First, it
may cost a huge amount of time for the optimization process. Second,
since D has value in each voxel position, it is a requirement that the
step size of updating D is sufficiently small in each iteration in order
to ensure a smooth field. Not only adding an extra time cost, this
makes the optimization process highly sensitive to local minima. Yet,
Eq. (6) is still not solvable by the graph-cuts method without
modifications. It is addressed in the next subsection.

3.2. Optimization via graph-cuts

Comparing with the standard form of function solvable by the
graph-cuts method in Eq. (3), it is not difficult to observe that our
current energy function in Eq. (6) is already in that form. If we
consider a six-connected neighborhood system N in the 3D space,
i.e., ðx,yÞAN iff x,y are adjacent voxels, the last three terms in Eq. (6)
can be grouped together into one term, resulting the following form
as in Eq. (3).

D� ¼ argmin
D

Ef ðDÞ

for Ef ðDÞ ¼
X
xAX

jIðxÞ�JðxþDðxÞÞjþl
X
ðx,yÞAN

JDðxÞ�DðyÞJ: ð7Þ

To convert this optimization problem to a discrete labeling
problem, DðxÞAR3 should be limited into a finite set. Here, we
perform the second discretization step. Also acting as a restriction
of how far a voxel can be displaced, a discretized 3D window

W ¼ f0,7s,72s, . . . ,7wsg3 ð8Þ

is chosen such that DðxÞAW. Note that W is the discretization of
the continuous 3D region ½�ws,ws�3 with sampling period s along
all directions. Also, if so1, displacements with sub-voxel units can
be considered. Now, by usingW as the set of labels that every DðxÞ
can be assigned, the optimization in Eq. (7) can readily be solved by
using graph-cuts via a sequence of a-expansion (a-expansion)
moves [16]. This procedure can be summarized by Algorithm 1.

Given the current labeling f for the set of voxels P and a new
label a, an a-expansion move means: For any voxel pAP, it is
considered either keeping its current label (fp) or changing its label
to a in the next labeling f 0. Obviously, an a-expansion move is
a two-label problem, with label 0 meaning f 0p ¼ fp and label
1 meaning f 0p ¼ a. Kolmogorov and Zabih [19] show that the
graph-cuts method can find the exact minimum of a two-label
problem if every energy term Vp,q in Eq. (3) satisfies the following
inequality:

Vp,qð0,0ÞþVp,qð1,1ÞrVp,qð0,1ÞþVp,qð1,0Þ, ð9Þ

or equivalently, the energy terms are submodular [19,27].
We now show that any expansion move of our formulation

satisfies Eq. (9). Given a current labeling f and two adjacent voxels
p,q with fp ¼ b and fq ¼ g, where b,gAW, an expansion move of
new label aAW is considered.
�
 Vp,qð0,0Þ is the cost when both p,q choose their old labels b,g,
‘Vp,qð0,0Þ ¼ Jb�gJ.

�
 Vp,qð1,1Þ is the cost when both p,q choose the new label a,

‘Vp,qð1,1Þ ¼ Ja�aJ¼ 0.

�
 Vp,qð0,1Þ is the cost when p retains its old label b and q chooses

the new label a, ‘Vp,qð0,1Þ ¼ Jb�aJ.

�
 Vp,qð1,0Þ is the cost when p chooses the new label a and q

retains its old label g, ‘Vp,qð1,0Þ ¼ Ja�gJ.

Since a,b,gAW �R3 and J � J is the L2-norm operator, by the
triangle inequality, we have Jb�gJrJb�aJþJa�gJ for any vectors
a,b,g. Thus, the inequality in Eq. (9) is satisfied for any adjacent
voxels p,q and each of our a-expansion move is globally optimal.
Boykov et al. [16] have further proved that, in such a case, the
a-expansion algorithm can finally converge to a local minimum,
which is within a guaranteed factor of the exact minimum.

Despite the high dimensionality of the transformation model,
we have shown that the proposed energy function (Eq. (7)) is
submodular and can be optimized by using the graph-cuts
method with a-expansion moves, by which a strong local minimum
can be guaranteed. Although some of the ideas are illustrated in the
three-dimensional space, the proposed method can be naturally
extended into the higher dimensional spaces.

Algorithm 1. a-expansion move algorithm of graph-cuts.
INPUT: Start with an arbitrary displacement vector field D
and an energy function Ef
OUTPUT: An optimal displacement vector field D�
1: D� ( D

2: for i¼ 1 to number of a-expansion do // Each loop here

stands for one a-expansion

3: for each label aAW do // Each loop here stands for one

move in an a-expansion

4: Minimize Ef ðDÞ with respect to D and a by graph-cut

(Please refer to [16] for more information).
5: if Ef ðD
�
Þ4Ef ðDÞ then
6: D� ( D

7: end if

8: end for

9: end for

10: return D�

3.3. Space capacity analysis

For the proposed method and the linear programming based
method (LP) [22], which model the non-rigid image registration
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problem as multi-labeling problem with Markov random field based
optimization, the space capacity of the optimizer is a key factor that
affects the performance and generalization of the registration process.
In this subsection, we analyze the space capacity of different
optimizers. The optimizers of LP and the proposed method are the
linear programming algorithm and the graph-cuts algorithm, respec-
tively. The space capacity of the linear programming and graph-cuts
algorithms in the non-rigid image registration problem is propor-
tional to the memory required to store the optimization results. In the
graph-cuts algorithm, at least dlog2jWje bits are required at each
voxel in the floating image for storing an assigned label, where jWj is
Fig. 1. (a) An MR slice obtained from the simulated Brain Database, (b)–(d) show th

segmentation, and (d) cerebrospinal fluid (CSF) segmentation.

Fig. 2. The first row shows the floating images for the non-rigid registration experime

images are shown in the second row. After registration, the differences between the

method (GC), FFD, DEMONS and LP are shown in the third, fourth, fifth and sixth row
the number of labels. Note that, for each voxel, one iteration of
a-expansion (i.e. one a-expansion move) just needs 1 bit to store a
binary label which is indicating whether the voxel takes the move or
not. Therefore, the space capacity of the graph-cuts method is
OðjPj � dlog2jWjeÞ, where jPj is the number of voxels. For the linear
programming algorithm, the label assigned to a control point is
indicated by a jWj-dimension indicator vector with only one non-
zero element which is equal to one. Therefore, the space capacity of v
is OðjWjÞ, and hence the space capacity of the linear programming
algorithm is OðjGj � jWjÞ, where jGj is the number of control points. If
all voxels in the floating image are control points, i.e. jGj ¼ jPj, the
e ground truths of (b) white matter (WM) segmentation, (c) gray matter (GM)

nts. Before registration, the differences between the source image and the floating

source image and the deformed floating images obtained by using the proposed

s, respectively.
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space capacity of the linear programming algorithm is higher than
that of the graph-cuts algorithm. Take a 3D non-rigid image registra-
tion as an example and assume each voxel is a control point. If the
size of the floating image is 256� 256� 181 and the number of
labels is 1000, then the linear programming algorithm requires
at least (256� 256� 181� 1000) bits 	 1414:06 MBytes while
the graph-cuts algorithm requires at least (256� 256� 181�
dlog21000e) bits 	 14:14 MBytes only. Due to the huge space
capacity of the linear programming algorithm, LP cannot afford to
have a dense set of control points or a large number of labels. This
restriction causes LP unable to model registration cases with com-
plicated deformation. It will be demonstrated in the Experimental
Results section. In this aspect, the proposed method outperforms LP.
4. Experimental results

In this section, we compare the registration performance of the
proposed method with the two state-of-the-art and a related
image registration methods that have been introduced in Section
2, namely, the free-form deformation based method, the demons
based method and the linear programming based method. Since
hierarchical attribute matching mechanism for elastic registration
Fig. 3. The first row shows the floating images for the non-rigid registration experimen

images are shown in the second row. After registration, the differences between the

method (GC), FFD, DEMONS and LP are shown in the third, fifth and sixth rows, respe
(HAMMER) and the proposed method are classified in different
categories, the comparison between HAMMER and the proposed
method is not included in this paper. For simplicity, these three
methods are denoted as FFD, DEMONS and LP, respectively, in
this section. In the meanwhile, GC is adopted to represent the
proposed method in all figures and tables. Section 4.1 gives the
details of the image datasets and values of the parameters for
non-rigid registration tests. Sections 4.2–4.4 present the compar-
ison results on registration robustness, registration accuracy, and
smoothness of the recovered deformation fields. For the proposed
method, the choice of window size W in Eq. (8) is discussed in
Section 4.6. Additionally, we compare the proposed method with
LP at three different grid sizes by seven sets of labels in Section 4.7.
Finally, computation times for FFD, DEMONS, LP and the proposed
method are given in Section 4.8.
4.1. Image datasets and parameters

In this paper, all the T1-weighted magnetic resonance (MR)
image volumes and segmentation ground truths of the non-rigid
registration experiments were obtained from the Simulated Brain
Database [28,29]. Some example slices are shown in Fig. 1, in
ts. Before registration, the differences between the source image and the floating

source image and the deformed floating images obtained by using the proposed

ctively.
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which the ground truths of the white matter (WM), gray matter
(GM), and cerebrospinal fluid (CSF) segmentations are shown.
According to [28,29], all image volumes have been linearly
registered using nine parameters to the same frame of reference.
Therefore, in this paper, only the local part of the deformations is
investigated in the experiments. Also, according to [28,29], the
datasets in the Simulated Brain Database were constructed from
the MR scans of different normal adults and the image volumes
from the database have been intensity-normalized. All the image
data used in the experiments were in unsigned-byte format so
that the intensity values were within a range between 0 and 255.

For DEMONS, we used the implementations (version 2.8)
obtained from the Insight Segmentation and Registration Toolkit
(ITK) [30]. We set s¼ 1, which is the standard deviation of the
Gaussian kernel that is used for the deformation field smoothing
after each iteration. According to the ITK implementation [30], the
Gaussian kernel is approximated by a 30mm-width window with a
maximum error of 0.1. All experiments were run for 500 iterations.
Table 1
Distributions of the absolute intensity errors within different tissue regions after perfor

the format MEAN7SD.

Case Tissue class Distributions of abso

Before registration

Case A WM 16.66717.18

GM 25.16725.12

CSF 32.34724.19

Whole image 12.35722.04

Case B WM 13.57716.26

GM 17.69714.66

CSF 31.60725.13

Whole image 9.73718.39

Case C WM 8.09710.21

GM 11.78713.13

CSF 18.67719.04

Whole image 8.87715.54

Case D WM 3.9177.95

GM 6.33713.41

CSF 9.78717.18

Whole image 6.28716.41

Case E WM 12.25717.11

GM 14.49719.50

CSF 23.96724.92

Whole image 8.84719.01

Case F WM 9.01713.68

GM 14.87719.99

CSF 21.32720.33

Whole image 12.57723.73

Case G WM 6.28715.13

GM 9.13719.58

CSF 8.69718.01

Whole image 5.76717.09

Case H WM 14.97720.52

GM 19.29721.94

CSF 28.36725.21

Whole image 14.73725.90

All cases WM 10.59715.80

GM 14.84719.66

CSF 21.84723.58

Whole image 9.89720.28

All cases excluding cases C, G & H WM 11.08715.47

GM 15.71719.94

CSF 23.80724.01

Whole image 9.95720.22
It is a reasonable number as the percentage change in SSD was less
than 0.1% in the 501-st iteration in all the experiments.

For FFD, we used the implementations developed by Rueckert
et al. [14,31], which are available at [32]. We chose 10 mm control
point spacing as it was demonstrated in [14] that a control point
spacing of 10 mm gave better performance than 15 or 20 mm.
Smoothness penalty was dropped in the experiments since it is
insignificant for a sparse set of control points. The sequence of
step sizes we used were 5, 2.5, 1.25, and 0.625 mm. We run and
repeated the experiments for 20 iterations for each step size.
Normalized mutual information was used as the similarity mea-
sure, according to the implementation described in [14].

For LP, we used the implementations developed by Glocker et al.
[25,22], which are available at [33]. Same as FFD, we chose 10 mm
control point spacing in both 2D and 3D experiments. In order to
compare with the proposed method, SAD was utilized as the
similarity measure. Dense sampling was chosen for the ‘‘label set
setting’’ with 30 steps in 2D experiments. Therefore, the number of
ming FFD, DEMONS, LP and the proposed method (GC). Distributions are listed in

lute intensity errors (Mean7SD)

FFD DEMONS LP GC

3.3473.45 3.6975.46 3.7173.87 1.0773.05

3.9474.21 3.7474.58 4.3174.72 0.9073.16

5.7375.76 4.4477.35 6.0976.20 1.1473.89

3.0174.33 2.3374.04 2.6675.00 0.3571.86

2.9973.49 2.5674.28 3.3573.62 0.3571.63

3.8474.34 2.9674.62 4.1474.53 0.6272.50

5.9176.17 3.2676.66 5.9376.44 1.3274.89

3.0674.95 1.8774.13 2.6275.27 0.4772.82

7.6079.10 3.0073.79 7.4179.18 5.8776.65

10.92711.49 2.9073.82 10.59711.20 6.2877.81

16.94716.41 3.8175.09 16.87716.46 5.1178.21

8.14713.63 2.9874.98 7.88713.36 4.0475.71

2.6473.38 1.2871.57 1.5572.99 0.2471.44

3.4374.55 1.2471.69 2.1173.82 0.3371.99

5.2476.60 1.7872.45 3.2875.74 0.4973.05

3.0774.71 1.5772.69 2.1374.66 0.6272.32

4.1674.57 2.8374.13 3.6774.17 1.2973.21

5.1176.00 2.6674.44 3.9775.01 1.0073.33

7.2378.16 3.4977.18 5.5876.65 1.3274.26

3.5275.30 1.9373.62 2.5474.68 0.4672.19

3.8874.13 1.4271.87 2.6473.38 0.4371.92

5.0975.75 1.3971.92 3.5074.54 0.5972.46

7.0577.54 1.7572.43 5.4276.75 0.9073.82

4.0676.00 1.6873.29 3.1675.69 0.7772.88

2.5273.54 2.4478.94 1.4072.83 0.3671.79

3.0174.29 4.36714.29 1.8973.89 0.4171.97

3.6475.15 3.5378.00 2.2575.05 0.4272.50

2.2374.18 3.28712.09 1.4874.17 0.5072.24

10.36712.70 3.2876.02 7.84711.59 4.0076.47

12.87713.03 3.2275.23 9.36711.71 4.0377.45

19.57718.45 4.1575.86 14.35716.97 4.3378.60

8.45713.26 3.86710.84 6.16711.60 2.4975.62

4.6976.94 2.5675.08 3.9575.20 1.7074.30

6.0378.25 2.8176.35 4.9876.18 1.7774.89

8.91711.83 3.2876.05 7.4778.78 1.8875.60

4.4478.29 2.4476.69 3.5876.80 1.2173.73

3.4073.87 2.3673.88 2.9873.60 0.6872.40

4.2875.07 2.4073.82 3.6174.52 0.6972.74

6.2376.95 2.9475.78 5.2676.36 1.0474.04

3.3475.11 1.8773.60 2.6275.06 0.5372.45
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labels used in the 2D experiments was 31� 31¼ 961. For 3D
experiments, using the maximum physical memory available in a
32-bits Windows system with 3 GBytes RAM and as suggested by
Glocker et al. in the implementation user guide [33], we chose
sparse sampling for ‘‘label set setting’’ with 14 steps along each
sampling direction. This can prevent the experiments from being
terminated unexpectedly because of the lack of memory.

For the proposed method, we used l¼ 0:02� 255 in Eq. (7) for
3D tests and 0.05�255 for 2D tests; andW ¼ f0,71,7 2, . . . ,77g3

in Eq. (8) for 3D tests and f0,71,72, . . . ,715g2 for 2D tests. As
such, the displacement label of a voxel was chosen from a
15�15�15 window (for 3D tests) and a 31�31 window (for 2D
Fig. 4. (Color images) More details of the results obtained by using FFD, DEMONS, LP
references to color in this figure legend, the reader is referred to the web version of th
tests) centered at that voxel. We will explain how the window size
was chosen in Section 4.6. For the graph-cuts algorithm, we used the
source codes provided by Kolmogorov and Zabih [19]. We repeated
the a-expansion three times such that each label was examined three
times in the graph-cuts algorithm.

4.2. Registration robustness

To test the robustness of FFD, DEMONS, LP and the proposed
method, we investigate into eight different registration cases,
which contain eight different two-dimensional artificial defor-
mations. These artificial deformations can resemble different
and the proposed method (GC) for Cases C, G and H. (For interpretation of the

is article.)
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intra-subject and inter-subject mapping behaviors in the real
world. We first used an axial slice (the 91-st (middle) slice in the
image volume #04) as the source image, as shown in the left-
most of Fig. 1. To the source image, eight different artificial
Fig. 5. 3D registration results across two MR image volumes (#04 and #20). For

Fig. 6. 3D registration results across two MR image volumes (#04 and #20). For
deformations (Cases A–H) were then applied to generate eight
floating images, as shown in the first rows of Figs. 2 and 3.

Cases A and B in Fig. 2 are, respectively, a squeeze-in and a
squeeze-out deformations in the interior of the brain. They represent
each sub-figure, the middle slice across each axis of the volume is shown.

each sub-figure, the middle slice across each axis of the volume is shown.



Table 2
The values of the overlap measure obtained in the 15 3D inter-subject registration

experiments. Simulated Brain Database image volume #04 was fixed as the source

image throughout all the experiments and other 15 image volumes were used

as the floating images. The last row shows the mean and the standard deviation

(in format Mean7SD) of the overlap measurements among all the 15 sets of

registration experiments.

Floating

image

Tissue

class

The values of the overlap measure

Before

registration

FFD DEMONS LP GC

#06 WM 0.46 0.55 0.64 0.44 0.69

GM 0.46 0.54 0.63 0.50 0.71

CSF 0.21 0.38 0.46 0.30 0.59

#20 WM 0.45 0.50 0.62 0.41 0.69

GM 0.46 0.52 0.64 0.48 0.72

CSF 0.25 0.38 0.49 0.34 0.61

#38 WM 0.44 0.49 0.60 0.39 0.67

GM 0.46 0.51 0.62 0.47 0.71

CSF 0.26 0.35 0.46 0.31 0.57

#42 WM 0.44 0.50 0.60 0.39 0.67

GM 0.46 0.53 0.63 0.48 0.71

CSF 0.24 0.38 0.49 0.33 0.59

#43 WM 0.45 0.50 0.63 0.42 0.68

GM 0.42 0.50 0.62 0.49 0.70

CSF 0.21 0.32 0.44 0.33 0.56

#44 WM 0.43 0.46 0.60 0.41 0.68

GM 0.43 0.49 0.62 0.47 0.70

CSF 0.24 0.33 0.47 0.32 0.58

#45 WM 0.46 0.54 0.64 0.44 0.69

GM 0.45 0.53 0.64 0.49 0.72

CSF 0.25 0.40 0.51 0.35 0.63

#46 WM 0.45 0.52 0.63 0.41 0.68

GM 0.45 0.51 0.62 0.45 0.71

CSF 0.27 0.37 0.48 0.31 0.60

#47 WM 0.47 0.51 0.63 0.42 0.70

GM 0.46 0.51 0.63 0.47 0.72

CSF 0.26 0.35 0.48 0.31 0.59

#48 WM 0.44 0.50 0.60 0.43 0.66

GM 0.43 0.50 0.58 0.48 0.69

CSF 0.25 0.38 0.48 0.33 0.59

#49 WM 0.45 0.49 0.62 0.43 0.68

GM 0.40 0.46 0.60 0.47 0.67

CSF 0.24 0.35 0.46 0.32 0.54

#50 WM 0.46 0.49 0.62 0.41 0.69

GM 0.45 0.49 0.62 0.47 0.71

CSF 0.25 0.34 0.44 0.31 0.55

#51 WM 0.46 0.50 0.61 0.42 0.69

GM 0.47 0.51 0.63 0.47 0.72

CSF 0.28 0.38 0.49 0.33 0.59

#52 WM 0.47 0.51 0.64 0.41 0.70

GM 0.46 0.52 0.65 0.48 0.72

CSF 0.27 0.39 0.49 0.33 0.59

#53 WM 0.45 0.48 0.61 0.40 0.68

GM 0.44 0.49 0.60 0.48 0.67

CSF 0.25 0.33 0.43 0.26 0.51

All cases WM 0.4570.01 0.5070.02 0.6270.02 0.4270.02 0.6870.01

GM 0.4570.02 0.5170.02 0.6270.02 0.4870.01 0.7170.02

CSF 0.2570.02 0.3670.03 0.4770.02 0.3270.02 0.5870.03
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the difference in ventricle sizes across subjects or ages, as well as
the structural effect of tumors on brain tissues.

Case C in Fig. 2 is a high frequency ripple deformation. It models
some minor structural discrepancies across different brains, such
as the positions and shapes of sulci, gyri and ventricles.

Case D in Fig. 2 and Cases E and F in 3 are low frequency small
deformations. These cases model shape differences in skulls,
white matter and gray matter across different subjects.

Case G in Fig. 3 is a low frequency but large deformation. It
models the physical deformation of the brain during open-skull
surgery or after severe injury.

Case H in Fig. 3 is a highly random deformation that aggre-
gates the characteristics in the previous deformation cases.

Non-rigid registration experiments were performed using FFD,
DEMONS, LP and the proposed method in all cases. The subtrac-
tion images of the registration outputs from the source image are
shown in the last four rows in Figs. 2 and 3. Due to the space
limitation within a page, registration outputs of four methods are
not shown in the figures. For comparison, the pre-registration
differences between the floating images and the source images
are also shown in the second rows in the figures.

We list in Table 1 the distributions of the absolute intensity
errors (calculated from the post-registration absolute subtraction
images) within different tissue regions after applying the four
registration methods. In Table 1, the values of the absolute
intensity errors are listed in Mean7SD format. A large standard
deviation is a possible indicator of failure in the registration
experiments since it means that there are specific regions of large
intensity errors. From Table 1 and the post-registration subtrac-
tion images (Figs. 2 and 3), it is found that the four registration
methods perform satisfactorily in all cases except Cases C, G and
H. It is because all cases except Cases C, G and H have Meano5
and SDo10 in the distributions within the whole images after
applying the four registration methods. For further analysis and
illustration, the registration outputs of Cases C, G and H after
applying the four registration methods are shown in Fig. 4.

From the post-registration subtraction images in Fig. 2 (Case C,
third row and last row) and Fig. 3 (Case H, third row and last row),
and the registration outputs in Fig. 4 (Cases C and H, third row
and second last row), it is found that there are noticeable
discrepancies, especially around the skull regions, between the
fixed source image and the registration outputs of FFD and LP in
Cases C and H. These cases are situations, where transformation
with low degree of freedom cannot model complicated deforma-
tions. The artificial deformations in these two cases contained
some high frequency components. FFD and LP only allow control
points to freely displace but restrict other pixel displacements to
an interpolation of the displacements of neighborhood control
points. Therefore, for the 2D cases, within a bounding box of four
adjacent control points, the pixels must have highly correlated
displacements. If the pixels within the bounding box show no
correlation in the underlying deformation, FFD and LP do not
displace the control points. As predicted, both DEMONS and the
proposed method are capable of restoring the image in such cases
since no hard constraints are imposed in the deformation models
for DEMONS and the proposed method.

From the post-registration subtraction images in Fig. 3 (Cases
G and H, second last row) and the registration outputs in Fig. 4
(Cases G and H, third last row), it is found that there are
noticeable mis-registration results at some parts of the skull
regions between the fixed source image and the registration
outputs of DEMONS in Cases G and H. DEMONS converged in
such configurations in Cases G and H because of the local minima
in the optimization process. Since DEMONS-based non-rigid
image registration involves transformation with high degree of
freedom, it may easily result in local minima for some
optimization strategies. The deformations in Cases G and H were
considered large as some points are displaced more than 10 pixel-
units. To explain the mis-registrations in these two cases, we need
to observe the initial alignments of the images. In Case G, some
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Fig. 7. (Color images) Mean and standard deviation (SD) of the overlap measurements among all the 15 sets of registration experiments. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
The values of the overlap measure obtained in the 5 3D inter-subject registration

experiments in which FFD, DEMONS and the proposed method (GC) were

performed with a same similarity measure (sum of squared difference). Simulated

Brain Database image volume #04 was fixed as the source image throughout all

the experiments and other five randomly selected image volumes (#42, #43, #46,

#51 and #53) were used as the floating images. The last row shows the mean and

the standard deviation (in format Mean7SD) of the overlap measurements among

all the five sets of registration experiments. Note that the comparison with LP was

skipped in this set of experiments as it had been compared with the proposed

method with the same similarity measure, as listed in Table 2.

Floating

image

Tissue

class

The values of the overlap measure

Before

registration

FFD DEMONS GC

#42 WM 0.44 0.48 0.60 0.63

GM 0.46 0.47 0.63 0.70

CSF 0.24 0.36 0.49 0.55

#43 WM 0.45 0.50 0.63 0.65

GM 0.42 0.50 0.62 0.68

CSF 0.21 0.33 0.44 0.48

#46 WM 0.45 0.48 0.63 0.64

GM 0.45 0.50 0.62 0.70

CSF 0.27 0.33 0.48 0.60

#51 WM 0.46 0.50 0.61 0.66

GM 0.47 0.51 0.63 0.69

CSF 0.28 0.36 0.49 0.57

#53 WM 0.45 0.47 0.61 0.64

GM 0.44 0.49 0.60 0.64

CSF 0.25 0.31 0.43 0.48

All cases WM 0.4570.01 0.4970.01 0.6270.02 0.6470.01

GM 0.4570.02 0.4970.01 0.6270.02 0.6870.03

CSF 0.2570.02 0.3470.02 0.4770.02 0.5470.05
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portions of the skull (circled red in Fig. 4) in the floating image
had its whole thickness overlapping with the interior of the brain
in the source image; while in Case H, some portions of the skull
(circled blue in Fig. 4) in the floating image had its whole
thickness being overlapping with the background in the source
image. Since DEMONS uses the local intensity gradient to drive
the pixel movements, these initial overlapping caused some
pixels move towards the incorrect directions and finally got
trapped in local minima. Although the proposed transformation
model also has high degree of freedom, the proposed method still
survives in this situation. It is because the graph-cuts method
considers the labels of all pixels in a more global manner in an
a-expansion move. Once the energy barrier is overcome, a group
of pixels will together pursuit a large displacement in an
a-expansion step instead of moving gradually through a series
of small displacements.

As shown in Figs. 2 and 3, not only the proposed method
survives in all cases, it can be noted from the subtraction images
that the proposed method can generally produce better registra-
tion outputs than FFD, DEMONS and LP in the eight cases.
Quantitatively, the last row in Table 1 lists the distributions of
post-registration intensity errors averaged among all cases except
Cases C, G and H. The mean absolute intensity difference through-
out the whole image is 0.53 after applying our proposed method,
which is significantly better than those values after applying FFD
(3.34), DEMONS (1.87) and LP (2.62). This also provides a strong
evidence that using the graph-cuts method as the optimization
strategy in the proposed non-rigid image registration method can
yield better results than FFD, DEMONS and LP.

4.3. Registration accuracy

To evaluate the registration accuracy, we performed 15 sets of
3D inter-subject registration experiments by using FFD, DEMONS,
LP and the proposed method. One image volume (#04) was fixed
as the source image throughout all the non-rigid registration
experiments and other 15 image volumes were used as the floating
images. The spatial resolutions of all image volumes are 256�
256� 181 voxels with 1 mm isotropic voxel spacings. Figs. 5 and 6
show one of the 15 registration test results obtained by using the
four registration methods. In Figs. 5 and 6, from the pre-difference
and post-difference images, it is shown that the registration result
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of the proposed method is better than those of FFD, DEMONS and
LP. For all the 3D inter-subject registration tests, Table 2 lists the
pre-registration and post-registration overlap measure values of
the three tissue classes, white matter (WM), gray matter (GM), and
cerebrospinal fluid (CSF), after applying the four registration
methods. We adopted the overlap measure #ðA \ BÞ=#ðA [ BÞ, as
proposed by Crum et al. [34], where A and B denote the regions of
the two images that belong to a specific tissue class. In addition,
Fig. 7 shows the values of the overlap measure averaged among all
15 sets of registration experiments. From Table 2 and Fig. 7, it is
found that the proposed method can consistently achieve higher
registration accuracy than both FFD, DEMONS and LP in all the 15
sets of 3D registration experiments.

In order to demonstrate that the high accuracy of the proposed
method is achieved by using the MRF model as well as the
optimization strategy, rather than the similarity measure, we ran
the proposed method and FFD on five image pairs with the sum of
FFDCase

A

B

C

D

0mm 1mm 2mm 3mm 4mm 5m

DEMONS

Fig. 8. (Color images) Recovered deformation fields obtained by using FFD, DEMON
displacements while blue color represents small displacements. The color coding schem

the references to color in this figure legend, the reader is referred to the web version
squared difference (SSD) as the similarity measure. The registration
results were then compared with that of DEMONS with SSD as the
similarity measure. Note that the comparison with LP was skipped in
this set of experiments as it had been compared with the proposed
method with the same similarity measure, as listed in Table 2. For the
five image pairs, the randomly selected image volumes (#42, #43,
#46, #51 and #53) were, respectively, used as the floating images,
and image volume (#04) was fixed as the source image. Table 3
shows the overlap measure values of the three tissue classes after
applying FFD, DEMONS and the proposed method. It is shown in
Table 3 that the proposed method outperforms FFD and DEMONS in
terms of accuracy under the same similarity measure.

4.4. Smoothness of the recovered deformation fields

Another crucial element to consider in registration result
evaluation is the property of the recovered deformation fields
m 6mm 7mm 8mm 9mm 10mm

LP GC

S, LP and the proposed method (GC) in Cases A–D. Red color represents large

e for the displacement magnitudes is given in the last row. (For interpretation of

of this article.)
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after registration, especially for those registration methods where
no hard constraint is imposed on the deformation fields. It is
because even if the registration output image is similar to the
fixed source image, the recovered deformation field can be
unrealistic.

To illustrate and compare the smoothness of the recovered
deformation fields from the four registration methods, we plot
the fields for Cases A–H (refer to Section 4.2 for the details about
each case) in Figs. 8 and 9. Cases A and B correspond to a squeeze-
in and a squeeze-out deformations. As predicted and shown in
Fig. 8 (the first two rows), the fields recovered by FFD and LP are
more smoother than DEMONS and the proposed method. It is
because FFD and LP internally constrain the fields by the B-spline
based transforms, and both DEMONS and the proposed method
do not impose hard constrains on the deformation fields. Compar-
ing with DEMONS, it can be observed that the field recovered by
the proposed method is smoother than DEMONS. It can be the
FFD

0mm 1mm 2mm 3mm 4mm 5m

DEMONSCase

E

F

G

H

Fig. 9. (Color images) Recovered deformation fields obtained by using FFD, DEMON
displacements while blue color represents small displacements. The color coding schem

the references to color in this figure legend, the reader is referred to the web version
effect induced by several factors however the real underlying
cause is still being investigated. One of the possible reasons is that
DEMONS only smooths the deformation fields after each iteration
whereas the proposed method embeds the smoothness term in
the energy function during the optimization process.

Another example is Case C, which is corresponding to ripple
distortions. As shown in Fig. 8 (third row), it is observed from the
recovered deformation fields that FFD and LP are not able to
recover the ripple deformations while DEMONS and the proposed
method are able to recover the deformations. From the same
figure for this case, it can also be observed that the proposed
method does not transform pixels in the background of the image
while DEMONS transforms almost all background pixels. It is
because the energy function, as stated in Eq. (6), that the
proposed method optimizes contains the similarity measure as
well as the smoothness term. In the background regions, the
smoothness penalty due to the movements of pixels outweighs
m 6mm 7mm 8mm 9mm 10mm

LP GC

S, LP and the proposed method (GC) in Cases E–H. Red color represents large

e for the displacement magnitudes is given in the last row. (For interpretation of

of this article.)
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Fig. 10. The log-scaled histograms of the Jacobian values of the deformation fields recovered by (a) FFD, (b) DEMONS, (c) LP and (d) the proposed method (GC).
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the decrease in SAD contributed by those movements and it
causes the proposed method not to pursuit those movements.

For other cases, in general, it is observed that the deformation
fields recovered by the proposed method in Cases D–H are
realistic.

We have also examined the deformation fields obtained in the
registration experiments on the 15 image volumes (refer to
Section 4.3 for the details of the experiments). We calculated
the values of the Jacobian of the deformation fields recovered by
FFD, DEMONS, LP and the proposed method at all voxels in the 15
image volumes. Jacobian is the determinant of the Jacobian
matrix formed by all first-order partial derivatives of the trans-
formation vector field. It characterizes the factor of volume
changes in the field for nearly any point p. A value greater than
one indicates a volume expansion near p while less than one
indicates a volume shrinking near p. We adopted the procedure
for calculating the Jacobian as suggested in [35]. When determin-
ing the Jacobian matrices, the first-order partial derivatives of the
deformation fields were obtained by applying convolution with a
Gaussian derivative filter. The standard deviation of the Gaussian
derivative filter was set to 2, which was twice the spatial
resolution of the voxels [35]. Then, the values of Jacobian can be
evaluated by finding the determinant of the corresponding
Jacobian matrix. The last row in Fig. 6 shows the Jacobian images
of the deformation fields recovered by the four methods in one of
the 3D registration tests. The Jacobian image of the proposed
method is comparable to DEMONS in general, except that in some
regions the proposed method produces more extreme values than
DEMONS. However, it can be observed from the registration
image pair (the top row in Fig. 5) that there are significant
topological changes in those regions, indicating that it is essential
to have large volume changes in order to register the image pair
accurately and the accuracy obtained by the proposed method is
listed in the second row of Table 2. Moreover, the overall
histograms of the deformation Jacobian values are plotted in
Figs. 10(a)–(d), for FFD, DEMONS, LP and the proposed method,
respectively. It is observed from the histograms that the majority
of the Jacobian have values near one. Although the deformation
fields obtained by the proposed method may not be diffeo-
morphic, the experimental results have demonstrated that those
deformation fields are still realistic and comparable to the
deformation fields recovered by DEMONS. Therefore, the pro-
posed method can be used in different application including
clinical studies, atlas-based segmentation, etc.

4.5. Accuracy under different dissimilarity measures, intensity

inhomogeneity and noise

We performed additional 24 3D experiments to study the
effects on registration accuracy of the proposed method under
different dissimilarity measures, intensity inhomogeneity (RF)
and noise. The tested dissimilarity measures are sum of absolute
difference (SAD) and sum of squared difference (SSD). Three RF
levels (0%, 20% and 40%) and four noise levels (0%, 3%, 5% and 7%)
were added to image volume (#20) to generate 12 image volumes
as the floating images, and image volume (#4) was fixed as the
source image throughout all the experiments. Therefore, there
were 12 3D experiments for each dissimilarity measure. Note that
the intensity inhomogeneity was formed by the inhomogeneity
field A from the Simulated Brain Database.

Table 4 lists the experimental results. From the values of the
overlap measure, there are four observations: (1) SAD



Table 4
The values of the overlap measure of the proposed method with two dissimilarity functions, sum of absolute difference (SAD) and sum of squared difference (SSD),

obtained in the 24 3D inter-subject registration experiments with three intensity inhomogeneity (RF) levels and four noise levels. Simulated Brain Database image volume

#04 was fixed as the source image throughout all the experiments and other 12 image volumes, generated by adding different levels of RF and noise to the image volume

#20 of simulated Brain Database, were used as the floating images. The last row of each dissimilarity measure and the last column show the means and standard deviations

(in format Mean7SD) of the overlap measurements among a given RF level and a given noise level, respectively. Note that the values of overlap measure of white matter

(WM), gray matter (GM), and cerebrospinal fluid (CSF) before registration are, respectively, 0.4542, 0.4566 and 0.2489.

Measure Floating image Tissue class The values of the overlap measure Average over RF

0% RF 20% RF 40% RF

SAD 0% Noise WM 0.6850 0.6503 0.5260 0.620570.0836
GM 0.7200 0.7132 0.6661 0.699870.0293
CSF 0.6119 0.6099 0.5914 0.604470.0113

3% Noise WM 0.6770 0.6348 0.4784 0.596770.1046
GM 0.7206 0.7090 0.6485 0.692770.0387
CSF 0.6105 0.6031 0.5767 0.596770.0178

5% Noise WM 0.6709 0.6209 0.4507 0.580870.1154
GM 0.7189 0.7032 0.6363 0.686170.0439
CSF 0.6061 0.5967 0.5651 0.589370.0215

7% Noise WM 0.6638 0.6066 0.4309 0.567170.1214
GM 0.7168 0.6965 0.6262 0.679870.0475
CSF 0.6022 0.5887 0.5546 0.581870.0246

Average over noise WM 0.674270.0090 0.628270.0187 0.471570.0413
GM 0.719170.0017 0.705470.0073 0.644370.0172
CSF 0.607770.0044 0.599670.0091 0.571970.0158

SSD 0% Noise WM 0.6140 0.6125 0.5685 0.598470.0258
GM 0.6669 0.6795 0.6673 0.671270.0072
CSF 0.5956 0.5979 0.5901 0.594570.0040

3% Noise WM 0.6135 0.6120 0.5357 0.587170.0445
GM 0.6717 0.6815 0.6554 0.669570.0132
CSF 0.5951 0.5939 0.5816 0.590270.0075

5% Noise WM 0.6134 0.6102 0.5131 0.578970.0570
GM 0.6730 0.6808 0.6457 0.666570.0184
CSF 0.5914 0.5877 0.5724 0.583870.0101

7% Noise WM 0.6130 0.6044 0.4934 0.570370.0667
GM 0.6734 0.6777 0.6354 0.662270.0233
CSF 0.5850 0.5774 0.5588 0.573770.0135

Average over noise WM 0.6135 70.0004 0.609870.0037 0.527770.0322
GM 0.6712 70.0030 0.679970.0017 0.651070.0136
CSF 0.5918 70.0049 0.589270.0089 0.575770.0134
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outperforms SSD in 0% RF and 20% RF. This can be observed by
simply looking at the values of the overlap measure. (2) Both SAD
and SSD are robust in noisy environment. It is noticed that the
standard deviations (SDs) shown in the last row of each dissim-
ilarity measure under 0% RF are relatively small ðo0:01Þ. This
means that the variation of the values of the overlap measure in
different noise level under 0% RF is small, and hence proves that
both dissimilarity measures are robust in noisy environment. (3)
SSD is more robust than SAD under intensity inhomogeneity. The
SDs shown in the last column can verify this conclusion since all
the SDs of SSD in the last column are smaller than the corre-
sponding SD of SAD. (4) 40% RF is quite challenging for the both
dissimilarity measures. It is observed that there is a drop in the
values of the overlap measure, especially for the white matter,
when the RF was changed from 20% to 40%. It is because that the
intensity range of white matter in the source image (i.e. #4) is
close to the intensity range of gray matter in the floating images
in which 40% RF was added. Therefore, some gray matter voxels
of the floating images were mismatched to the white matter
voxels of the source image. In short, the quantitative experimen-
tal results demonstrate that the proposed method can achieve
high accuracy and robustness under different reasonable levels of
noise and intensity inhomogeneity.
4.6. Choice of window W

The window W in Eq. (8) controls how far a point in the image
can move. This is essential for transforming a conventional contin-
uous-domain non-rigid registration problem to a discrete labeling
optimization problem that can be solved by using the proposed
graph-cuts based image registration method. Thus, W needs to be
chosen carefully such that not only it is capable of capturing most
real-life deformation cases, but also time complexity is considered,
since the number of a-expansion moves in each iteration of the
optimization process is equal to jWj. Fig. 11 gives the distribution of
the displacement magnitudes of the recovered deformation fields
estimated by using DEMONS in the 15 3D inter-subject experi-
ments, as described in the Section 4.3. DEMONS is chosen since no
hard constraints are imposed in the deformation model, which can
give more related and useful statistics as the reference for the
proposed method. Since the images have been already linearly pre-
registered before the experiments, Fig. 11 can be considered as the
general population statistics of the local deformations across differ-
ent subjects. From the figure, it is observed that the displacement
magnitudes of the recovered deformation fields were 99.6%
bounded within seven voxel-units. Therefore, W ¼ f0,71, 72;
. . . ;77g3 was chosen for the 3D inter-subject experiments, as
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presented in Section 4.3, so that it can cover the displacements of
almost all voxels and make the running time of the proposed time
Table 5
The values of the overlap measure and computation time (Time) of the proposed

method (GC) and LP (in three different grid sizes) obtained in the 28 3D inter-

subject registration experiments with seven sets of labels jLj. Simulated Brain

Database image volumes #04 and #20 were fixed as the source image and the

floating image, respectively, throughout all the experiments.

jLj Tissue

class

The values of the overlap measure

Before

registration

GC LP @

5�5�4

LP @

10�10�7

LP@

18�18�13

27 WM 0.45 0.59 0.43 0.41 0.45

GM 0.46 0.61 0.46 0.48 0.51

CSF 0.25 0.43 0.26 0.32 0.36

Time – 943 s 856 s 1881 s 2370 s

125 WM 0.45 0.66 0.39 0.41 Failed

GM 0.46 0.68 0.45 0.47

CSF 0.25 0.54 0.26 0.29

Time – 4351 s 2775 s 6845 s

343 WM 0.45 0.68 0.39 0.41 Failed

GM 0.46 0.71 0.45 0.47

CSF 0.25 0.58 0.26 0.29

Time – 11 485 s 7044 s 17 205 s

729 WM 0.45 0.68 0.39 Failed Failed

GM 0.46 0.72 0.45

CSF 0.25 0.60 0.26

Time – 24 541 s 16 289 s

1331 WM 0.45 0.69 0.39 Failed Failed

GM 0.46 0.72 0.45

CSF 0.25 0.61 0.26

Time – 43 215 s 29 144 s

2197 WM 0.45 0.69 Failed Failed Failed

GM 0.46 0.72

CSF 0.25 0.61

Time – 71 746 s

3375 WM 0.45 0.69 Failed Failed Failed

GM 0.46 0.72

CSF 0.25 0.61

Time – 86 689 s
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Fig. 11. Distribution of the displacement magnitudes in the deformation fields

recovered by using DEMONS in the 15 3D inter-subject experiments, as described

in Section 4.3.
comparable to that of FFD. Running times of the four registration
methods are given in Section 4.8.

4.7. Comparing with dense sampling LP at different grid sizes

In Section 4.3, it reveals that LP with sparse sampling performs
no better than the other three methods in 3D non-rigid image
registration. To evaluate the performance of LP with dense sam-
pling and the physical memory requirement of LP (refer to Section
3.3 for the details of the space capacity analysis), extra 56 3D
experiments were performed on two image pairs. Image volume
#04 from the Simulated Brain Database was the source image of
these two image pairs, and image volumes #20 and #45 were the
floating images, respectively. We performed the proposed method,
and LP at three different grid sizes (60, 30, and 15 mm control
point spacing) on each image pair with seven sets of labels jLj.
Tables 5 and 6 show the pre-registration and post-registration
overlap measure values of the three tissue classes, white matter
(WM), gray matter (GM), and cerebrospinal fluid (CSF), after
applying the registration methods. The failed cases of LP in the
tables mean that the implementation of LP was terminated
unexpectedly before the registration processes were finished. Since
LP failed more cases when the grid size was increased, we found
that these failed cases were caused by the huge physical memory
requirement of LP. For all other cases, it is shown that the proposed
method outperforms LP under different grid sizes and numbers of
Table 6
The values of the overlap measure and computation time (Time) of the proposed

method (GC) and LP (in three different grid sizes) obtained in the 28 3D inter-

subject registration experiments with seven sets of labels jLj. Simulated Brain

Database image volumes #04 and #45 were fixed as the source image and the

floating image, respectively, throughout all the experiments.

jLj Tissue

class

The values of the overlap measure

Before

registration

GC LP @

5�5�4

LP @

10�10�7

LP @

18�18�13

27 WM 0.46 0.60 0.40 0.42 0.47

GM 0.45 0.61 0.45 0.48 0.51

CSF 0.25 0.43 0.26 0.31 0.37

Time – 928 s 1001 s 1985 s 2018 s

125 WM 0.46 0.67 0.40 0.43 Failed

GM 0.45 0.69 0.45 0.48

CSF 0.25 0.55 0.26 0.31

Time – 4230 s 2829 s 7289 s

343 WM 0.46 0.69 0.40 0.43 Failed

GM 0.45 0.71 0.45 0.48

CSF 0.25 0.60 0.27 0.31

Time – 11 383 s 7135 s 18 446 s

729 WM 0.46 0.70 0.40 Failed Failed

GM 0.45 0.72 0.45

CSF 0.25 0.62 0.26

Time – 24 335 s 14 466 s

1331 WM 0.46 0.70 0.40 Failed Failed

GM 0.45 0.73 0.45

CSF 0.25 0.63 0.26

Time – 42 734 s 25 798 s

2197 WM 0.46 0.70 Failed Failed Failed

GM 0.45 0.73

CSF 0.25 0.63

Time – 66 421 s

3375 WM 0.46 0.69 Failed Failed Failed

GM 0.45 0.72

CSF 0.25 0.63

Time – 90 046 s
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labels. Note that the machine used in the experiments was
equipped with 3 GBytes of physical memory and it is the max-
imum physical memory supported by 32-bits Windows systems.

4.8. Computation times

Using the experiment configurations as given in Section 4.1,
the computation times for performing one set of 2D registration
experiment using FFD, DEMONS, LP and the proposed method
were all less than one minute. The computation times for
performing one set of 3D registration experiment using FFD,
DEMONS, LP and the proposed method were approximately
24 h, 6 h, 10 min and 24 h, respectively. Note that, regarding the
configurations given in Section 4.1, sparse sampling was used in
LP to prevent the registration experiments from being terminated
unexpectedly because of the lack of memory. Therefore, the
computation time of LP under this configuration is relatively
faster than the other compared methods. The computation times
of LP and the proposed method in different configurations can be
found in Tables 5 and 6. It is shown that the computation time of
the proposed method is comparable to that of LP, especially when
dense control point grid was used in LP, while the accuracy of the
proposed method is higher than that of LP. All experiments were
conducted in a machine equipped with an Intel Core 2 Duo
(2.13 GHz) CPU, 3 GBytes of physical memory and Windows XP
operating system. All programs were implemented in Cþþ pro-
gramming language.
5. Conclusion and future work

In this paper, we propose a method for the non-rigid medical
image registration problems. First, a flexible non-parametric
deformation model is adopted in the proposed formulation. It
allows every voxel to displace freely and this is crucial for
recovering the complex deformation fields in the medical image
registration problems. The model also considers the smoothness
of the adjacent displacements. Second, we suggest an energy
function associated with the proposed deformation model for
recovering the displacement vector field D during the non-rigid
image registration process. This function considers the intensity
similarity between the image volumes together with the smooth-
ness requirement of the deformation field simultaneously, given
the current transformation. Finally, despite the supernormal high
degree of freedom in D as well as its smoothness requirement, we
have shown that our energy function is submodular and can be
optimized by using the graph-cuts method, which can provide a
solution within a guaranteed factor of the exact minimum.

Experimental results on artificially distorted brain magnetic
resonance images have demonstrated that the proposed method
shows robustness against different challenging registration cases,
e.g. large deformation, ripple distortion. It can be explained by the
flexibility of the proposed deformation model, as well as the power
of the graph-cuts method to perform optimization in a relatively
global manner. Moreover, according to the registration results on
the realistic brain phantoms obtained from the Simulated Brain
Database, the proposed method can consistently achieve higher
registration accuracy than the two state-of-the-art methods: free-
form deformations based method [14] and demons based method
[21], and the linear programming based method [22]. It is also
shown that the recovered deformation fields are realistic.

In the future, we will address the quality of the transformation
in terms of bijectivity and inverse consistency such that a
diffeomorphic deformation field can be recovered. Moreover,
since our formulation is simple and general, it deserves different
extensions, such as incorporating feature point constraints.
Finally, although all the experiments presented in this paper were
carried out on the brain magnetic resonance images, the proposed
method can also be applied to other imaging modalities in theory
and will be tested on different types of medical images and
application scenarios.
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