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Abstract

Robust registration is essential for image-guided therapy as well as structural and functional analysis. In this work, we present a
new method that can give superior robustness in multi-modal image registration. This method is based on the a priori knowledge
of the joint intensity distributions between image pairs at different image resolutions and the Kullback-Leibler distance (KLD)
similarity measure. Expected joint distributions are estimated from pre-aligned training images. Two image volumes are registered
when the value of KLD is minimized. Two thousand randomized registration experiments on clinical brain CT – T1 image pairs
from the Retrospective Image Registration Evaluation (RIRE) project have been performed and evaluated independently by
the project. The results demonstrate that, as compared with the conventional Mutual Information (MI)-based method and the
Normalized Mutual Information (NMI)-based method, the proposed KLD-based method can significantly increase the registration
success rates. To increase the registration accuracy, we further propose a refinement as the last step of the KLD-based method. The
refinement step can be based on either MI or NMI, namely the KLD-MI-based method and KLD-NMI-based method respectively.
Experimental results on CT – T1 image pairs show that the KLD-MI-based and KLD-NMI-based methods consistently give higher
registration accuracy than the KLD-based method. The success rates of the KLD-MI-based and KLD-NMI-based methods are high.
In addition, the effects on the performance of KLD-based methods under different histogram bin sizes, intensity inhomogeneity
and different noise levels are analyzed using simulated BrainWeb T1 – T2 image pairs.
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1. Introduction

Multi-modal image registration is a key enabling tech-
nology that facilitates many applications of medical images
[Pluim et al., 2003, Maintz and Viergever, 1998]. Many reg-
istration problems have been solved by the use of Minimum
Entropy or Maximum Mutual-Information-based methods
[Wells et al., 1996, Maes et al., 1997, Pluim et al., 2003, Ha-
jnal et al., 2001]. One of the appeals of these approaches lies
in their generality – they do not require the use of domain-
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specific modeling. However, as will be demonstrated in this
paper, it is likely that more robust solutions to specific ap-
plications can be obtained by the use of stronger, domain-
specific models. A robust multi-modal image registration
method is particularly important for conducting a large-
scale image analysis project.

As the use of multi-modal rigid body registration
spreads, the number of aligned image pairs that are avail-
able in clinical image databases (obtained either by manual
or by automatic means) is increasing. These image pairs
can serve as training data, from which the statistical joint
intensity properties or models can be observed and learned
in order to acquire useful a priori knowledge for future reg-
istration tasks, e.g. mappings for structural and functional
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analysis of brains.
There is a growing body of methods that exploit domain-

specific prior models while solving medical image analy-
sis problems [Leventon, 2000, Osher and Paragios, 2003].
For example, given a trained statistical shape model of a
target object, the model can be deformed and moved dur-
ing the registration process so that the results of registra-
tion and segmentation can be more robust in the situations
where the images are noisy or objects are unclear and sub-
tle [Nikou et al., 1998, Wang and Staib, 2000, Corouge and
Barillot, 2001, Vemuri et al., 2003, Tsai et al., 2003b,a,
Yang et al., 2003]. However, in these methods, the complex
shapes of the target object need to be delineated via seg-
mentation, analyzed, parameterized and modeled, which is
non-trivial.

Rather than using statistical shape models, we exploit
the use of known probabilistic models of the joint inten-
sity properties among two images in registration. Our
method can increase registration robustness but does not
require detailed segmentation. It is based on our prior
work [Chung et al., 2002, Soman et al., 2003, Gan et al.,
2004], which was motivated in part by the work of Lev-
enton and Grimson [Leventon and Grimson, 1998]. The
proposed method is a multi-resolution, multi-modal image
registration method that uses the a priori knowledge of
the joint intensity distributions. These joint distributions
can be estimated from aligned training images at differ-
ent resolutions. Our method makes use of the expected
joint intensity distribution between two pre-aligned train-
ing images as a reference distribution. Two novel images
of the same or different acquisitions are aligned when
the reference and observed joint intensity distributions
are well matched. The difference between distributions
is measured using the Kullback-Leibler distance (KLD).
The registration procedure is a multi-resolution iterative
process. The procedure at the current image resolution is
terminated when the KLD value between the observed and
reference joint intensity distributions becomes sufficiently
small. Then, given the current estimated transformation,
the next higher resolution registration continues until the
original image resolution is reached.

In this work, the registration performance evaluation is
based on experiments that used clinical brain T1-weighted
MRI (T1) and X-ray computed-tomography (CT) image
volumes, and simulated brain T1-weighted MRI and T2-
weighted MRI (T2) image volumes. In total, there are 2000
randomized registration experiments on clinical CT – T1
image pairs from the RIRE project. In this intensive study,
all registration results were evaluated independently by the
RIRE project. Based on the evaluation results, it is ex-
perimentally shown that the KLD-based method can give
significantly higher registration success rates than the con-
ventional Mutual Information (MI)-based method [Maes
et al., 1997, Wells et al., 1996] and the Normalized Mutual
Information (NMI)-based method [Studholme et al., 1999].

Note that the intensity variation between the training
and testing image pairs can lead to a slight mismatch be-

tween the expected and observed joint distributions, which
can affect the registration performance. To minimize its ad-
verse effect on registration accuracy, after implementing the
KLD-based method, we further propose a refinement step
based on MI or NMI, namely the KLD-MI-based and KLD-
NMI-based methods. The experimental results show that
the KLD-MI-based and KLD-NMI-based methods consis-
tently give a higher registration accuracy than the KLD-
based method, and obtain high success rates.

The organization of the paper is as follows. In Section
2, we present our registration method. In Section 3, we
show the experimental results. We give the conclusion and
outline future research directions in Section 4.

2. Methods

2.1. Estimation of the expected and observed joint
intensity distributions

Let If and Ir be the sets of intensity values of two images
acquired from the same or different acquisitions of a patient,
where the subscripts f and r represent respectively the
floating and reference images. Assume that the intensity
values of image voxels are independently and identically
distributed (i.i.d.) in space, and let Xf and Xr be the image
domains of If and Ir respectively.

The joint distribution P̂ (if , ir) describes the underlying
statistical relationship that we expect to observe on float-
ing and reference images, that is, if ∈ If and ir ∈ Ir re-
spectively, when they are properly aligned. This expected
distribution can be estimated from a pre-aligned training
image pair that can be obtained from manual registration
by experienced clinicians or other automatic image regis-
tration methods, for example, a multi-resolution MI-based
method.

Given two precisely aligned training image volumes, sam-
ples of intensity pairs Î = {if (x), ir(xr) | if ∈ If , ir ∈ Ir}
can be drawn jointly from If and Ir, where x are the grid
point coordinates in Xf (this means that the sampling do-
main is equal to Xf ) and xr are the corresponding coordi-
nates of x in Xr. Partial volume (PV) interpolation is used
to obtain smooth histograms [Maes et al., 1997]. The ex-
pected joint intensity distribution P̂ can be approximated
by either Parzen windowing or histogramming [Bishop,
1995]. Histogramming is employed in this work because it
is simple and efficient when estimates of derivatives are not
needed.

To model the statistical relationship of the image in-
tensities at different resolutions, a Gaussian-based multi-
resolution (or coarse-to-fine) image representation is used
[Burt and Adelson, 1983], namely Gaussian pyramid. Im-
ages at the original resolution give full details of the in-
tensity characteristics, while at the lower resolutions the
reduced resolution images give less noisy and low inten-
sity variation representations of the original images [Gon-
zalez and Woods, 2002]. For further illustration, Figures
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1a and 1b respectively show slices from T1-weighted MRI
image volumes with 3% and 5% noise levels, which were
obtained from the BrainWeb Simulated Brain Database
[Collins et al., 1998]. The intensity distributions of the two
volumes are plotted in Figures 1e and 1f. Note that the in-
tensities are scaled to 32 bins. For comparison, Figures 1c
and 1d, 1g and 1h give slices from the lower resolution im-
age volumes and the corresponding intensity distributions.
Empirically, hierarchical approach of this sort have demon-
strated some resistance to becoming trapped in incorrect
local extrema of the objective function, while preserving the
accuracy of transformation estimates [Wells et al., 1996].

From Figures 1c and 1d, 1g and 1h, it is observed that
the slices and distributions from the lower resolution im-
ages at different levels are more similar because of smooth-
ing and reduced resolution, when compared to those of the
original images. In the same way, the joint distributions of
different image pairs at lower resolution can be more sim-
ilar than those of the original image pairs. This property
can increase the robustness of the proposed registration
method with respect to the intensity variation among dif-
ferent image pairs. In our method, the expected joint in-
tensity distribution is estimated and serves as the reference
distribution at each resolution for a multi-resolution based
optimization, which is described in Section 2.3.

Given a novel testing image pair with a hypothesized
transformation T , the observed joint intensity distribution
PT

o (if , ir) models the current statistical intensity relation-
ship between images. Note that the observed joint intensity
distribution PT

o is dependent on the transformation T and
changes during the registration. At each resolution, sam-
ples of intensity pairs Io = {if (x), ir(T (x))|if ∈ If , ir ∈
Ir} can be drawn jointly from If and Ir, where x are the
coordinates in Xf . If x falls outside the domain of floating
image Xf , then we adopt the following convention: an ar-
bitrary constant intensity value in the background of refer-
ence image Xr is assigned to ir. Similar to the estimation
of distribution P̂ , the histogramming approach is used to
estimate the distribution PT

o .

2.2. Kullback-Leibler distance (KLD)

Given the expected P̂ and observed PT
o joint intensity

distributions, the Kullback-Leibler distance (KLD) be-
tween the two distributions is given by [Cover and Thomas,
1991]

D(PT
o ||P̂ ) =

∑

if ,ir

PT
o (if , ir) log

PT
o (if , ir)

P̂ (if , ir)
. (1)

KLD measures the similarity between two distributions,
and gives an asymmetrical, or directed distance from the ob-
served distribution PT

o to the expected distribution P̂ [Rip-
ley, 1996]. According to [Cover and Thomas, 1991, Kull-
back, 1968], the KLD value is non-negative and becomes
zero if and only if two distributions are equivalent. Intu-
itively, and empirically, when the two testing images If and

Ir are not perfectly registered, the value of KLD, D, will
be positive and relatively large because PT

o and P̂ are not
similar, PT

o 6= P̂ . On the other hand, if the testing images
are well registered, then the value of KLD becomes small
or is equal to zero (that is, PT

o is very similar or equal to
P̂ ). To avoid zero value in P̂ and PT

o , a very small value
(ǫ = 1.4 × 10−45 ) is added to each bin before histogram
normalization is performed.

2.3. Estimation of the optimal transformation T̂

The goal of KLD-based registration is to find an estimate
of the optimal transformation T̂ . We assume that the sim-
ilarity between the observed PT

o and expected P̂ joint in-
tensity distributions is maximum when the optimal trans-
formation is reached,

T̂ = arg min
T

D(PT
o ||P̂ ). (2)

The proposed KLD-based method is conceptually different
from the MI-based registration method, where the optimal
transformation is estimated by

T̂ = arg max
T

MI(If , Ir;T ), (3)

where

MI(If , Ir|T ) = D(PT
o (if , ir)||P

T
o (if ) · PT

o (ir)), (4)

PT
o (if ) and PT

o (ir) are the marginal distributions of float-
ing and reference images respectively. According to Equa-
tion 4, mutual information is the Kullback-Leibler distance
between the joint distribution and the product of its two
marginal distributions. The MI-based method encourages
functional dependence between the two image random vari-
ables, If and Ir, by maximizing the information-based dis-
crepancy (the Kullback-Leibler distance) between the joint
distribution PT

o (if , ir) and the product of the two marginal
distributions, PT

o (if ) ·PT
o (ir). On the other hand, the pro-

posed KLD-based method determines the transformation
T based on the similarity between the expected P̂ and ob-
served PT

o joint intensity distributions. In other words, the
optimal transformation is based on the expected outcomes
learned from the training data. For a taxonomical review
of several commonly used information theoretic similarity
measures, see [Zöllei et al., 2003].

In order to accelerate the registration process and en-
sure the robustness of the proposed method, as mentioned
in the previous section, we exploit a multi-resolution ap-
proach [Wells et al., 1996, Cole-Rhodes et al., 2003]. Rough
estimates of T̂ can be derived from downsampled images
and used as starting values for optimization at higher reso-
lutions. Then, the fine-tuning of the solution can be derived
at the original image resolution. In this paper, the observed
and expected joint distributions are estimated at each reso-
lution so that the prior knowledge about the intensity map-
pings at different resolutions can be better captured. The
value of KLD at each resolution is minimized by Powell’s
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method with a multi-resolution strategy [Press et al., 1992]
because it does not require calculations of gradient values
and, hence, is simple in terms of implementation. Powell’s
method uses Brent’s 1D line minimizations to iteratively
search along a set of directions that are appropriate for the
local structure of the objective function.

2.4. Refinement

In our method, we expect that the registration quality
depends on the similarity between the joint distributions
of the training (expected) and testing (observed) image
pairs. Due to the non-linear bias field or noise, the induced
intensity variation between the training and testing image
pairs at the original resolution may affect the registration
accuracy because of the slight mismatches between joint
distributions.

In order to further improve registration accuracy, a re-
finement step is introduced as an extension to the proposed
algorithm. It can be based on Mutual Information (MI)
or Normalized Mutual Information (NMI). The refinement
uses the transformation obtained by the aforementioned al-
gorithm based on KLD (see Sections 2.1 – 2.3) as the start-
ing alignment between the reference and floating images at
the original resolution. Then, the conventional MI-based or
NMI-based methods can be applied to derive the optimal
registration, as the last registration step. This refinement
is usually completed after a few iterations. As such, the
computational complexity is only slightly higher.

In Figure 2, a flow chart is shown that describes the pro-
posed multi-resolution registration method, which consists
of the KLD-based registration and the refinement step. Ex-
perimental results and further illustration are given in Sec-
tion 3.3.

3. Results

To evaluate the Kullback-Leibler distance (KLD)-based
similarity measure and the proposed registration method,
we have performed experiments on a set of clinical brain
X-ray computed-tomography (CT) and T1-weighted MRI
images (T1), and a set of simulated brain T1-weighted and
T2-weighted MRI images (T2). Section 3.1 describes the
image datasets, ground truth and sampling region. Section
3.2 then shows the performance comparisons on robust-
ness and accuracy between the proposed method and the
conventional MI-based and NMI-based methods. In Sec-
tion 3.3, we present the experimental results for justifying
the algorithmic extension based on the refinement step. Fi-
nally, we demonstrate the effects on registration robustness
and accuracy under different histogram bin sizes, intensity
inhomogeneity and different noise levels in Section 3.4.

3.1. Image datasets, ground truth and sampling region

In the experiments described below, we used a set of
real CT – T1 data from the Retrospective Image Regis-
tration Evaluation (RIRE) Project. Note that all the T1
images have been rectified by the RIRE project. CT and
T1 image volumes were the reference and floating volumes
respectively. In general, the size of a CT image volume is
512×512×34 voxels and the voxel size is 0.65×0.65×4mm3,
and a T1 image contains 256 × 256 × 26 voxels of dimen-
sions 1.25× 1.25× 4mm3. The registration results were ex-
amined based on the evaluations of accuracy performed by
the RIRE project.

To build expected (training) joint intensity distributions,
we determined the ground truth for registration experi-
ments as follows. The training image pair was first regis-
tered by the multi-resolution MI-based and NMI-based reg-
istration methods. For both methods, the evaluations of ac-
curacy, measured as the target registration errors (TREs)
in ten volumes of interest (VOIs) [West et al., 1997], were
obtained independently from the RIRE project. TRE is de-
fined as the Euclidean distance between the registered tar-
get position of the centroid voxel of a VOI and that of the
gold standard [West et al., 1997]. After examination, four
datasets (Datasets pt-001, pt-003, pt-005 and pt-007) with
less than 1mm median TRE values were selected and used
in the experiments. Then the corresponding transforma-
tions, whose median TRE values were 0.5077mm (for pt-
001), 0.7200mm (for pt-003), 0.7807mm (for pt-005) and
0.6179mm (for pt-007) respectively, were used as ground
truth registrations for estimating the expected P̂ joint in-
tensity distributions and performing randomized experi-
ments.

We also used six pairs of BrainWeb T1 and T2 image
volumes [Collins et al., 1998] (181 × 217 × 181 voxels, 1 ×
1 × 1mm3) to study the effects of different histogram bin
sizes, intensity inhomogeneity and different noise levels on
the registration performance. For three pairs, the intensity
non-uniformity (RF) level was 0%, and the noise levels were
3%, 5%, 7% and 9% respectively. The other two pairs were
with 3% noise and 20% and 40% RF respectively. T1 and
T2 image volumes were the reference and floating volumes
respectively.

We find that, in all training pairs from the RIRE project
and BrainWeb, more than 70% and 42% of the total voxels
belong to the background region respectively. This makes
the joint distribution of the “interesting” foreground voxels
have less importance in the entire distribution. Therefore,
for estimating the expected joint intensity distribution P̂ ,
samples were generated jointly from the foreground regions
alone (brain regions in this application) and the background
region was left out. Note that the brain regions can be iden-
tified by using the active contours or brain detection tech-
niques [Boesen et al., 2004, Brummer et al., 1993]. To pre-
serve the original intensity range, the maximum and min-
imum of the expected joint intensity distribution were the
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entire image volume maximum and minimum respectively
before the background region was left out. With regard to
the estimation of the observed joint intensity distribution
PT

o , since the input images are unknown, the background
region was not left out in the testing image pairs. As such,
the entire testing image volumes were included in the reg-
istration process. Figures 3a and 3b show the translation
probes of KLD values when the background region is left
out and included respectively in estimating the expected P̂
joint intensity distribution. Two pairs (pt-003 and pt-005)
of CT – T1 RIRE image volumes were used as testing and
training image pairs respectively. It is shown that the cap-
ture range is significantly longer when the background is
excluded in the training process. Note that the background
of the testing image pairs is not excluded in the registration
process.

3.2. Performance comparisons on robustness and accuracy

In order to study and compare the registration robust-
ness and accuracy of the conventional MI-based and NMI-
based methods, and the KLD-based method, randomized
experiments were performed on a set of CT – T1 RIRE im-
age pairs. Hereafter the aforementioned three methods are
referred to as MI, NMI, KLD respectively.

A total of four CT – T1 image pairs (pt-001, pt-003, pt-
005 and pt-007) were used in these experiments and each
image pair was treated as either testing or training image
pairs. Therefore, there were 20 experiments in total (i.e.,
for each testing image pair, there were 1 experiment for MI
and for NMI respectively, and 3 experiments for KLD) and
each experiment took 100 trials. At each trial, the ground
truth registration parameters of the testing image pair (see
Section 3.1) were perturbed by six uniformly distributed
random offsets for all translational and rotational axes. The
perturbed parameters were then treated as the starting
alignment. In order to show the high registration capability
of KLD with respect to initial alignment, random offsets
for X and Y translational axes were drawn between around
[-150, 150]mm and random offsets for Z translational axis
were drawn between around [-70, 70]mm. Note that these
ranges were set so that two brains in CT and T1 images
have at least 10% overlapping region. While, random offsets
for each rotational axis were respectively drawn between [-
0.52, 0.52] radians (i.e., [-30, 30] degrees). As a fair compar-
ison, for any testing image pair, the same set of randomized
starting alignments was used for different methods.

For implementation, four resolution levels are used for
all the three methods (MI, NMI and KLD). The definition
of resolution levels in the Gaussian Pyramid representation
follows the same convention as in [Burt and Adelson, 1983],
that is, Level 0 image represents the highest and original
resolution and Level 3 image represents the lowest resolu-
tion. Smoothing was performed via the binomial filter with
coefficients [1, 4, 6, 4, 1] [Wells et al., 1996]. For the ease of
implementation, all voxels in the downsampled floating vol-

umes (i.e., T1 images) were used at Levels 1 – 3. At Level 0,
1/4 (25%) of all voxels were sampled (one voxel randomly
picked from every 2×2 matrix in each slice). In the experi-
ments for both MI and NMI, the image intensity values were
linearly scaled to 64 bins, which have been used in the con-
ventional MI-based and NMI-based methods [Studholme
et al., 1999, Knops et al., 2006, Zhu and Cochoff, 2002], and
the same number of bins was used for comparing the perfor-
mance between different refinement methods. In the exper-
iments for KLD, to reduce noise and intensity variation, the
image intensity values in both testing and training image
pairs were scaled to 32 bins by performing histogram nor-
malization based on a histogram transformation function
which linearly mapped an input histogram from the input
intensity range to a discrete intensity range (e.g. 0 - 31).
To be more robust to the outliners and image artifacts, the
input intensity maximum and minimum of the histogram
transformation function are respectively the median min-
imum Imin and median maximum Imax of all datasets in
each experiment set. When registering a novel testing im-
age pair, the same median values, Imin and Imax, are used
for histogram normalization. For the Brent and Powell op-
timization methods, the fractional precision convergence
parameters were set to 10−3 and 10−4 respectively.

With regard to the registration experiments, we exam-
ined the results based on the evaluations of accuracy mea-
sured as TREs in ten VOIs, which were obtained indepen-
dently from the RIRE project. To evaluate each derived
registration, the median TRE value was then taken for as-
sessing registration success. A registration was judged to
be successful if the median TRE value was smaller than
4mm, which was the largest voxel dimension of the CT – T1
image pair; otherwise, it was considered a misregistration.

Table 1 lists the success rates for MI, NMI and KLD for
all testing image pairs (pt-001, pt-003, pt-005 and pt-007),
together with the means and standard deviations of the
median TRE values for the successful registrations. Note
that the results of KLD were grouped based on the testing
image pair, by summarizing results from different training
image pairs for each testing image pair. For example, if
the testing image pair was from dataset pt-001, then the
training image pair would be from datasets pt-003, pt-005
and pt-007. Note that the Total row summarizes the results
from all testing image pairs. (The detailed results for KLD
will be presented in Section 3.3.) It is shown in Table 1 that
KLD gives the highest success rates as compared with MI
and NMI.

For registration accuracy, it is observed that, across dif-
ferent testing image pairs, the median TRE values of the
successful registrations for KLD are slightly larger than
those for MI and NMI. But the registration accuracy of
KLD can be improved by way of a refinement step (see next
section for details).

5



3.3. Justification of the refinement step

As described in Section 2.4, the quality of the KLD-based
registration method can be further improved if a refinement
step is added as the last step of the registration process. To
justify the extension, we have performed a series of similar
randomized experiments described Section 3.2 on CT – T1
registration with the KLD-based method and the extended
methods respectively. We have considered two possible re-
finement steps based on MI (hereafter referred to as KLD-
MI) and NMI (hereafter referred to as KLD-NMI). The
same image pairs (pt-001, pt-003, pt-005 and pt-007) ob-
tained from the RIRE project were tested. Therefore, there
were 12 experiments on CT – T1 registration for KLD-MI
(i.e., 3 experiments for each testing image pair), and 12 ex-
periments for KLD-NMI. Note that each experiment took
100 trials, and each testing image pair used the same set of
randomized starting alignments as those in Section 3.2.

For each derived solution, the registration was judged to
be successful using the same criterion (< 4mm) based on
the median TRE values obtained from the RIRE project.
As listed in Table 2, the KLD, KLD-MI and KLD-NMI

rows show the breakdown success rates and registration ac-
curacies when different training pairs (the columns pt-001,
pt-003, pt-005 and pt-007) were used for each testing
pair. In all experiments, training and testing pairs were dif-
ferent for each test. The column All lists the combined re-
sults when different testing pairs were used for KLD, KLD-
MI and KLD-NMI, and the Total row summarized the re-
sults from all testing image pairs.

For registration accuracy, after either one of the refine-
ment steps was implemented, it is shown in Table 2 (column
All and row Total) that the median TRE values of KLD
have been reduced for all testing image pairs. In addition,
after refinement, KLD-MI and KLD-NMI can achieve the
accuracy as high as those of MI and NMI respectively, as
listed in Table 1. We would like to note that since neither
MI-based nor NMI-based refinement step has improved the
success rates for pt-001, pt-003, pt-005 and pt-007, then the
success rates of KLD-MI and KLD-NMI are not shown in
the table for a clear representation. The table reveals that
(1) neither one of the refinement methods made any origi-
nally successful registration obtained from KLD unsuccess-
ful; (2) neither one of the refinement methods could correct
the misregistrations that had large median TRE values.

Table 2 also presents the detailed results for each test-
ing image pair when different training pairs were used. It
is observed that, for all testing image pairs, there was only
slight variation of the success rates and registration accu-
racy of KLD, KLD-MI and KLD-NMI, while changing the
training image pairs.

With regard to the registration speed, after averaging all
experiments presented above (i.e., in Sections 3.2 and 3.3),
KLD, KLD-MI and KLD-NMI respectively took 151s, 193s
and 192s to register a CT – T1 RIRE image pair on a 3.2
GHz PC with 1.00 GB RAM. On the other hand, MI and

NMI took 148s and 143s respectively.

3.4. Effects on robustness and accuracy under different
histogram bin sizes, intensity inhomogeneity and noise

To study the effects on registration performance of KLD
under different histogram bin sizes, intensity inhomogene-
ity and different noise levels, extra sets of randomized ex-
periments were performed on five pairs of BrainWeb T1
and T2 image volumes. The image pair with 3% noise level
and 0% RF level was used as the training image pair, and
the testing image pairs were the other five image pairs (see
Section 3.1 for a detailed description). As the BrainWeb
T1 – T2 image pairs have already been aligned precisely,
the ground truth registrations were the null transforma-
tion. Note that each experiment took 100 trials and the
randomized initial alignments were generated as described
in Section 3.2.

To evaluate each derived registration with respect to
the corresponding ground truth registration (i.e., the null
transformation), similar to Maes et al. and Knops et al.
[Maes et al., 1997, Knops et al., 2006], a tight bounding box
was fitted around the brain for each T2 images. For each
of the eight corner points, the Euclidean distance between
the ground truth position and the position transformed by
our solution was computed. The median value of the eight
distances was then taken for assessing registration success.
A registration was judged to be successful if the median
error was smaller than 1mm, which was the largest voxel
dimension of the BrainWeb T1 – T2 image pair; otherwise,
it was considered a misregistration.

The experiments for different histogram bin sizes (i.e.,
16, 32 and 64) took the T1 – T2 image pair with 5% noise
level and 0% RF level as the testing image pair. Table 3
lists the success rates of KLD and the means and standard
deviations of the median errors based on the 1mm criterion
as described above. It is shown that, compared to the 1mm
criterion, the registration accuracies of KLD are high and
comparable between 16, 32 and 64 bins. The robustness
of KLD increases from 93% to 98% when the number of
bins increases from 16 to 32, and drops slightly from 98%
to 96% when the number of bins further increases from 32
to 64. Therefore, for KLD, 32 bin histogram configuration
was used in this paper.

To study the effects under intensity inhomogeneity, two
T1 – T2 image pairs with 3% noise level and different RF
levels (i.e., 20% and 40%) were used as the testing image
pairs. The evaluation results (based on the 1mm criterion)
of KLD are shown in Table 4, together with those of KLD-
MI as a comparison. Note that the success rates of KLD-MI
are exactly the same as those of KLD. It is observed that
the robustness and accuracy decrease slightly when the RF
level increases.

Three T1 – T2 image pairs with different noise levels
(i.e., 5%, 7% and 9%) and 0% RF level were used as the
testing image pairs in the experiments for studying the
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effects under different noise levels. Table 5 presents the
evaluation results (based on the 1mm criterion) of KLD
and KLD-MI. From the table, an observation is that the
success rates and accuracies of KLD and KLD-MI are both
high but decrease when the noise level increases from 5%
to 7%.

In Table 5, it is noticed that when the noise level increases
to a high value, i.e. 9%, the success rate drops significantly
to 25% for both KLD and KLD-MI, and the accuracy also
decreases. The intensity distributions of the T1 image vol-
umes with 9% noise level at the original resolution and the
resolution Level 2 are plotted in Figures 4c and 4d respec-
tively, and the image slices at the original resolution and
Level 2 are shown in Figures 4a and 4b respectively. By
comparing between Figure 1e (training pdf, 3% noise level)
and Figure 4c, and between Figure 1g (training pdf, 3%
noise level) and Figure 4d, it is observed that there is a rel-
atively large discrepancy between the testing and training
joint intensity distributions. Using the background class la-
bels for the T1 images available on the BrainWeb website,
the background regions were selected from the images with
3% and 9% noise levels at the original resolution level. The
estimated background means and SDs were 5.88 ± 3.94 and
14.38 ± 7.62 for 3% and 9% noise levels respectively (in-
tensity ranges from 0 to 255). This shift of the background
intensity with a large number of voxels is one of the causes
leading to a relatively large discrepancy between the testing
and training joint intensity distributions. However, inten-
sity shift of such large number of voxels was not observed
in the other clinical datasets from the RIRE project. The
results listed in Table 1 and Table 2 show that the success
rates of KLD are consistently high. As a comparison, simi-
lar to the BrainWeb simulated image volumes, large VOIs
in the RIRE T1 clinical image volumes were selected. The
estimated background means and SDs were relatively con-
sistent: 33.36 ± 15.61 for pt-001, 31.53 ± 14.34 for pt-003,
21.86 ± 10.10 for pt-005 and 27.01 ± 12.34 for pt-007 (in-
tensity ranges from 0 to 212 − 1).

4. Conclusion and Future Work

This paper has proposed a multi-resolution, multi-modal
image registration method that is based on minimizing the
Kullback-Leibler distance (KLD) between the observed and
expected joint intensity distributions. An extension of the
proposed KLD-based method has also been presented. We
have performed experiments on brain T1 and CT datasets
from the RIRE project. The estimated transformations
were evaluated independently by the RIRE project. The
results show that the KLD-based method has a higher suc-
cess rate (95.17%) than the Mutual Information (MI)-based
method (70.50%) and the Normalized Mutual Informa-
tion (NMI)-based method (13.75%). The MI-based method
and NMI-based method give the accuracy of 1.0172mm ±
0.3730mm and 0.7961mm ± 0.3111mm respectively. How-
ever, the KLD-based method gives slightly lower accuracy

(1.4094mm ± 0.5881mm) than MI-based and NMI-based
methods.

Non-linear bias fields or noise can bring about an ad-
verse effect in registration accuracy because of the slight
mismatches between joint intensity distributions. There-
fore, a refinement has been suggested as the last step of
the KLD-based registration process. The refinement step
can be based on either MI-based or NMI-based method,
namely the KLD-MI-based and KLD-NMI-based methods
respectively.

The experimental results of the randomized registration
tests on T1 and CT datasets from the RIRE project demon-
strate that the accuracies of the KLD-MI-based method
(0.9319mm ± 0.2418mm) and KLD-NMI-based method
(0.7565mm ± 0.2488mm) are higher than those of KLD-
based method (1.4094mm ± 0.5881mm), and there is no
difference in success rates (95.17%) between KLD-based,
KLD-MI-based and KLD-NMI-based methods.

Experiments have been also carried out using a set of
simulated brain T1 and T2 images from the BrainWeb Sim-
ulated Brain Database. The results show that the refine-
ment step can improve the registration accuracy under in-
tensity inhomogeneity and noise. For example, when the
RF level was 40%, the registration accuracy increased from
0.0255mm ± 0.0305mm to 0.0094mm ± 0.0057mm after
the MI-based refinement step was implemented. Similarly,
when the noise level was 7%, the accuracy increased from
0.0601mm ± 0.0637mm to 0.0141mm ± 0.0053mm after
the refinement step was implemented. When the noise level
increased from 3% to a high value, i.e. 9%, it was observed
that the mismatch between the expected and training joint
intensity distributions became large, which can lead to a
lower image registration quality in terms of the robustness
and accuracy.

Future work will include a further study on the inclusion
of useful features in the training process, e.g. edges, ridges,
local patterns, or a combination of these cues and so on.
Finally, we will investigate and compare different ways to
combine information extracted from several training pairs
or pre-aligned atlas images for constructing the expected
joint intensity distributions.
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Fig. 1. (a) and (b) are slices of BrainWeb T1-weighted MRI (T1) image volume with 3% noise level and 5% noise level respectively. (e) and
(f) are the intensity distributions of the T1 image volumes shown in (a) and (b) respectively. (c) and (d) are slices from the lower resolution

T1 image volume with 3% noise level and 5% noise level respectively. (g) and (h) are the intensity distributions of the lower resolution T1
image volume shown in (c) and (d) respectively.



Fig. 2. This chart describes the implementation flow of the proposed multi-resolution KLD-based registration and the refinement step.
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Fig. 3. The translation probes of KLD values when the background region is left out (a) and included (b) respectively in estimating the expected
P̂ joint intensity distribution.



Table 1
The success rates of MI, NMI and KLD, and the means and standard deviations of the median TRE values of the successful registrations
(based on 4mm criterion) for different testing image pairs, while varying the training image pairs for each testing image pair. Please see
Section 3.2 for more details.

MI NMI KLD
Dataset

success% mean ± sd success% mean ± sd success% mean ± sd

pt-001 67.00% 0.7025 ± 0.0196 13.00% 0.8162 ± 0.4287 95.67% 1.1067 ± 0.1250

pt-003 76.00% 0.9041 ± 0.4431 12.00% 0.7351 ± 0.0324 95.67% 1.3366 ± 0.3737

pt-005 72.00% 1.1158 ± 0.2359 16.00% 1.0480 ± 0.2620 95.00% 2.0143 ± 0.8369

pt-007 67.00% 1.3542 ± 0.2603 14.00% 0.5421 ± 0.0301 94.33% 1.1813 ± 0.1254

Total 70.50% 1.0172 ± 0.3730 13.75% 0.7961 ± 0.3111 95.17% 1.4094 ± 0.5881



Table 2. The success rates of KLD, KLD-MI and KLD-NMI, and the means and standard deviations of the median TRE values of the successful registrations (based on 4mm criterion)
for different testing image pairs by taking different training image pairs. Note that the success rates of KLD-MI and KLD-NMI, which are exactly the same as those of KLD, are
excluded to avoid repetition. Please see Section 3.3 for more details.

Training image pair

Dataset Method All pt-001 pt-003 pt-005 pt-007

success% mean±sd success% mean±sd success% mean±sd success% mean±sd success% mean±sd

KLD 95.67% 1.1067±0.1250 – 95% 1.2679±0.0127 96% 1.0217±0.0059 96% 1.0320±0.0891

pt-001 KLD-MI 0.7130±0.0220 – 0.7054±0.0195 0.7154±0.0201 0.7180±0.0242

KLD-NMI 0.6331±0.0384 – 0.6122±0.0191 0.6616±0.0230 0.6252±0.0472

KLD 95.67% 1.3366±0.3737 95% 1.2855±0.2071 – 95% 0.9569±0.0229 97% 1.7585±0.2199

pt-003 KLD-MI 0.7506±0.0201 0.7561±0.0212 – 0.7450±0.0178 0.7508±0.0199

KLD-NMI 0.7545±0.0276 0.7517±0.0296 – 0.7564±0.0197 0.7554±0.0318

KLD 95.00% 2.0143±0.8369 99% 2.6796±0.4212 92% 1.0449±0.4180 – 94% 2.2625±0.5639

pt-005 KLD-MI 1.1021±0.2203 1.2733±0.1523 0.8575±0.0152 – 1.1611± 0.1722

KLD-NMI 1.0775±0.2984 1.2939±0.3113 0.8459±0.0136 – 1.0763±0.2582

KLD 94.33% 1.1813±0.1254 96% 1.0949±0.1712 93% 1.2117±0.0721 94% 1.2393±0.0246 –

pt-007 KLD-MI 1.1662±0.1423 1.0903±0.1986 1.1785±0.1009 1.2316±0.0250 –

KLD-NMI 0.5605±0.0198 0.5589±0.0216 0.5609±0.0178 0.5618±0.0199 –

KLD 95.17% 1.4094±0.5881

Total KLD-MI 0.9319±0.2418

KLD-NMI 0.7565±0.2488



Table 3
The success rates of KLD with different numbers of bins (i.e. 16, 32 and 64), and the means and standard deviations of the median errors
(based on 1mm criterion). The training and testing image pairs are respectively BrainWeb T1 – T2 image pairs with 3% and 5% noise levels.
Please see Section 3.4 for more details.

KLD
# Bins

success% mean ± sd

16 93% 0.0192 ± 0.0114

32 98% 0.0236 ± 0.0214

64 96% 0.0183 ± 0.0089



Table 4
The success rates of KLD and KLD-MI on BrainWeb T1 – T2 image pairs with 3% noise level and different intensity non-uniformity (RF)
levels, together with the means and standard deviations of the median errors (based on 1mm criterion). The BrainWeb T1 – T2 image pair
with 3% noise level and 0% RF level was taken for training. Please see Section 3.4 for more details.

KLD KLD-MI
RF level

success% mean ± sd mean ± sd

20% 98% 0.0184 ± 0.0221 0.0059 ± 0.0058

40% 96% 0.0255 ± 0.0305 0.0094 ± 0.0057



Table 5
The success rates of KLD and KLD-MI on the BrainWeb T1 – T2 image pairs with 0% RF level and different noise levels, together with the
means and standard deviations of the median errors (based on 1mm criterion). The BrainWeb T1 – T2 image pair with 3% noise level and
0% RF level was taken for training. Please see Section 3.4 for more details.

KLD KLD-MI
Noise level

success% mean ± sd mean ± sd

5% 98% 0.0236 ± 0.0214 0.0089 ± 0.0060

7% 97% 0.0601 ± 0.0637 0.0141 ± 0.0053

9% 25% 0.0942 ± 0.0360 0.0213 ± 0.0072
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Fig. 4. (a) shows a slice of BrainWeb T1-weighted MRI (T1) image volume with 9% noise level. (c) is the intensity distribution of the T1
image volumes shown in (a). (b) shows a slice from the lower resolution T1 image volume with 9% noise level. (d) is the intensity distribution

of the lower resolution T1 image volume shown in (b).


