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Efficient Implementation for Spherical Flux
Computation and Its Application to

Vascular Segmentation
Max W. K. Law and Albert C. S. Chung

Abstract—Spherical flux is the flux inside a spherical region, and
it is very useful in the analysis of tubular structures in magnetic
resonance angiography and computed tomographic angiography.
The conventional approach is to estimate the spherical flux in the
spatial domain. Its running time depends on the sphere radius
quadratically, which leads to very slow spherical flux computation
when the sphere size is large. This paper proposes a more efficient
implementation for spherical flux computation in the Fourier do-
main. Our implementation is based on the reformulation of the
spherical flux calculation using the divergence theorem, spher-
ical step function, and the convolution operation. With this refor-
mulation, most of the calculations are performed in the Fourier
domain. We show how to select the frequency subband so that
the computation accuracy can be maintained. It is experimentally
demonstrated that, using the synthetic and clinical phase contrast
magnetic resonance angiographic volumes, our implementation is
more computationally efficient than the conventional spatial im-
plementation. The accuracies of our implementation and that of
the conventional spatial implementation are comparable. Finally,
the proposed implementation can definitely benefit the computa-
tion of the multiscale spherical flux with a set of radii because,
unlike the conventional spatial implementation, the time com-
plexity of the proposed implementation does not depend on the
sphere radius.

Index Terms—Efficient implementation, flux, vascular segmen-
tation.

I. INTRODUCTION

I N vector calculus, flux of a vector field over the closed
boundary of a region is the quantification of the amount

of the vectors, which flows into or out of that region along
the boundary surface normal direction. Mathematically, in the
Euclidean space, the flux of a vector field over the closed
boundary of a region is defined as [24]

where is the closed boundary of is the outward
normal of . By specifying the vector field as the gradient
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vector field of a grayscale image we have, by the divergence
theorem

The computation of flux associated with arbitrary regions is
widely used for digital image analysis [27], [3], [17], [25], [21],
[1], [7], [8], [16], [18], [29], [14], [15], [23], [12], [2].

In particular, for some applications such as analysis of tubular
structures, it is useful to compute flux in either a 2-D circular re-
gion or a 3-D spherical region. For instance, Siddiqi et al. have
proposed to compute flux in discs or spheres with different radii
to aid in obtaining the skeletons of target objects [25]. Pizer et al.
have presented the use of flux for recognizing medial loci [21].
In [3], the disc-based or sphere-based calculations of flux have
been utilized for centerline extraction of blood vessels in mag-
netic resonance angiography and colons in computed tomog-
raphy. For segmentation of tubular structures, e.g., blood ves-
sels in brain, Vasilevskiy and Siddiqi have proposed flux maxi-
mizing geometric flows [27] by approximating the divergence of
image gradient as the flux estimated over the closed boundaries
of discs or spheres with different radii. This segmentation algo-
rithm is useful in extracting small and dim blood vessels because
of its sensitivity to low contrast and narrow tubular structures.
Its performance has been proved and validated as it has been em-
ployed for generating the ground truth for the BrainWeb project
[5], which is widely used in medical image segmentation vali-
dation. In addition, Audette and Chinzei have extended the flux
maximizing geometric flows for tissue identification [1].

Among the aforementioned techniques, it is essential to com-
pute flux in discs or spheres. In this paper, flux computed in a
spherical region is called spherical flux. The continuous form of
the spherical flux is given as

(1)

where represents a spherical region with radius ; is the
infinitesimal area on boundary ; is the boundary sur-
face normal vector at position ; and is the gradient of
an image . In practice, is obtained from a Gaussian smoothed
image, which ensures the differentiability of the discrete image
signal , i.e., , where is a Gaussian function. In
a discrete form, (1) may be computed numerically as

(2)
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where , represents the th out-
ward normal of , and is the total
number of orientation samples on .

It is straightforward to estimate the values of spherical flux
for an image using (2) in the spatial domain. It is called the con-
ventional spatial implementation hereafter. Although it is easy
to implement the conventional spatial formulation, the compu-
tation time taken by the conventional spatial implementation is
unsatisfactorily long when the radius is large. The reason is
that a large value of boosts the boundary surface area of the
spherical region. Thus, in (2), a considerable number of orien-
tation samples is needed to precisely approximate the surface
integral, as stated in (1).

To reduce the time required to compute spherical flux, we
propose a more efficient implementation, which is formulated
in the Fourier domain. It avoids the orientation sampling for the
discretization of the surface integral, which is given in (1) and,
thus, dramatically reduces the running time complexity of the
spherical flux computation. The computation time required for
the proposed implementation has been compared with that of
the conventional spatial implementation (2) using both synthetic
and clinical image volumes with various sizes. The computation
accuracies of both implementations have also been validated. It
is experimentally shown that the proposed efficient implemen-
tation is accurate and capable of remarkably reducing the run-
ning time for the spherical flux computation. The proposed im-
plementation can definitely benefit flux-based applications such
as tubular structure analysis. It is because techniques for such
applications grounded on spherical flux, e.g., flux maximizing
geometric flows [27], can have significant computation time re-
duction by employing the proposed implementation.

This paper is organized as follows. Section II gives the ori-
entation sampling strategy and time complexity for the conven-
tional spatial implementation of the spherical flux computation.
In Section III, we elaborate the formulation of the proposed im-
plementation. The accuracy and the running time comparisons
based on both synthetic and clinical image volumes are pre-
sented in Section IV. Section V concludes this paper. The de-
tailed mathematical formulation is provided in the Appendix.

II. CONVENTIONAL SPATIAL IMPLEMENTATION: ORIENTATION

SAMPLING STRATEGY AND TIME COMPLEXITY

This section gives the orientation sampling strategy and the
time complexity of the conventional spatial implementation for
estimating the spherical flux using the (2). On the boundary
surface of a spherical region , with orientation samples,
the sum of dot products of the image gradient and outward nor-
mals is computed for approximating the surface integral given in
(1). Bilinear interpolation is employed to retrieve the vector in
(2) if its position is not on the exact grid positions. Intuitively, the
accuracy of the conventional spatial implementation is closely
related to the number of orientation samples taken in (2).

The value of is a trade-off between the computation time and
the accuracy. It is natural to have one orientation sample for each
unit area in the unit of voxel-length on the surface of the spherical
region for a good balance between the computation time
and the accuracy. Therefore, the number of orientation samples
taken by the conventional spatial implementation is specified
to ensure that there is at least one orientation sample for each

unit area in the unit of voxel-length on the sphere surface. The
orientation samples are organized in a grid fashion along the lon-
gitudinal and the latitudinal directions. For a sphere with radius ,
there are angularly equally spaced latitudinal levels. These
latitudinal levels are specified by elevation angles within a range

. For the th latitudinal level with an elevation angle
, there are orientation samples taken on the cir-

cumferenceof the circle associated with the th latitudinal level.
Using the above orientation sampling strategy, the number of

orientation samples, is directly proportional to the surface
area of the sphere with radius , i.e., . These orientation
samples are roughly equally spaced for the spatial computation
of spherical flux. Therefore, based on (2), the time complexity
for computing the spherical flux using the conventional spatial
implementation in the entire image domain with voxels is

(3)

As the computation time increases quadratically with the value
of , it hinders the implementation of multiscale spherical flux
with different radii, especially when the radius is large. This
will be demonstrated in Section IV.

III. METHODOLOGY

In this section, we present our proposed implementation of
the spherical flux in the Fourier domain (Section III-A). The fast
Fourier transform algorithm, which is used in our implementa-
tion, is also described in Section III-B. Finally, for the detection
of blood vessels with different widths, multiscale spherical flux
is utilized and a method for reducing computation time is pre-
sented in Section III-C.

A. Our Efficient Implementation in the Frequency Domain

Although the estimation of spherical flux based on (2) is
straightforward in the spatial domain, as described in Sections I
and II, the computation speed is unsatisfactorily slow when the
size of the sphere is large. To shorten the time for computing
the spherical flux, we propose to reformulate the calculation of
the spherical flux using the divergence theorem and spherical
step function . As such, the spherical flux for the entire image
is computed based on the convolution between the input image
and a function . The function embeds the second derivative
operator, the Gaussian smoothing function and the spherical step
function . Then, using the convolution theorem, the spherical
flux can be estimated by multiplying the Fourier expressions of
the image and the function , which are calculated using the
fast Fourier transform algorithm. As is shown in the experiments
(see Section IV), our implementation can lead to a significant
computation gain, in particular when the sphere radius is large.

1) Reformulating the Spherical Flux Computation Using
Convolution Operations: We rewrite (1) into a convolutionoper-
ation between the input image and a function . By employing
the divergence theorem and using spherical step function

(4)
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where is the entire image domain, is a spherical
step function, which is given as

otherwise
(5)

The main purpose of introducing the spherical step function in
the above equation is to allow us to reformulate the calculation of
spherical flux using the convolution operation. From (4), we have

(6)

where represents the convolution operator, rep-
resents the Laplacian operator, is replaced by the
Gaussian smoothed image gradient and

.
2) Representing the Spherical Flux in the Fourier Domain:

The above derivation leads to a convolution between the image
and the function . The convolution is implemented as a mul-

tiplication in the Fourier domain. Such multiplication merely in-
volves the Fourier transformed image and the Fourier expression
of the function of , denoted as , where

and are frequencies (in cycle per image) in the Fourier
domain along the and directions, respectively.

It is noted that the Fourier expression embodies
three components, including the three Fourier expressions of
the second derivative operator, the Gaussian smoothing func-
tion and the spherical step function . Let the Fourier expres-
sion of the spherical step function be . Therefore,

is given as

(7)

where the dimensions of the image are and along
the and directions, respectively. is the scale parameter
of the Gaussian function being applied on the image .

To simplify the formulation, we define
, which is

the radial component of the frequencies. (7) is then rewritten as

(8)

In the above equation, the Fourier expression of the spherical
step function is calculated by applying the Fourier
transform on the spherical step function and using 3-D Hankel
transforms [4], details are provided in Appendix A

(9)

Equation (9) is the Fourier expression of the term
. It is a spherically symmetric and real function, and

its magnitude decays along the radial direction (see an example
of in Fig. 1).

3) Estimating Spherical Flux in the Fourier Domain: By (6),
the spherical flux is calculated as

(10)

where is the inverse fast Fourier transform (IFFT)
operator, is the Fourier transformed image, i.e.,

, and is defined in
(9). The time complexity is for both FFT and IFFT,
and for the multiplication. Therefore, the complexity of
the proposed implementation is

(11)

The running time of the proposed implementation is indepen-
dent of the value of , i.e., the size of the sphere. Theoretically,
our implementation has speed advantage over the conventional
spatial implementation when is large and is small. As we
will show in Section IV, the proposed implementation is much
faster than the conventional spatial implementation, even when

is small and is sufficiently large (details can be
found in Section IV) in the vascular image analysis applications,
assuming that the orientation sampling strategy as described in
Section II is used.

4) Discretizing the Function : Theoretically, the formula-
tion of is continuous in the spatial domain. Practi-
cally, image is a discrete signal. Therefore, discretization of

is needed and (6) becomes

(12)

where the superscript denotes that the corresponding function
is discretized according to a predefined frequency bandwidth.
Similarly, (10) is rewritten as

(13)
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Fig. 1. Example of the function � ��� ���� when � � ��. (a) The plot of the coefficients for the plane � � � in the Fourier domain. (b) The plot of the
coefficients for the line � � �� � � � in the Fourier domain. The shaded regions are not covered by the ��		
�� . (c) The zooming of (b).

where and are integers and

(14)

is the inverse discrete fast Fourier transform oper-
ator, is the Fourier expression of and
the symbol “ ” represents that covers infinity
bandwidth in the Fourier domain, i.e.,

(15)

where in the above equation is equivalent to per-
forming discrete sampling on [20].

It is noted that is a sum-to-infinity se-
ries, which is not efficient for implementation. Indeed, the
magnitude of (9) is decaying according to the
term . Therefore, it is not necessary to eval-
uate in the entire Fourier domain with infinity
bandwidth. Ignoring the high frequency regions where the
magnitudes of are negligibly small does not harm
the calculation of spherical flux. Noted that the decaying term

of is a Gaussian function having
a scale factor . We assume that the value of the Gaussian
function, and, hence, the values of are sufficiently
small and can be treated as zero when the value of is larger
than four times of the scale factor , i.e.,

(16)

where . Based on this criterion,
we ignore the computations involved in the regions, in which

, and, thus, the values of are negli-
gible. It leads to a simplification of (13) based on the scale factor
of the Gaussian function, which is being applied on
for the calculation of the spherical flux. The region for com-
puting is trimmed in each dimension separately. It
is essential to correctly calculate the subbands of images having
different lengths along various dimensions.

We now consider the simplest case that
directly substitutes in (13)

(17)

Here, is obtained by evaluating
merely in the frequency Subband , which is

defined as

(18)

exactly covers the bandwidth of the discrete image
signal [see Fig. 2(a)]; (13) becomes

(19)

For the validity of the (17) and (19), according to (16), it is
imposed that
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Fig. 2. Gray regions represent the coverages of different frequency subbands in the Fourier domain. (a) ������� ; (b) ������� ; (c) ������� .

Fig. 3. Example, which shows that � ��� �� �� is discretized with different frequency subbands and with � 	 
�� � 	 
� � 	 �� � 	 �. (a),
(b)� �� �� ��, (b) is a zooming of (a); (c), (d) � �� �� ��, (d) is a zooming of (c).

and .1 Therefore

(20)

For the calculation of spherical flux, is the scale param-
eter for the Gaussian smoothing of the image . How-
ever, the suggested value of in (20) may be large for
some applications such as detection and segmentation of small
blood vessels (1 voxel width vessels). Applying with
smaller value of can crop the regions that contain large-valued

and, thus, reduce the calculation accuracy of the
spherical flux. Fig. 1(b) and (c) shows an example of
with and , where several ripples of
are cropped as they are located outside frequency .

To let have smaller value (e.g., ) without discarding
large-valued , we propose to have larger frequency
subband to approximate (15). This subband is defined as

1��� ���	� 
���� 	 � at the coordinates
� ����� ��� ��� ������ ����� ���� �� ����� ��� ���� ������
and ��� ��� ���.

(21)

Fig. 2(b) illustrates the coverage of in the Fourier
domain. Using becomes

(22)

For , based on the criterion stated in (16), the range
of acceptable values of is

(23)

where 2

(24)

Hence, the coverage of is large enough for
the calculation of spherical flux when and, thus,

is employed in the rest of this paper.
In Fig. 3, when approximating , the differences
between and are shown. Fig. 3(b)
shows that observable artifacts are generated in the function

because the coverage of is not
large enough to approximate . In contrast, there is
no similar artifact for [see Fig. 3(c) and
(d)].

For some applications that possibly require smaller value of
, we suggest devising a valid frequency subband based on the

2��� ���	� 
���� 	 ���
�
� at the coordinates

� ��� ������ ��� ��� ���� ��� ��� ���� �� ��� ������
���� ��� ���� ���� ��� ���� � ���� �������
��� ���� ���� ��� ���� ���� �� ���� ������
���� ���� ���� and ���� ���� ���.
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criterion stated in (16). As an example, , which sup-
ports is shown in Fig. 2(c). The subscript
“2” of represents that this subband encloses doubled
bandwidth for all dimensions. Comparing different subbands in
Fig. 2(a)–(c), it is observed that the coverage of is
between and , and a larger subband cov-
erage supports smaller value of .

Finally, using with is
computed as

(25)

where

if
otherwise

5) Reducing the Computation Time by Exploiting Fourier
Coefficient Redundancies: Based on the characteristics of

and , we describe two simplifications to
further reduce the computation load of the spherical flux cal-
culation in the Fourier domain.

First, since and are real signals, almost
half of the coefficients of and are re-
dundant as and

, where the superscript represents the con-
jugate of a complex number. Computation time is shortened by
ignoring the redundant coefficients. For the simplicity of the im-
plementation, we treat the coefficients with negative values of

to be redundant. Therefore, (25) is evaluated only when is
non-negative. This halves the number of multiplication opera-
tions for evaluating (25).

Second, the function is a spherically symmetric
function. The spherical symmetry implies that

(26)

Therefore, evaluating when and are non-neg-
ative is adequate for acquiring with all values of
and . It facilitates the computation of (25), which is further
simplified as3

(27)

With the aid of these two simplifications, the number of
times to evaluate is reduced to one-eighth of those

3In the proposed implementation, each evaluated value of � ��� �� ��
is utilized up to four times, which multiplies with the terms � ��� �����
� ��������� ���� ���� and � ��������� in (25), where � � � �
����� �� � � � � ����� � and � � � � ����� �.

without the simplifications and number of multiplication oper-
ations taken is halved.

Finally, although the concepts behind the above speed en-
hancement techniques are based on , they can be
applied for various subbands as long as and
are real signals and is spherically symmetric. As
such, they can be tailored for other subbands when different
values of are needed for the calculation of the spherical flux.

B. Fast Fourier Transform Algorithm in Our Implementation

As previously elaborated, the proposed implementation
makes use of the characteristics in the Fourier domain to speed
up the calculation of the spherical flux. The fast Fourier trans-
forms (FFT) is a necessity to efficiently compute for
(15)–(27) and retrieve the calculation result of the spherical
flux from the coefficients , which is the Fourier
representation of . FFT algorithms implicitly assume
that images are discrete and periodic. The image periodicity
causes artifacts appearing along the image boundaries when
the spherical flux is computed. However, the artifacts can be
greatly reduced by padding additional voxels outside the image
to mirror-reflect the image content along the image boundaries
prior to the spherical flux computation. The number of padding
voxels depends on two values: the radius and the Gaussian
smoothing scale factor in . In practice, is a
good choice for setting the number of padding voxels.

It is well-known that the FFT algorithms are based on the
divide-and-conquer strategy. In the standard FFT approach, an
input signal is recursively partitioned into two equal halves.
This divide-and-conquer strategy imposes a restriction on the
dimensions of input images to be power-of-2. Such restriction is
overcome by the recent development of the FFT algorithms, for
instance, the Cooley-Tukey algorithm [6], the codelet method
[11], the prime factor algorithm [19] or the Rader’s method [22].
These algorithms permit FFT to be applied on an image with any
size and the time complexity is still .

In this work, the FFT routine in our implementation utilizes a
publicly available and cross platform library FFTW [10], [11],
which implements the aforementioned FFT algorithms and sup-
ports 3-D input data without the limitation of data size.

C. Multiscale Spherical Flux for Vessel Segmentation

1) Multiscale Spherical Flux: One of the applications of
tubular structure analysis is vascular segmentation in angiog-
raphy. Due to the variation of vessel width, computing the
values of the spherical flux in spheres having different scales
(or different radii) is needed to precisely detect vessels with
different widths as in [27] and [1]. In the conventional spatial
implementation, the multiscale spherical flux involves repetitive
calculation of spherical flux in different scales, i.e., evaluating
(1) using different values of .

For instance, as described in [27] and [1], a set of scales
(radii) is specified by users according to the sizes of target struc-
tures. Different values of spherical flux are computed in the
set of spheres with the user-defined scales. For each scale, the
value of spherical flux is normalized by the surface area of the
sphere with the corresponding radius. All values of the normal-
ized spherical flux in different scales are compared to retrieve
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the maximally magnitude-valued spherical flux, which is called
multiscale spherical flux, and is given as

(28)

where is the scale among the set of scales (radii of spheres)
that returns the maximally magnitude-valued spherical flux,

i.e.,

(29)

2) Speed Enhancement in the Computation of Multiscale
Spherical Flux: As previously stated, the spherical flux is
computed within a set of scales . It requires to
be repetitively evaluated for different values of . To minimize
the computation load for the evaluation of , the
components of , which are independent of scales ,
are precalculated and stored in the preprocessing step. These
components include the Gaussian term and
the radial component . They are firstly evaluated and
buffered. Their values are retrieved directly upon the evaluation
of (27).

IV. EXPERIMENTS

The proposed implementation was studied using two syn-
thetic and numerical volumes with the size of 180 180 180
voxels and five phase contrast magnetic resonance angiographic
(PC-MRA) image volumes with various sizes. Details of the
image volumes are given in the Sections IV-C and IV-D. In this
section, the spherical flux computation times and accuracies for
both the proposed implementation and the conventional spatial
implementation are compared. In all the experiments, the value
of being used in (9) for the proposed implementation and the
Gaussian smoothing process for the conventional spatial imple-
mentation was 1 voxel, the set of scales (radii of spheres) in
(29) for both the proposed implementation and the conventional
spatial implementation was voxels.

A. Flux Maximizing Geometric Flows

The proposed method is implemented along with a multi-
scale spherical flux based vessel extraction algorithm, Flux
maximizing geometric flows [27] (FMGF). The segmentation
performances of FMGF based on both the proposed imple-
mentation and the conventional spatial implementation were
examined.

In [27], the multiscale spherical flux (28) is utilized as an
evolution speed term to drive an active contour for extracting
the vasculatures

(30)

where is the outward normal of the contour and
is a weight attached to the mean curvature term. The value of

was set to 0.03 for all the segmentation experiments. As re-
gions inside vessels have higher intensity than the background

regions, the values of are
negative. Negative values can produce an expansion effect to the
evolving contours inside those vascular regions. In contrast, the
evolving contours are shrunk because of the positive values of

at the positions near and
outside those vessels. As a result, the evolving contours are
eventually halted over the vessel boundaries.

Based on [27], a summary for implementing multiscale
spherical flux, which is subsequently utilized by FMGF (30),
is shown in Fig. 4(a). Another summary for the proposed
implementation based on (27) is provided in Fig. 4(b). The
differences between the proposed implementation and the
conventional spatial implementation are highlighted using the
gray boxes. The bold boxes represent the crucial steps that
have different time complexities, which are in the
conventional spatial implementation, and in the
proposed implementation.

B. Experiment Setup

In this paper, both the proposed implementation and the
conventional spatial implementation were written in C and
compiled using Microsoft Visual C . Net 2003 in the Win-
dows XP 32-bit environment. The representation of contours
of (30) was based on the sparse field levelset framework [28],
which was implemented in the Insight-Tool Kit library [13].
The evolution of the levelset function was halted when the
per-voxel change of the levelset function accumulated over ten
iterations was less than . The experiments were conducted
on a PC with a Pentium IV 3.2-GHz CPU and 1-GB RAM.

C. Synthetic and Numerical Image Volumes

Two synthetic and numerical image volumes were prepared
for the validation of the proposed implementation. These image
volumes, as shown in Fig. 5, contain tubes and tori having var-
ious radii and intensity values. The intensity ranges between 0.6
and 1 for these structures, and is 0 for the background regions.
These volumes were generated to mimic the appearance of vas-
culatures in the PC-MRA image volumes. To study the effect
induced by noise, which commonly exists in the clinical im-
ages, the synthetic volumes were corrupted with an additive zero
mean Gaussian noise having a set of standard deviation values
0.01, 0.02, 0.03, 0.05, and 0.1 (see Fig. 6).

The performance of the proposed implementation was
studied and compared with the conventional spatial implemen-
tation in three aspects. First, the accuracy of the segmentation
and the similarity of the segmentation results obtained by
using FMGF based on the both implementations. Second, the
mean absolute difference between the values of the multiscale
spherical flux computed by the both implementations. Third,
the times for computing the multiscale spherical flux using
the both implementations. To eliminate the boundary effect
when evaluating the segmentation accuracy, all accuracies were
measured in the center 150 150 150 voxel regions of the
image volumes.

In Table I, the segmentation accuracies are presented in terms
of “True positive,” “True negative,” “False positive,” “False
negative,” “Positive predictive value,” and “Negative predictive
value.” These values were obtained by comparing the ground
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Fig. 4. Flowcharts of the computation of the multiscale spherical flux. (a) The conventional spatial implementation. (b) The proposed implementation. � repre-
sents a set of scales. � represents the scale parameter of the Gaussian function being applied on the image ���� �� ��.

truth with the segmentation results obtained by using FMGF
based on the proposed implementation and the conventional
spatial implementation. Noted that the ground truth was known
in the experiments because the image volumes were synthetic.
The proposed implementation was also validated by calculating
the Dice similarity coefficients (DSC) [30] for the segmenta-
tion results obtained by using FMGF based on the proposed
and conventional spatial implementations. The DSC measure
quantifies the similarity between two sets, and as

(31)

The DSC value ranges from 0 to 1, where the DSC value of 1
indicates a perfect agreement between the sets and . As
stated in [30], the DSC measure is capable of precisely reporting
the similarities between the sets and if
and . In vascular segmentation, the nonvessel re-
gions occupy a very large proportion in the entire vascular image
volume. Thus, it is illustrative to study the DSC values computed
from the segmentation results obtained by using the proposed
implementation of FMGF and the conventional spatial imple-
mentation of FMGF. These DSC values are listed in Table I in
order to show the similarities between the segmentation results
based on the two implementations.

It is observed that, across different noise levels, 0.01, 0.02,
0.03, 0.05, and 0.1, the positive predictive value and the neg-
ative predictive value (Table I) are around 88% and 99.9% re-
spectively for tubes, and around 79% and 99.9% respectively for
tori (see the segmentation examples in Fig. 7). For both tubes
and tori, the differences between the positive predictive values
obtained from the proposed implementation and the conven-
tional spatial implementation are very small. Similar observa-
tions for the negative predictive values are obtained in Table I.
These observations reveal that, using FMGF, both the proposed
implementation and conventional spatial implementation give
very similar segmentation accuracy. In addition, the DSC values
listed in Table I for different cases are all above the value of 0.97.
Since a DSC value larger than 0.7 generally represents a good
agreement [30], the DSC values lisetd in Table I indicate that
the segmentation results based on the two implementations for
each case are very similar to each other.

To further validate the similarity between the multiscale
spherical flux obtained using the proposed implementation and
the conventional spatial implementation, the mean absolute
difference between two implementations was calculated (the
last column of Table II). As the magnitudes of the multiscale
spherical flux vary from image to image, for estimating the
mean absolute difference, those values were normalized into

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 11, 2009 at 03:02 from IEEE Xplore.  Restrictions apply.



604 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 3, MARCH 2009

Fig. 5. Synthetic and numerical image volumes. (a) The isosurfaces of the synthetic and numerical tubes. (b) The slice of the tube image volume at � � ��. The
tubes have radii 1, 2, 4, 6 and 8 voxels, and intensity values 0.6, 0.7, 0.8, 0.9, and 1. (c) The isosurfaces of the synthetic and numerical tori. (d) Top: A vertical
cross section of a torus; bottom: the slice of the torus image volume at � � ��. The intensity values of the tori are 0.8 for the gray tori and 1 for the white tori.
Expressing the sizes of tori in voxels using the representation (small radius, large radius), from top to bottom, the tori have sizes (1, 24), (1, 48), (1, 40), (1, 56),
(2, 24), (2, 32), (2, 40), (2, 48), (2, 56), (4, 24), (4, 48), (4, 64), (6, 36), (6, 60), (8, 48), and (8, 60).

a range between and 1. The mean absolute difference is
calculated as

(32)

where is the center 150 150 150 voxel region of the
th image volume, and are the multiscale spherical flux

computed by the conventional spatial implementation and the
proposed implementation, respectively, and is the ex-
pected value. As listed in the last column of Table II, the mean
absolute difference is 0.0060, which is negligible. Therefore,
the proposed implementation is capable of providing the same
computation results as obtained in the conventional spatial
implementation.

In addition to the good agreement between the computation
results and segmentation results obtained by using the proposed
implementation and the conventional spatial implementation,

the former possesses a significant speed advantage as well. On
average, as listed in Table II, the proposed implementation com-
putes the multiscale spherical flux with ten scales for one image
volume in around 11 s. The average was estimated by averaging
the running times of computing multiscale spherical flux in ten
different noise corrupted image volumes (5 for tubes and 5 for
tori). The average computation time of the conventional spa-
tial implementation for the same set of image volumes is 19970
s. To illustrate the characteristics of different implementations
in computing multiscale spherical flux, the running times of
the conventional spatial implementation for different steps (or
scales) are listed in Table III and plotted in Fig. 8. The corre-
sponding running times of the proposed implementation are also
listed in Table III. Fig. 4 shows the details of the preprocessing
steps in Table III for the both implementations. In Fig. 8, the
running time of the conventional spatial implementation soars
as the scale increases (exact times can be found in Table III). It
is because a large scale requires more orientation samples on the
spherical boundary surface (see Fig. 9). In contrast, as shown in
Table III, the running time of the proposed implementation is
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Fig. 6. Top: The image slices of the noise corrupted synthetic and numerical tubes at � � ��; bottom: the image slices of the noise corrupted synthetic and
numerical tori at � � ��. From left to right, the image volumes were corrupted by an additive zero mean Gaussian noise with standard deviations 0.01, 0.02, 0.03,
0.05, and 0.1, respectively.

TABLE I
SEGMENTATION ACCURACIES OF THE SYNTHETIC AND NUMERICAL IMAGE VOLUMES, AS SHOWN IN FIG. 5, USING THE PROPOSED IMPLEMENTATION BASED

AND THE CONVENTIONAL SPATIAL IMPLEMENTATION BASED FLUX MAXIMIZING GEOMETRIC FLOWS. VALUES OBTAINED BY THE CONVENTIONAL SPATIAL

IMPLEMENTATION ARE ENCLOSED BY THE BRACKETS. VALUES FOR “TRUE POSITIVE,” “TRUE NEGATIVE,” “FALSE POSITIVE,” AND “FALSE NEGATIVE”
ARE IN VOXELS

relatively constant for all scales, except that, when , com-
putation time is slightly shorter than other scales. It is because
there is no comparison between the estimated spherical flux and
the result buffer, as shown in Fig. 4. It is experimentally shown
that the proposed implementation offers significant computation
time reduction as compared to the conventional spatial imple-
mentation when the value of grows (see the computation time
percentages, which are enclosed by brackets in Table III). In
general, it is observed that the proposed implementation utilizes
between 0.02% and 0.79% of computation time taken by the
conventional spatial implementation for evaluating the spher-

ical flux of an image volume. Regarding the total running times
for multiscale spherical flux with ten scales, the proposed im-
plementation needs 0.05% (the forth column in Table II) of the
time taken by the conventional spatial implementation.

D. Clinical Cases

There were five clinical phase contrast magnetic resonance
angiographic (PC-MRA) image volumes being employed in
the experiments. These image volumes were upsampled along
the direction using bilinear interpolation to acquire isotropic
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Fig. 7. Top: The isosurfaces of the initial levelset function (the first column) and the segmentation results of noise corrupted synthetic tubes (from the second
column to the sixth column). Bottom: The isosurfaces of the initial levelset function (the first column) and the segmentation results of noise corrupted synthetic
tori (the second column to the sixth column). From the second column to the sixth column, the segmentation results of the image volumes corrupted by an additive
zero mean Gaussian noise with standard deviations 0.01, 0.02, 0.03, 0.05, and 0.1. The results are obtained by applying the flux maximizing geometric flows along
with the proposed implementation.

TABLE II
(SECOND AND THIRD COLUMNS): TOTAL RUNNING TIMES (IN SECONDS) FOR MULTISCALE SPHERICAL FLUX COMPUTATION WITH TEN SCALES BASED ON THE

PROPOSED IMPLEMENTATION AND THE CONVENTIONAL SPATIAL IMPLEMENTATION. (LAST COLUMN) MEAN ABSOLUTE DIFFERENCE BETWEEN THE MULTISCALE

SPHERICAL FLUX VALUES COMPUTED BY BOTH IMPLEMENTATIONS. THE TIMES LISTED ARE OBTAINED BY AVERAGING THE RUNNING TIMES OF COMPUTING

MULTISCALE SPHERICAL FLUX IN TEN DIFFERENT NOISE CORRUPTED IMAGE VOLUMES (5 FOR TUBES AND 5 FOR TORI) WHICH WERE GENERATED FOR THE

SEGMENTATION EXPERIMENTS ON THE SYNTHETIC AND NUMERICAL IMAGE VOLUMES, AS SHOWN IN FIG. 5. VALUES IN THE SECOND, THIRD, AND LAST

COLUMNS ARE ROUNDED TO FOUR SIGNIFICANT DIGITS

TABLE III
RUNNING TIMES (IN SECONDS) OF DIFFERENT STEPS FOR MULTISCALE SPHERICAL FLUX COMPUTATION BASED ON THE PROPOSED IMPLEMENTATION (TOP) AND

THE CONVENTIONAL SPATIAL IMPLEMENTATION (BOTTOM). VALUES LISTED IN THE TABLE ARE OBTAINED BY AVERAGING THE RUNNING TIMES OF COMPUTING

MULTISCALE SPHERICAL FLUX IN TEN DIFFERENT NOISE CORRUPTED IMAGE VOLUMES (5 FOR TUBES AND 5 FOR TORI) WHICH WERE GENERATED FOR THE

SEGMENTATION EXPERIMENTS ON THE SYNTHETIC AND NUMERICAL IMAGE VOLUMES, AS SHOWN IN FIG. 5. VALUES IN THE BRACKETS ARE THE PERCENTAGES,
WHICH ARE GIVEN AS ������������ ���%�. VALUES ARE ROUNDED TO FOUR SIGNIFICANT DIGITS, EXCEPT THE VALUES ENCLOSED BY BRACKETS

Fig. 8. Plot of the average running times for multiscale spherical flux compu-
tation using the conventional spatial implementation against different steps (or
scales). The times listed are obtained by averaging the running times of com-
puting multiscale spherical flux in ten different noise corrupted image volumes
(5 for tubes and 5 for tori), which were generated for the segmentation experi-
ments on the synthetic and numerical image volumes, as shown in Fig. 5.

voxels prior to subsequent processing. The maximum inten-
sity projections (MIPs) of these image volumes are shown

Fig. 9. Number of orientation samples taken for the conventional computation
of spherical flux with various radii.

in Fig. 10(a)–(e). Their resolutions and the voxel sizes are
tabulated in Table IV. All the clinical cases are the axial brain
scans and were acquired using a Philips 3T ACS Gyroscan MR
scanner at the University Hospital of Zurich, Switzerland. The
standard PC-MRA imaging protocols were utilized without
contrast agents.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 11, 2009 at 03:02 from IEEE Xplore.  Restrictions apply.



LAW AND CHUNG: EFFICIENT IMPLEMENTATION FOR SPHERICAL FLUX COMPUTATION 607

Fig. 10. Maximum intensity projections of the five clinical PC-MRA image volumes used in the experiments. For each subfigure, the top-left image is the axial
view, the bottom image is the coronal view, and the top-right image is the sagittal view.

TABLE IV
RESOLUTIONS AND VOXEL SIZES OF THE IMAGE VOLUMES SHOWN IN FIG. 10

As mentioned in the previous section regarding the synthetic
image experiments, the proposed implementation was evaluated

by measuring the mean absolute difference between the values
of the multiscale spherical flux obtained by using the both im-
plementations and comparing the times for computing the mul-
tiscale spherical flux with ten scales using the both implemen-
tations in the experiments on the above five clinical PC-MRA
image volumes. The computation of the DSC values of the clin-
ical segmentation results is the same as the computation de-
scribed in the synthetic experiments (31). The mean absolute
difference utilized in this section was measured analogous to the
synthetic image experiments (32), except that the mean absolute
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TABLE V
(SECOND AND THIRD COLUMNS): RUNNING TIMES (IN SECONDS) FOR MULTISCALE SPHERICAL FLUX COMPUTATION BASED ON THE PROPOSED IMPLEMENTATION

AND THE CONVENTIONAL SPATIAL IMPLEMENTATION. (FIFTH COLUMN): MEAN ABSOLUTE DIFFERENCES BETWEEN THE SPHERICAL FLUX VALUES COMPUTED

BY THE CONVENTIONAL SPATIAL IMPLEMENTATION AND THE PROPOSED IMPLEMENTATION. (LAST COLUMN) ESTIMATED DSC VALUES BASED ON THE

SEGMENTATION RESULTS OBTAINED BY USING THE PROPOSED IMPLEMENTATION AND THE CONVENTIONAL SPATIAL IMPLEMENTATION. THE VALUES IN THE

SECOND, THIRD, FIFTH, AND LAST COLUMNS ARE ROUNDED TO FOUR SIGNIFICANT DIGITS

TABLE VI
RUNNING TIMES (IN SECONDS) OF DIFFERENT STEPS FOR MULTISCALE SPHERICAL FLUX COMPUTATION BASED ON THE PROPOSED IMPLEMENTATION (TOP) AND

THE CONVENTIONAL SPATIAL IMPLEMENTATION (BOTTOM). VALUES IN THE BRACKETS ARE THE PERCENTAGES, WHICH ARE GIVEN AS ������������ ���%�.
VALUES ARE ROUNDED TO FOUR SIGNIFICANT DIGITS, EXCEPT THE VALUES ENCLOSED BY BRACKETS

difference was estimated individually for each clinical image
volume. Thus, the mean absolute difference is given as

where is the whole image domain excluding the positions,
which have distances away from the image boundary within
15 voxels to eliminate the boundary effect when evaluating the
differences.

In the fifth column of Table V, the mean absolute differences
between the multiscale spherical flux obtained in the both im-
plementations for each clinical case are listed. Among all the
clinical cases, the mean absolute differences are only ranged
between 0.0020 and 0.0049. Similar to the previous synthetic
image experiments, such differences are very small. As such,
the proposed implementation can give comparable results of the
multiscale spherical flux computation, as compared with the re-
sults obtained in the conventional spatial implementation.

More importantly, the computation time of multiscale spher-
ical flux is sharply reduced by using the proposed implementa-
tion, as listed in the second and the third columns of Table V. For
the proposed implementation, the computation times of multi-
scale spherical flux for the five clinical cases are around 28, 41,
44, 46, and 24 s. Comparing to the computation times for the

same set of image volumes using the conventional spatial imple-
mentation, which are 24240, 36460, 40610, 34970, and 43130
s, respectively, the proposed implementation utilizes 0.10% of
the computation time taken by the conventional spatial imple-
mentation on average (the forth column of Table V). In Table VI,
the computation times required by the both implementations for
different steps (or scales) are listed. The computation time of the
conventional spatial implementation shoots up as increases
while the proposed implementation has fairly consistent com-
putation times among all scales. Thus, the amount of compu-
tation time reduction gained by the proposed implementation
becomes more significant when the value of is large (see the
computation time percentages, which are enclosed by brackets
in Table VI).

On the other hand, the vasculatures in the clinical image
volumes extracted by FMGF based on multiscale spherical
flux computed by the proposed implementation and the con-
ventional spatial implementation are shown in Figs. 11(a)–(e)
and 12(a)–(e), respectively. The initial levelset functions for
these cases were generated by a global thresholding scheme. In
this global thresholding scheme, the regions having the highest
0.5% negative values of the multiscale spherical flux of each
volume were selected. The selected regions were evolved under
the pure curvature flows with and then utilized as the
initial seed points for FMGF. This thresholding scheme ensures
all the initial seed points were located inside the vessels. The
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Fig. 11. Axial views of the segmentation results of the five clinical PCMRA image volumes based on FMGF using the proposed implementation. The corre-
sponding maximum intensity projections are shown in Fig. 10(a)–(e).

Fig. 12. Axial views of the segmentation results of the five clinical PCMRA image volumes based on FMGF using the conventional implementation. The corre-
sponding maximum intensity projections are shown in Fig. 10(a)–(e).
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Fig. 13. Axial views of the vessel extraction results of the five clinical PCMRA image volumes based on the vesselness measure, proposed by Frangi et al. [9].
The corresponding maximum intensity projections are shown in Fig. 10(a)–(e).

segmentation results shown in Figs. 11(a)–(e) and 12(a)–(e) il-
lustrate that the proposed implementation of FMGF is capable
of delivering similar segmentation results obtained by using the
conventional spatial implementation. This observation is further
validated by the DSC values presented in last column of Table V.
In the table, the DSC values indicating the segmented region
similarities between the proposed implementation of FMGF
and the conventional spatial implementation of FMGF for all
five cases are at least 0.9327, which are all above the DSC value
of 0.7 for good agreement between results, as suggested in [30].

Finally, the segmentation results of FMGF were compared
with the results obtained by using a widely used vessel extrac-
tion method based on vesselness measures, which was proposed
by Frangi et al. [9]. The scale set used by the vesselness measure
was the same as the scale set used by the multiscale spherical
flux, which was voxels. The other parameters used
by the vesselness measure were specified strictly according to
the descriptions in [9]. In the literature, similar to other works
[9], [26], the vessel extraction results were obtained by firstly
thresholding the multiscale vesselness responses. In this paper,
0.005 was used as the threshold value for all five clinical cases.
This threshold value was acquired manually so that no excessive
widening of main vessels was observed. To eliminate noisy re-
gions in the thresholding results, the thresholded regions which
were not connected with the positions having the highest 0.5%
vesselness responses were removed in the final vessel extraction
results. The vesselness extraction results are shown in Fig. 13.
It is observed that there are many high curvature small vessels

missing in the vesselness extraction results [Figs. 13(a)–(e)]. It
is because the high curvature small vessels deviate from the as-
sumption of vessels made by the vesselness measure that vessels
are mainly elongated tubular shapes with circular cross sections.
In contrast, the FMGF does not rely on this assumption for de-
tecting vasculatures, and, thus, it is capable of discovering the
high curvature small vessels [see Figs. 11(a)–(e) and 12(a)–(e)].
Comparing the extracted vessels of FMGF [Figs. 11(a)–(e) and
12(a)–(e)] with the axial views of the corresponding image vol-
umes [the upper-left images of Fig. 10(a)–(e)], FMGF is able
to deliver promising vascular segmentation results. With the aid
of the proposed implementation, which remarkably reduces the
computation time of multiscale spherical flux to 0.10% of the
time taken by the conventional spatial implementation, the pro-
posed implementation is a good complement of FMGF.

V. CONCLUSION

We have presented a new and efficient implementation for
computing the spherical flux in an image volume. The conven-
tional spatial implementation has two major limitations that
adversely affect its usefulness in tubular structure analysis, e.g.,
detection and segmentation of blood vessels in brain. First, the
conventional spatial implementation is not computationally
efficient in the spatial domain. Second, the computation time
increases quadratically with the sphere size. Our implementa-
tion overcomes these limitations by reformulating the spherical
flux computation so that most of the computations are per-
formed in the Fourier domain. We have also presented a general
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scheme for selecting frequency subband while maintaining
high computation quality as compared with the conventional
spatial implementation.

Using two synthetic image volumes with the size of
180 180 180 voxels (straight tubes and tori), we have shown
experimentally that our proposed implementation can achieve
significant computational gain. For computing ten scales in
the multiscale spherical flux, the proposed implementation
needs 0.05% of the running time taken by the conventional
spatial implementation, assuming that one orientation sample
is taken for each unit area in the unit of voxel-length on the
spherical region boundary. Given that the multiscale spherical
flux is normalized between and 1, our proposed implemen-
tation can give comparable computation accuracy with mean
absolute difference 0.0060 between the both implementations.
Our implementation has been tested on five clinical phase
contrast magnetic resonance angiographic (PC-MRA) image
volumes with sizes of 174 296 150, 296 296 130,
276 276 162, 234 270 166, 280 280 162 voxels. It
is found that, on average, our proposed implementation needs
0.10% of the running time taken by the conventional spatial
implementation, and can also give comparable accuracy with
mean absolute difference 0.0036.

With the recent rapid technological advances in the minimally
invasive surgery and endovascular treatments, there is a growing
need to perform analysis of tubular structures in magnetic res-
onance angiography and computed tomographic angiography,
e.g., detection and segmentation of blood vessels in brain. We
believe that our implementation will benefit the tubular struc-
ture analysis and can contribute in improving the surgery and
treatment efficacy.

APPENDIX

A. Fourier Expression of the Spherical Step Function

The Fourier expression of a spherical step function
with radius is given as

We use spherical coordinates to simplify the integrations,

and
. Therefore

Since the sphere function is independent of and , so
is spherically symmetric. We solve the integrations of and
by applying 3-D Hankel transforms [4]

where is the th order Bessel function of the first kind.
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