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VE-LLI-VO: Vessel Enhancement Using Local Line
Integrals and Variational Optimization

Yuan Yuan, Yishan Luo, and Albert C. S. Chung

Abstract—Vessel enhancement is a primary preprocessing step
for vessel segmentation and visualization of vasculatures. In this
paper, a new vessel enhancement technique is proposed in order
to produce accurate vesselness measures and vessel direction
estimations that are less subject to local intensity abnormalities.
The proposed method is called vessel enhancement using local
line integrals and variational optimization .
First, vessel enhancement using local line integrals
is introduced in which a vessel model is embedded by regarding
a vessel segment as a straight line based upon the second order
information of the local line integrals. Useful quantities similar
to the eigenvalues and eigenvectors of the Hessian matrix are
produced. Moreover, based upon the local line integrals, junc-
tions can be detected and handled effectively. This can help deal
with the bifurcation suppression problem which exists in the
Hessian-based enhancement methods. Then a more generic curve
model is embedded to model vessels and a variational optimization

framework is introduced to generate optimized vesselness
measures. Experiments have been conducted on both synthetic
images and retinal images. It is experimentally demonstrated that

produces improved performance as compared
with the widely used techniques in terms of both vesselness mea-
surement and vessel direction estimation.

Index Terms—Retinal images, vessel enhancement.

I. INTRODUCTION

O PTIC FUNDUS photography technique is a widely
used procedure for the diagnosis of retinopathies. The

inspection of vasculatures in the retinal images not only
plays an important role in diagnosing ophthalmic diseases,
e.g., retinal artery occlusion, glaucoma, but also helps reveal
nonophthalmic diseases, such as hypertension, diabetes, arte-
riosclerosis, cardiovascular disease and stroke. However, the
current optic fundus photographs often present remarkable
noise, inadequate intensity contrast and intensity variations.
These effects make the analysis of the retinal images difficult.
To improve the retinal image quality, vessel enhancement,
which is primarily used as a preprocessing step for vessel
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segmentation and visualization, has been studied intensively by
different research groups in the past decades.
Vessel enhancement methods often take an image as input

and for each point, a vesselness measure is calculated based
upon local image features. Among all the vessel enhancement
methods, the Hessian-based methods have been used widely be-
cause of the fact that its core component, the Hessian matrix,
offers elegant geometrical interpretations and is able to retrieve
useful vascular information from the images. In this work, the
Hessian-based methods refer to those techniques that exploit
the eigenvalues and/or the eigenvectors of the Hessian matrix
during the vessel enhancement procedure. To the best of our
knowledge, Koller et al. [1] were the first research group to
propose the use of information extracted from the Hessian ma-
trix in the context of vessel enhancement. Their method uses
the eigenvectors of the Hessian matrix for vessel direction es-
timation and applies a matching filter along the vessel direc-
tion to detect vessel presence. Krissian et al. [2] later refined
this matching filter. While only the eigenvectors of the Hes-
sian matrix are used in [1] and [2], other works [3]–[6] take
the eigenvalues into consideration. In these works, the eigen-
values are combined to distinguish curve-linear structures from
the image background region. Among the previous methods, a
method proposed by Frangi et al. [4] is one of the most com-
monly used vessel enhancement methods in practice. It utilizes
all the eigenvalues and has an intuitive geometric interpretation.
While the Hessian-basedmethods are widely used in different

areas of image processing [7]–[11], its drawback is obvious due
to the fact that the Hessian matrix is based upon second deriva-
tives, which are local measures. Therefore, without a relatively
global view of the vasculatures, the Hessian-basedmethods only
offer local shape descriptions. It, hence, suffers from over sen-
sitivity to local intensity abnormalities, which can be viewed as
deviations of intensity structures from the targeted ones, e.g., 1)
noise which gives false positive responses; 2) uneven responses
inside a vessel; and 3) suppressed bifurcations. This property de-
teriorates the effect of visualization, and also adversely affects
the quality of the subsequent segmentation methods, especially
for variational segmentation frameworks such as [12] in which
the contour evolution can get stuck at local optimum.
In all the previous works, a vesselness measure reflects the

possibility that a point belongs to a vessel. Each image point is
therefore viewed as an individual and only information inside
the local region of this point is used to compute the vesselness
responses. It does not take into account the geometrical property
of the particular vessel segment to which a point belongs. Not
only should a more robust vesselness measure reflect whether a
point belongs to a vessel segment, but also reveal whether the
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vessel segment is a strong one or not. As will be described in this
paper, a new view on vesselness measure should shift its focus
from a point to the vessel segment in which the point resides, and
make the measure less sensitive to local intensity abnormalities.
To that attempt, vessel enhancement using local line integrals
and variational optimization is proposed
in this paper. In the first step, vessel enhancement using local
line integrals is introduced. It models a vessel seg-
ment as a straight line and exploits the second order information
of the local line integrals in order to capture potentially existing
line structures with less sensitivity to local intensity abnormal-
ities. Useful quantities similar to the eigenvalues and eigenvec-
tors of the Hessian matrix are produced in a multiscale fashion
and then combined to generate a vesselness measure. With the
new vesselness measure, it is relatively easy to detect junction
points in the images. With an adaptive length for line integrals,
junction regions can be detected and enhanced. By using this
straight line vessel model, is able to take more in-
formation into consideration and can give better vessel direction
estimations and vesselness responses, as will be demonstrated
in the experiments.
To further improve the quality of the vesselness measures, a

variational optimization framework is proposed to extend
to form the method. A more

generic curve model is used to model vessel segments to capture
vessels with various shapes, in contrast to the straight line model
used in the previous . calculates
an optimized vesselness measure based upon the features of the
possible vessel segment (more specifically, the centerline of the
vessel segment) to which a point belongs.
can produce smooth vesselness responses along vessels and give
good performance in background suppression. The new method
has been tested on both synthetic and retinal images. Detailed
quantitative and qualitative comparisons will be presented in
Section VI.
This paper is organized as follows. In Section II, three Hes-

sian-based vessel enhancement methods are briefly introduced
and compared. Section III gives a full account of .
In order that the later experiments are fair, optimal parameters
are searched (see Section IV) based upon the analysis of en-
hancement results. The idea of is elaborated
in Section V. The underlying principle of is
described with illustrations. In Section VI, is
tested on synthetic images and two publicly available databases
of the retinal images. Qualitative and quantitative results ob-
tained by using different methods are presented and discussed.
This paper is concluded in Section VII.

II. HESSIAN-BASED ENHANCEMENT METHODS

Given a -dimensional image , , the
Hessian matrix of at point is defined as

...
...

. . .
...

(1)

Fig. 1. Synthetic vessel with Gaussian intensity profile, together with the eigen-
vectors shown at the center.

TABLE I
EIGENVALUES FOR DIFFERENT 2-D STRUCTURES, WITH ORDERING

. “ ” MEANS NEGATIVE QUANTITY WITH LARGE MAGNITUDE,
WHILE “ 0” MEANS NEAR ZERO VALUE

where , , are variables for . Eigenvectors
and the corresponding eigenvalues are important shape

descriptors for . In 2-D case, gives the direction along
which the surface has minimum(maximum) curvature, with

being the corresponding eigenvalue. In this work,
vessels are considered brighter than the background; otherwise,
the image is negated. Fig. 1 shows a 2-D synthetic vessel with
a Gaussian intensity profile. The eigenvectors of the Hessian
matrix at the center are shown. It can be seen that the surface
does not curve along the vessel direction and therefore has
a curvature of zero. While along the normal direction of the
vessel, the surface is curved and, hence, has a negative curva-
ture with large magnitude.
Suppose that the ordering of the eigenvalues is .

The eigenvalues for different structures can then be summarized
in Table I. A “ ” signmeans that the quantity is negative with
large magnitude, while a “ ” sign means that the value is near
zero.
Using the eigenvalues and/or eigenvectors of the Hessian ma-

trix, different groups of researchers have designed a wide spec-
trum of vessel enhancement techniques. Three widely studied
methods of this kind are Krissian’s method [2], Li’s method
[5] and Frangi’s method [4]. In all three methods, the Gaussian
models are exploited for modeling the intensity profile on the
vessel cross-section. Suppose that axis is the vessel axis for
2-D vessel, the intensity on the vessel cross-section is modeled
as

(2)

is a normalizing constant equal to the maximum intensity in
the cross-section while is the scale of the Gaussian model.
Vessel boundaries are considered as points that maximize the
gradient magnitude, therefore, at . The vessel radius
is then . Hereinafter, the ordering of the eigenvalues and the
eigenvectors of the Hessian matrix is if , with
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the corresponding unit eigenvectors and , unless specified
otherwise.

A. Krissian’s Vesselness Measure

Based upon the work of [1], Krissian et al. [2] proposed a
vessel enhancement filter relying on the eigenvectors of the Hes-
sian matrix and the image gradients. The local maxima of the
filter response are used to find the center points and the radius
information so that a cylindrical model is fit to the observed data.
For 3-D, the response of scale at is given as

(3)

with , , and are
the eigenvectors of the Hessian matrix which form an or-
thogonal basis on the vessel cross section. While Krissian et al.
do not provide a 2-D equivalent formulation, a 2-D version can
be derived with in the (3) as

(4)
Krissian’s measure only uses the eigenvectors of the Hessian
matrix as vessel frame guidance and uses the first order in-
formation (i.e., image gradient). The measure depends upon
the vessel-background intensity contrast in the particular region
being enhanced. Moreover, it tends to suppress junctions since
junctions cannot be characterized as a cylindrical model.

B. Li’s Vesselness Measure

In [5], through the eigenvalue analysis of the Hessian matrix,
three selective enhancement filters for dot, line and plane are
proposed which can simultaneously enhance objects of specific
shapes and suppress objects of other shapes. To extract a vessel,
a line enhancement filter is employed by combining a likelihood
function and a magnitude function based upon the eigenvalues
of the Hessian matrix. The likelihood function indicates proba-
bility that a pixel belongs to a line, and the magnitude function
indicates the existence of a line exist in a background. A vessel-
ness response at point of scale is given by

if
otherwise.

(5)

The method uses all the eigenvalues of the Hessian matrix and
does not use the eigenvectors. As compared with the Krissian’s
measure, Li’s measure does not depend upon vessel-background
intensity contrast but on the shape of local intensity surface.
However, noise is a potential major factor affecting the perfor-
mance of Li’s measure, as the measure uses the second deriva-
tives which are inherently sensitive to noise.

C. Frangi’s Vesselness Measure

Frangi et al. [4] proposed a multiscale vesselness measure
which assigns a value between 0 and 1 to each point in the
image. This assigned value reflects the confidence of a point

being inside a vessel. For a single scale , a response at a point
is calculated as

if

otherwise
(6)

where and , and , are con-
stant normalization factors. is essential for distinguishing be-
tween plate-like and line-like structures since only in the latter
case it becomes zero. is a measure of the “second order struc-
tureness.” The value of becomes low in the background where
no structure is present and the eigenvalues are small for the
lack of intensity contrast. The underlying principle behind the
Frangi’s filter is to measure the vesselness according to the two
criteria expressed by and . The filter contains two parame-
ters for 2-D, which are suggested by Frangi et al. to set
and .

D. Multiscale Processing

In all of the previously mentioned vessel enhancement
methods, the concept of the normalized derivatives proposed
by Lindeberg [13] is used to deal with multiscale normalization.
Numerical differentiation of an image at a scale is defined as

(7)

where is a normalizing term, and is the Gaussian
smoothing function. Lindeberg suggested that if there is no
preference of vessels with particular width, should be set to
1. It is worth to mention that the image at each scale is first
convolved with a Gaussian smoothing function before calcu-
lating the second derivatives. Gaussian blurring can reduce the
influence of noise and properly shape the intensity on the vessel
cross section into a Gaussian profile, so as to ensure a large
value of second derivative across the vessel cross section, even
in the case of a plateau-like profile or even a slight intensity dip
at the line center.
Given a set of scales , responses of different scales are

combined as

(8)

Also is the estimation of vessel direction, where
is the eigenvector corresponding to the optimal scale. The set of
scales is usually chosen to cover the range of vessel radii in the
image region.

E. Comparison of Enhancement Results

The three enhancement techniques have been applied to 2-D
retinal images. Fig. 2 shows a comparison between the enhance-
ment results obtained by using the three methods. In Fig. 2,
images are organized from left to right as follows: the original
image, the ground truth, the results obtained by using the Kris-
sian’s, Li’s and Frangi’s methods, respectively. In Frangi’s mea-
sure, and as suggested
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Fig. 2. Comparison of enhancement results. From left to right, a noisy retinal image, its ground truth, enhancement results by using Krissian’s, Li’s and Frangi’s
methods, respectively. (Please refer to the electronic version for better visualization.)

by Frangi et al. [4]. Six scales were used with and
.

From the figure, the following is observed.
• All methods can distinguish vessels and achieve different
levels of background suppression.

• Frangi’s method has a better background suppression per-
formance than the other two methods, especially at noisy
regions (Fig. 2). In general, Krissian’smethod does not per-
form well in recognizing vessels in low contrast and noisy
background regions due to its use of first derivatives in-
stead of second order information.

• Responses produced by using Frangi’s and Li’s methods
tend to be discontinuous inside and along vessels in noisy
regions.

With a far better background suppression performance and
the flexibility of changing parameters, Frangi’s method is gener-
ally considered the most satisfactory among the three methods.
In the next section, we will present a method that will give reli-
able responses inside vessels and meanwhile suppress noise in
the background regions.

III. VESSEL ENHANCEMENT USING LOCAL LINE INTEGRALS

The Hessian matrix encodes useful information in a compact
way and those information can be easily retrieved via the
eigen-decomposition. However, as the Hessian matrix is a
local quantity, any Hessian matrix based measures depending
upon the eigenvalues and the eigenvectors will be sensitive to
local intensity structures and also intensity abnormalities, e.g.,
noise which can give false positive results, and discontinuous
responses along vessel direction. These effects are undesirable
for both vessel enhancement and visualization improvement.
Since a more robust vesselness measure should not only pre-

dict whether a point belongs to a vessel segment, but also re-
flect whether the vessel segment is a strong one or not. It will
be useful to develop quantities based upon the information ex-
tracted from the vessel segment to which a point belongs, in-
stead of the point itself. A vesselness measure can be calculated
based upon these quantities in order to give smooth and reliable
responses inside vessels meanwhile suppress noise in the back-
ground. It will also be very useful if the newly developed quan-
tities can be embedded in any existing enhancement framework.
In this section, vessel enhancement using local line integrals

is introduced in order to achieve these goals. The
idea is to model vessels by using straight line segments and ex-
tract information from the local line integrals. By regarding a

vessel segment as a straight line, quantities similar to eigen-
values and eigenvectors of the Hessian matrix can be computed
from the local line integrals of the Hessian matrix. These quan-
tities are more robust to local abnormalities and, hence, can cap-
ture a larger and better view on the presence of vessels.

A. Local Line Integrals

Given a -dimensional image , , a local
line integral transform can be defined as

(9)

where is a line parameterized by . Unit vector
represents the line direction, is the integral length and is a
normalizing term. While gives the intensity average of
along a local line, partial derivative of gives the average of
partial derivatives of . In particular, for the second derivatives

(10)

where and , , are variables for both
and .
Let be the Hessian matrix for at point . Following

(1) and (10), the Hessian matrix for at point is
then

(11)

Eigenvectors and the corresponding eigenvalues , where
, , of give

interesting measures of structures along the local line. Notice
that and are functions of . Consider . Let ,

be the eigenvalues of at the point
and be the corresponding eigenvectors. As summarized
in Table I, , along with , , these
conditions signal a likely presence of vessel structure at point
. Furthermore, gives an estimation of the vessel direction.
In order to find the probing line that can best approximate the

vessel segment, it is observed that, at a vessel point , when the
integral line is aligned with the vessel, it will also have the
following relationships , , , which
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are the same to the relationships as listed previously.1 At the
vessel point, becomes the average of the similar Hessianma-
trices along according to (11), given the assumption that
the intensity variations are relatively small along the vessel. By
replacing the Hessianmatrix of each pixel along the line with the
average Hessian matrix defined in (11), it can result in smoothed
Hessian matrices with the reduction in sharp transitions across
matrices because smoothing Hessian matrices is equivalent to
smoothing the second partial derivatives of the image. As noise
can cause the sharp transitions in Hessian matrices, thus, this
averaging process makes more resistant to noise.
This smoothing method is superior to the Gaussian smoothing
used by the other Hessian-based methods as it smoothes the
signal along the probing line rather than in arbitrary di-
rections and, thus, the vessel boundary can be better preserved.
Furthermore, will have the same direction as ,
the direction of the integral line. Therefore, when and the
vessel are aligned at a vessel point , will be maxi-
mized. An estimation of vessel direction can be obtained when

is maximized. We choose

(12)

as the best probing direction. Let and be the
eigenvalues and the eigenvectors of , respectively. These
quantities can then be used in any Hessian-based measures by
simply replacing the corresponding values. In addition, notice
that in order to obtain good estimations, has to cover the half
unit sphere in uniformly. In all the 2-D experiments in this
work, , where .

B. Vesselness Measure

Though it should be clear that the new and can be used
in any Hessian-based vesselness measures, Frangi’s measure in
(6) is used to combine s in , with multiscale anal-
ysis. The reason for choosing Frangi’s measure is that it gives
better performance than the other two methods considered in
this work. Also, since Frangi’s measure only uses eigenvalues,
only improvements on can be shown by directly comparing
enhancement results. Improvements on will also be analyzed
in the experiments section in Section VI through comparisons
on vessel direction estimations.

C. Line Integral Length

By probing all local lines of length , can deter-
mine whether a point belongs to a vessel based upon more infor-
mation thanmere local intensity structures. Responses produced
by can reflect whether a point belongs to a vessel
and whether the vessel segment is strong or not. The choice of
depends upon image resolution and curvatures of vessels in the

1At a vessel point , when the probing line is aligned with the vessel,
for each pixel along the line segment will have eigenvector

pointing to a direction parallel to the vessel direction under the assumption
that the intensity variations are relatively small along the vessel. With identical
eigenvectors for each , the eigenvalue of is equal
to the sum of the eigenvalues of individual . Therefore, the
relationship between and will be preserved between and .

image. If the value of is too large, responses at vessel struc-
tures with high curvature will decline. On the other hand, if the
value of is too small, noise will not be effectively reduced.

D. Junction Region Processing

One limitation of the Hessian-based methods is that it is dif-
ficult to obtain accurate enhancement results at junctions, as it
takes a local view to check whether a point belongs to a vessel
segment or not. Using , it not only can detect the
junctions in the vessel images, but also can give better enhance-
ment results in these junction regions with certain adjustment of
the line integral length . Here junction region is defined as the
local neighboring region containing a vessel point where vessels
of different directions meet, including bifurcation and crossing.
From the construction of local line integrals in Section III-A,

it is observed that if only one vessel passes through the vessel
point, the values of with respect to the sampling
angles (relative the vertical direction) at the vessel point
contain only one obvious peak, as there is only one optimal
estimated direction for that matches . However, if several
vessels with different directions meet at the vessel point, it
will present several obvious peaks. Each peak corresponds
to one estimated vessel direction. This inherent property of

model can help find the junctions in vessel images.
Therefore, the peaks of with respect to the sampling
angles are first detected. The peaks are detected by the peaks
finding algorithm proposed in [14]. The algorithm detects
peaks by looking for downward zero-crossings in the smoothed
first derivatives that exceed SlopeThreshold and peak am-
plitudes that exceed AmpThreshold. The two parameters,
SlopeThreshold and AmpThreshold, are respectively set to

and
(i.e., in this paper) as suggested in
[14]. The parameter WidthPoints is the average number of
points within the half-width of a peak (i.e., the peak width
at half of the peak height), which is set to four points in our
experiments.
Through applying the peaks finding algorithm, if more than

one peak are detected at a vessel point, the point is regarded as a
junction point. After detecting the junction, a smaller line inte-
gral length (i.e., ) is chosen to process the local region
of the junction point (i.e., region centered at the junc-
tion point) so that the response in the junction region can be
more accurate. Fig. 3 shows the junction region detection in a
retina image. The green and red dots show two junction regions,
while bule circle marks a single-direction vessel point. With in-
tegral length , the values of with respect to
the sampling angles for the three vessel
points are plotted in Fig. 3(b)–(d) respectively. It can be ob-
served that Fig. 3(b) and (c) show more than one distinct peaks,
which indicate the two points belong to junction regions.

IV. PARAMETER OPTIMIZATION

As is based upon the vesselness measure pro-
posed by Frangi et al., parameters in Frangi’s vesselness mea-
sure need to be optimized before any quantitative comparisons.
Since detailed performance evaluations will be conducted on
2-D retinal images obtained from the DRIVE [15], [16] and
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Fig. 3. Junction region detection in a 2-D retina image. (a) shows a 2-D retina image. Red and green dots indicate the junction regions and blue circle indicates the
single-direction vessel point. The values of with respect to the sampling angles for the three points are shown respectively in (b), (c), and (d), where
more than one peak pattern can be observed in the curves for the junction points. In (b), (c), and (d), the x-axes start from 10 to 180 .

STARE [17] databases, an introduction to the two databases
will be first given in this section. Following the introduction,
methods for optimizing parameters are described.

A. DRIVE and STARE Databases

Both DRIVE and STARE are publicly available 2-D retinal
image databases. The DRIVE database was collected by
Niemeijer et al. and consists of 40 images. The images are
divided into two groups, namely, the training set and the testing
set, containing 20 retinal images each. The training set is useful
for parameter training in the segmentation and enhancement
methods; while the testing set is usually used for method vali-
dation. Each of the 40 images in DRIVE has a corresponding
binary mask which delineates the circular field of view (FOV)
in the image. The testing set also provides two sets of manually
segmented vasculatures, in which, the first set is normally used
as the ground truth. In contrast, there is one set of segmented
results for the training set. Each image in DRIVE is of size 565
by 584 pixels and the 45 FOV is circular with a diameter of
approximately 540 pixels.
The STARE database was collected by Hoover et al. It con-

sists of 20 images, each of size 700 by 605 pixels. The 35 FOV
in the images are approximately of size 650 by 550 pixels. For
each image, two sets of segmented results are provided. Sim-
ilar to DRIVE, the first set of observations is used as the ground
truth.
In order to find the pixel size relationship between images

from DRIVE and STARE, we assume that, when capturing
retinal images, the distance from the camera optical center
to the retinal surface remains the same. Let and be
the corresponding pixel sizes for DRIVE and STARE, re-
spectively. It should have and

. Therefore, . Be-
cause of this relationship, and the same target objects obtained
by using the same imaging modality in the two databases,

integral length for DRIVE and for STARE can be related
by .

B. Optimization of Parameters for Frangi’s Vesselness
Measure

For Frangi’s vesselness measure, , are parameters, whose
default values are and .
Denote as . The default setting of pa-
rameters suffices to produce enhancement results of quality for
a wide range of 2-D and 3-D images. Due to the differences in
the nature of the imaging technique and the type of vasculatures,
optimal parameters can be different for each type of images. In
all fairness, it is desirable to search for an optimal set of param-
eters before any quantitative experiments are conducted.
Since experiments in Section VI will be conducted on 2-D

retinal images from DRIVE and STARE, optimal values of
and are first searched based upon the enhancement results of
the images from these databases. Furthermore, because of the
same target objects in both DRIVE and STARE which are ob-
tained by using the same imaging modality, and the deduced
relationship between and , the search of optimal param-
eters can be done in one database for the efficiency concern. In
the current study, the DRIVE database is chosen for the training
purpose because of its provided masks and the fact that it con-
tains fewer images with pathologies, which are likely to affect
the process.
Parameters are evaluated by using the receiver operating

characteristic (ROC) curves on the enhanced results obtained
by using the Frangi’s vesselness measure stated in (6) with
the particular parameter setting. ROC curves are plots of false
positive ratios (FPR) on the -axis against true positive ratios
(TPR) on the -axis. It is an important benchmark usually ex-
ploited for evaluating segmentation methods. Each segmented
result corresponds to a point on the ROC curve. Changing the
parameters of the segmentation method will produce results
with different levels of sensitivity and therefore sweep the
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Fig. 4. Parameter optimization for and . The optimal values are
and .

whole curve. Given a ground truth segmentation, an ideal result
will be a point on the upper left corner with the coordinate
(0, 1). The area under curve (AUC) of ROC curves, which is
between 0 and 1, is considered to be a good measure to quantify
ROC curve. The larger the AUC is, the better the method is.
ROC curves have also been used by different researchers

[3], [18] to evaluate enhancement performances. Global thresh-
olding is applied to the enhanced images with different thresh-
olds, to obtain segmentations of different levels of sensitivity.
AUC of ROC curves can reflect how good an enhancement
method is.
Twenty images from the training set of DRIVE are used

in this optimization process. For and
, each parameter combination is used in

Frangi’s measure to enhance 20 images. Once the images are
enhanced and normalized, they are thresholded to produce a
ROC curve. Only pixels in FOV are considered in ROC anal-
ysis. Also, it should be noted that TPR and FPR are calculated
based upon all 20 images.
Ten scales with , are considered, which

cover the range of vessel radii in the database. for numer-
ical differentiation.
The results are plotted in Fig. 4. The optimal param-

eter settings are and , hence,
. The corresponding AUC is 0.9055.

However, one can observe that performances around the op-
timal point are comparable with a slight difference of less
than 0.5% (0.552% of the optimal value). This implies the
qualitative comparisons based upon the default parameters are
still valid in the previous sections.

V. VARIATIONAL OPTIMIZATION

In Section III, , an attempt towards a more robust
and reliable vesselness measure has beenmade, in which vessels
are modeled as straight line segments. is developed
based upon the belief that a good vesselness measure should
reflect not only whether a point belongs to a vessel, but also
whether the vessel segment is strong or not. It focuses more on
the vessel segment to which a point belongs instead of the point
itself. For a vessel point, essentially uses a straight

line passing through the point as an abstraction of the vessel seg-
ment to which the point belongs. However, the use of straight
lines and the fact that the probing line has to pass through the
point being analyzed can be restrictive. To relax these restric-
tions, we can consider a better representation of a vessel seg-
ment, which is its centerline and not necessary a straight line.
By extracting the centerlines and designing measures based

upon the extracted centerlines, some additional advantages can
be introduced. Since signals are usually clear and definite along
the centerlines, measures based upon centerlines will be more
accurate. The use of centerlines in the measure can reduce the
level of sensitivity to local structures, due to the fact that the
centerline does not have to be close to the particular point under
analysis. Moreover, the near-by points belonging to the same
vessel segment will have similar vesselness responses after ap-
plying the variational optimization since they share the
same centerline. This will give smooth vesselness responses.
Furthermore, the narrowing effect of Frangi’s measure can be
effectively reduced. This is because, for those points inside ves-
sels and near the boundaries, the information used to calculate
the measure is collected from the centerline, not local structures.
The framework is proposed in this section. The frame-

work takes the enhanced image and its corresponding vessel
direction estimations obtained from as inputs and
generates optimized vesselness measures. The extended method
is called vessel enhancement using local line integrals and vari-
ational optimization . It embeds a more
generic vessel model and calculates an optimized vesselness
measure based upon features of the possible vessel segment
(more specifically, the centerline of the vessel segment) to
which a point belongs, in order to enhance vessels with a larger
and better view.

A. Optimization Functional

Given a preliminary enhancement result and its corre-
sponding vessel direction estimations , it is desirable to
locate the vessel segment in which a point resides, if there is
any, and take information obtained from this vessel segment to
develop a measure. In order to achieve this, an efficient and el-
egant representation of a vessel segment is needed. The center-
line of a vessel segment is such a good representation because
large vesselness responses can usually be observed along the
vessel centerlines. Following this observation, for any point ,
an open curve , which passes through will be initialized
and let evolve. The goal is to place the curve such that it passes
through the centerline of the vessel segment to which belongs,
if there is any. The final curve will have large vesselness
responses along it and its tangent vectors should coincide with
vessel directions . Notice that the final curve does
not necessarily pass through the point as does. There-
fore, depends less upon the point itself, but more on the
vessel segment to which the point belongs. The following func-
tional is proposed so that curves passing through vessel center-
lines have large values

(13)
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where is the arc-length parameter of and is the length
of .

(14)

is the unit tangent vector of curve . Note that ,
since is the arc-length parameter. This functional is designed
to indicate howwell is locally tracking an vessel. The inner
product in (13) can be written as

(15)

where is the angle between the tangent vector and the esti-
mated vessel direction. Thus, the inner product of with the
tangent vector should give large value and this indicates a
large vesselness response and good alignment between the
estimated vessel direction and the tangent vector (i.e., is
small).
While directly maximizing the functional as stated in (13)

leads to longer curves, a functional of the form

(16)

can be used to produce curves that have large average
values. Since (13) is equivalent to

(17)

where is obtained by rotating 90 counter-clockwise and
is the unit normal direction of .

Functionals of similar forms as stated in (13) and (16) have
been studied first in the context of vessel segmentation by
Vasilevskiy and Siddiqi [12]. While only closed curves are
considered in [12], Kimmel and Bruckstein [19] later proposed
an open curve model for such functionals and derived evolu-
tion equations for open curves. Inspired by the work done by
Kimmel and Bruckstein [19], the evolution equations for our
functional are

(18)

along the curve and

(19)

(20)

for end points, where can be understood as the moving di-
rections of points on . . Derivation of (18)–(20) are
given in the Appendix.
The evolution of the curve is based upon the gradient descent

rule with respect to the cost functional . The curve evolu-
tion tries to maximize the local vesselness responses and con-
sistencies between its tangent vectors and the estimated vessel
directions, while imposing smoothness constraint through the

Fig. 5. (Color images) Initialized curve , shown in red, with their corre-
sponding final position shown in green.

curvature . of the converged curve will be a good
indicator on how strong the possible vessel is. If a point is
inside the background, the initialized curve will hardly move
and the final will be small. On the other hand, if belongs to
a vessel segment, the curve is likely to move to the centerline
of the vessel segment. Therefore, we design our new optimized
vesselness measure to be .

B. Implementation

1) Initialization: A good initialization of curve will
not only reduce the time it takes until convergence is reached,
but also will guarantee quality of the final curve. Since vessel
direction estimations are available, the initial curve at can be
defined as a straight line, in the vessel direction centering at

(21)

where is the arc-length parameter ranging from 0 to , is
the point to be enhanced and is the length of the initial line.

C. Discretization

A curve with length is discretized into sample
points. That is to say, points are sampled off the curve with

. The time increment for the evolution
(18), (19) and (20) is empirically set to 0.02, in order to make a
compromise between numerical stability and convergence time.
1) Re-Parameterization: In order to maintain numerical

stability, should be small. Also, being the arc-length pa-
rameter, needs to cover the curve uniformly. Therefore, a
reparametrization is needed after a certain number of iterations.
The number of iterations between two reparametrizations, ,
is empirically set to 100, hereinafter. Reparametrization is
performed by first calculating the length of the current curve

. is approximated by summing up the distances between
the neighboring sample points of . Then these sample
points are regarded as control points for a quadratic (order 3)
B-spline. new points are then sampled off this spline
with equal distances.
2) Other Issues: Curves will stop evolving when the av-

erage displacement of points falls below a threshold . Also,
the evolution will stop once the overall length of the curve ex-
ceeds , to avoid over-smoothing and pathological cases.
is chosen as 0.001. As for , given the optimal value of
in for a certain dataset, and can be set to
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Fig. 6. (Color images) Comparison of enhancement results. From left to right: the original image, its ground truth, enhancement results obtained by using the
Frangi’s method, and . Red arrows point to regions of interest that show differences between and .

Fig. 7. (Color images) Comparison of enhancement results. From left to right: the original image, its ground truth, enhancement results obtained by using the
Frangi’s method, and , respectively. The red line in the leftmost figure indicates the cross section of the vessel segment.

satisfy , to ensure that the length of the final
curve approximates . Empirically, is set to .

D. Performance Analysis

One of the advantages of using a variational framework
for locating vessels is that the final position of the center-
line-searching curve does not necessarily pass through the
point being analyzed. It stops at a place where the functional

is maximized. Therefore, curves initialized at near-by
points belonging to the same vessel segment will have similar
final positions and, hence, give similar optimized vesselness
measures. For curves initialized at background points, they
will stop after several iterations near the original position, due
to the lack of image forces. This advantage will effectively
reduce the narrowing effect on the images, since the optimized
vesselness response will depend upon the common vessel cen-
terline. Furthermore, allows more flexibility
than . can capture the locations
of vessels even when they are not straight. The previously
shown properties are further confirmed by experiments and
comparisons.
In order to show how works, initial

curve, together with its final positions obtained by using
is shown in Fig. 5. An image obtained

from DRIVE was used for this illustration. Ten scales were
considered with and . was
first applied to this image with the optimal parameter settings
to obtain preliminary vesselness responses and vessel direc-
tion estimations. Then was applied on the input with
default parameters. The value of was set to 13 empirically
for DRIVE, thus, and . The region of
interest was selected containing sinuous vessel. Note that, this
is a place where a line segment cannot represent the vessel.
In this figure, initial curve is shown in red, with the point at
consideration shown as an asterisk in the middle, while the final
curve is shown in green. It can be observed that final position
of the curve is located near the centerline and it can effectively
capture the location of the vessel segment.

Moreover, vesselness responses optimized by
have been compared with the re-

sults obtained by using the Frangi’s measure and
alone. Comparisons are shown in Figs. 6 and 7. In Fig. 6,
the enhancement results of a low contrast region containing
vessels are shown. and give
comparable results that are both better than the results obtained
by using the Frangi’s method. They can both produce smooth
vesselness measures while suppressing background noise.
However, by comparing details in the regions pointed by red
arrows, one can see artifacts in the results obtained by using

. Points off the vessel are enhanced in region (a).
Small sinuous vessels lose their original shape and have low
responses in regions (b) and (c). This is caused by the use
of straight line segments as the vessel model. On the other
hand, , with a more flexible curve model,
does not have similar artifacts and produces satisfactory
responses. Artifacts from will likely cause
problems for applications targeting vessels in low-contrast
regions, in which vessels are usually small, sinuous and with
low vessel-background contrast. In Fig. 7, another set of vessel
segment enhancement results are shown. It can be observed
that produces responses that are the closest
to the ground truth.

VI. EXPERIMENTS

Experiments have been conducted on synthetic images and
the two retinal image databases, DRIVE and STARE, to eval-
uate the performance of the new vessel enhancement method.
Comparisons have also been made between Frangi’s method
and , and the experimental results will be
presented in this section.

A. Synthetic Images Experiment

The new method has been evaluated with a 2-D synthetic
image containing various vascular structures with additive
Gaussian noise (zero mean, 0.01 variance), as it is depicted in
Fig. 8. Ten scales were used with and .
Since the synthetic image was not retinal image, the default
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Fig. 8. Comparison of enhancement results on synthetic image. (a) Ground truth synthetic image. (b) Noisy synthetic image. (c) Enhancement result using the
Frangi’s method and the closeups of indexed regions. (d) Enhancement result using method and the closeups of indexed regions.

Fig. 9. Comparison of enhancement results. (a) 2-D retinal image from DRIVE database. (b) Ground truth of the retinal image. (b.1) and (b.2) The ground truth
of the close-ups of circled regions. (c) Enhancement result using the Frangi’s method. (c.1), (c.2) The close-ups of circled regions using the Frangi’s method.
(d) Enhancement result using . (d.1), (d.2) Close-ups of circled regions using . (e), (f) Segmentation results through thresh-
olding the enhancement results in (c) and (d), respectively.

parameter settings for Frangi’s measure were used in the
experiments. For , preliminary vesselness
measures and vessel direction estimations obtained by using

were used as inputs. , ,
, and . It is observed from

the comparison results, see Fig. 8(c) for Frangi’s method
and Fig. 8(d) for , that
can help give better enhancement results. With close-up
comparisons of several junction regions and high curvature
structures (see Fig. 8(c.1)–8(c.3), and Fig. 8(d.1)–8(d.3)),

obviously can help solve the limitations of
the original Hessian-based method.

B. Retinal Images Experiments

In this section, experiments have been conducted on both
DRIVE and STARE databases. Enhancement results obtained
by using the Frangi’s method and are com-
pared qualitatively in Fig. 9.
To quantitatively evaluate the results, two performance mea-

sures were used, namely, angular discrepancy (AD) and area
under curve (AUC) of ROC curves. Let be the image domain
and be the vessel regions, given the ground truth of an
image

if
otherwise
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Fig. 10. (Color images) ROC curves of different methods for (a) DRIVE and (b) STARE, together with the segmented results from the second observer.

TABLE II
SUMMARY OF ANGULAR DISCREPANCIES FOR DRIVE AND STARE. AVERAGE

VALUES ARE LISTED FOR EACH METHOD WITH VARIANCES

and its corresponding vessel directions

an angular discrepancy can be defined as

where and is the estimated vessel direction at
point . The inner product of with the normal to
is proportional to , where is the angle between
and . A smaller AD means a better estimation of vessel
directions.
Since neither of the two databases at consideration provides

vessel directions associated with the ground truth, an estima-
tion of vessel directions can be obtained by applying the
Frangi’s method on the ground truth . Ten scales were used
with and for DRIVE. Fourteen scales were
considered for STARE with and .
and . for DRIVE database
and for STARE database. Default parameters were
used in .
First, angular discrepancies have been evaluated for each

image in the two databases using the two methods. The re-
sults are summarized in Table II. It can be observed that

has a smaller angular discrepancy than
the Frangi’s method in both databases. This is because

uses a different principle for estimating
vessel directions. In the Frangi’s method, vessel directions are
all estimated based upon eigenvectors of the Hessian matrix;
while in , it is achieved by considering local
line integrals of the Hessian matrix.

TABLE III
AVERAGE AUCS AND VARIANCES FOR INDIVIDUAL IMAGES

IN DRIVE AND STARE

Second, ROC analysis has been applied to individual images
in the two databases. AUCs were recorded for each image. The
average ROC curves for the two database are given in Fig. 10.
For the DRIVE database, the manual segmentations from the
first set were used as the ground truth and the manual segmenta-
tions of the second set were used to indicate the human observer
results, which provided only one FPR-TPR pair shown as blue
square in Fig. 10. For the STARE database, the first observer’s
manual segmentations were used as the ground truth and the
second observer’s results were indicated as the human observer
results. Average AUCs and variances of the Frangi’s method
and are summarized in Table III, together
with the results obtained by Jiang et al. and Staal et al., as
these results have been published in [15]. It is observed that

can give better enhancement results in the
retinal images. Both and Frangi’s method
were implemented in the MATLAB environment. The com-
putation time of , and Frangi’s
method were respectively around 4 h, 30 mins and 10 mins for
each retinal image on a PC with a Pentium IV 3.2 GHz CPU
and 1 GB RAM. The computation time can be further reduced
by using the graphical processing units (GPUs).

VII. CONCLUSION

Contributions of this work can be summarized as follows. In
this paper, limitations of the Hessian-based vessel enhancement
methods have been discussed, which stem from the fact that the
Hessian matrix is a local measure sensitive to local intensity
structures. A new view on the vesselness measure has been pro-
posed. Amore robust vesselness measure should not only reflect
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whether a point belongs to a vessel segment, but also whether
the vessel segment is a strong one or not. The new view on the
vesselness measure shifts focus from a point to the vessel seg-
ment to which the point belongs.
Vessel enhancement using local line integrals

is first proposed in this paper. A vessel model is embedded as
the prior knowledge by regarding a vessel segment as a straight
line and using the second order information of the local line
integrals. is less sensitive to local intensity abnor-
malities. Therefore, it can produce more accurate vesselness
measures and vessel direction estimations. Useful quantities
similar to the eigenvalues and eigenvectors of the Hessian
matrix are produced by . These quantities can be
exploited in any existing Hessian-based vesselness measure
methods. With the local line integrals, junction regions can
be detected and handled effectively with smaller line integral
length. This can give better enhancement results than the
existing Hessian-based methods which will suppress these
junction regions. A variational optimization frame-
work is further proposed to improve quality of vesselness
measures. It is used as an extension on to form

. can produce smooth
vesselness responses along vessels, give good performance
in background suppression, and reduce the narrowing effect
of some Hessian-based methods. utilizes
a more generic curve model instead of straight line segments
used in . Therefore, it can locate vessels with large
curvatures, which is a limitation for .

APPENDIX

The objective is to maximize

(A1)

with

(A2)

which measures both the vesselness response along the curve
and the degree of alignment between the tangent vector of the
curve and the estimated vessel direction.
First, let

(A3)

be the arclength of an open curve . Adding the variation
to the curve, such that , differentiating
w.r.t. and letting go to zero, yields

(A4)

where s is the arclength parameter and . can be
rewritten as a general form

(A5)

with . After taking the first variation

(A6)

Using this derived condition in the Fua-Leclerc formula [19]
yields along the curve

(A7)

and

(A8)

at the end points and .
We use these conditions to guide a gradient descent process

for an active contour evolution toward the local maximum of
. For in our case, the gradient descent flow

along the curve is given by

(A9)

along the curve and

(A10)

(A11)

for end points, where can be understood as the moving di-
rections of points on . The motion of the end point is designed
in the way that it either extends or shrinks the curve so that it
satisfies the constraint in (A8).
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