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Principal Curves for Lumen Center Extraction and
Flow Channel Width Estimation in 3-D Arterial
Networks: Theory, Algorithm, and Validation

Wilbur C. K. Wong, Ronald W. K. So, and Albert C. S. Chung

Abstract—We present an energy-minimization-based frame-
work for locating the centerline and estimating the width of tube-
like objects from their structural network with a nonparametric
model. The nonparametric representation promotes simple mod-
eling of nested branches and n-way furcations, i.e., structures that
abound in an arterial network, e.g., a cerebrovascular circulation.
Our method is capable of extracting the entire vascular tree from
an angiogram in a single execution with a proper initialization. A
succinct initial model from the user with arterial network inlets,
outlets, and branching points is sufficient for complex vasculature.
The novel method is based upon the theory of principal curves. In
this paper, theoretical extension to grayscale angiography is dis-
cussed, and an algorithm to find an arterial network as principal
curves is also described. Quantitative validation on a number of
simulated data sets, synthetic volumes of 19 BrainWeb vascular
models, and 32 Rotterdam Coronary Artery volumes was con-
ducted. We compared the algorithm to a state-of-the-art method
and further tested it on two clinical data sets. Our algorithmic
outputs—lumen centers and flow channel widths—are important
to various medical and clinical applications, e.g., vasculature
segmentation, registration and visualization, virtual angioscopy,
and vascular atlas formation and population study.

Index Terms—Angiography, arterial networks, blood vessels,
centerlines, principal curves.

I. INTRODUCTION

HE diagnosis and the prognosis of a vascular disease very
T often rely on 3-D angiography. An angiographic image
provides comprehensive information on a circulation of interest.
The lumen image also allows a physician to better understand
the disease pathology. An appropriate treatment can be then
planned. To assess the operation’s effectiveness, a posttreatment
image is oftentimes acquired. Angiographic segmentation of-
fers a physician access to patient-specific 3-D vascular models
for effective and efficient clinical comprehension. The vessel
centerline is as important as the segmentation. It is a piece of
crucial information in advanced image analysis, processing and
visualization, viz., virtual angioscopy [1], [2], population study
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of vessel attributes [3], real-time 3-D/2-D vascular registration
[4], and vasculature visualization [5], [6]. Algorithms to extract
vessel centerlines can be categorized into two classes, i.e., au-
tomatic and semiautomatic. The former requires no user inter-
vention in producing the vessel centerlines. The latter needs
at least a single user-supplied point to kick off the execution.
An automatic approach usually relies on the postprocessing of
the vascular segmentation [1], [2], [7], [8]. Nevertheless, if one
wants to get a satisfactory centerline extraction, a topologically
and morphologically correct segmentation (with no handles and
cavities) is compulsory, which is indeed very difficult to obtain
from clinical data. Semiautomatic algorithms based on a vessel
tracer are capable of producing a centerline with subvoxel ac-
curacy starting from a user-supplied point. These algorithms in-
clude a mathematical morphology-based method [9] and itera-
tive tracking methods [10]-[12]. The vessel axis is traced from
the user-defined point progressively. The direction of the next
axial point is locally determined with structural analysis. Worz
and Rohr [12] proposed to use a 3-D cylindrical intensity model
with the Kalman filter for incremental segmentwise tracking of
a single vessel. Florin et al. [10] exploited Monte Carlo sam-
pler to enable tracking of branches at a furcation. In one of our
previous works [11], we posed the tracking problem on a prob-
abilistic framework to allow interactive user intervention during
algorithmic execution.

Vessel tracking with a single point, however, is inadequate
in applications where the user wants to control the destination
point of the traced path. To solve this problem, methods that
permit the user to supply both start point and endpoint were de-
veloped [13], [14]. The voxel lattice is treated as a graph, and the
centerline tracing problem is reduced to the well-known shortest
path problem. Wink ef al. [13] and Li and Yezzi [14] added
one extra nonspatial dimension (scale or lumen width) to the
graph to make the tracking of the vessel’s interior more accu-
rate. The centerline extracted is a sequence of connected voxels;
thus, the accuracy is only up to voxel level. Parametric or spline
modeling of a vessel centerline can achieve subvoxel accuracy.
However, the number of spline control points and the point lo-
cations have to be selected with care. Dense control points are
necessary for extracting complex vasculature centerline, while a
few points are good enough for mildly bended or straight vessel
segment. Special implementations may be needed, depending
on the spline type, if the user wants the spline to pass through
certain locations. Moreover, extracting the centerlines from a
vascular network with these algorithms is not trivial. Multiple
executions are required. The number of executions is decided
by the number of distal network outlets; a single execution gives
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a path from the arterial root to an outlet. In this paper, we pro-
pose a better design that entertains finding the entire vascular
tree with a single execution, as well as subvoxel accuracy.

Our main contribution is to propose an energy-minimization-
based framework for locating the centerline and estimating the
width of tubelike objects from their structural network with the
nonparametric model. In the framework, we exploit nonpara-
metric representation to model the vascular network. Nested
branches and n-way furcations are expressed in a typical graph
adjacency list. The user is required to define an initial model
by clicking a few positions in the image volume. The amount
of user interaction depends on the complexity of the vascula-
ture. An algorithm based on the theory of principal curves is
introduced to refine the initial model, find centerlines of the net-
work, and determine the lumen (i.e., flow channel) widths in a
single execution. An earlier version of this paper was presented
in [15]. The closest work is the semiautomatic extraction algo-
rithm in [16]. They exploited the B-spline curve to model the
centerline of a single vessel segment. The number of spline con-
trol points has to be predefined in their method. The insertion of
anchor points (locations where the solution must go through) is
not trivial and is coupled with the complexity of the B-spline.
This is because the spline control points are not on the curve it-
self, forcing the curve to pass through an anchor needs further
computation.

II. INTRODUCTION TO PRINCIPAL CURVES

A. Theory of Principal Curves

Hastie and Stuetzle [17] defined the notion of principal
curves in 1989. A curve that smoothly passes through the
“middle” of the input points gives the best nonlinear input
summary. Later, Kégl e al. [18] refined the concept of prin-
cipal curves by incorporating a length constraint, making the
principal curves exist for any input point distribution with
finite second moments. Then, the diverse and practical usage of
principal curves has received considerable attention. In image
processing, selected pixels are commonly transformed into
a plain point cloud (points without any associated attribute)
with respect to a reference origin and the pixel size, permitting
a direct usage of principal curves. Suppose X C R? is a set
of vectors representing the coordinates of the selected pixels,
where d = 2 denotes the domain dimensionality of a 2-D
image. A smooth curve f(¢) = [fi(t),..., fa(t)]* parameter-
ized by a real argument ¢ is a principal curve of X if:

1) f does not intersect itself, i.e., a # b = f(a) # £(b);

2) f has a given length L inside any bounded region in R?;

3) f is self-consistent, i.e., f(t) = E(X|f~}(X) = t)
where X is a random variable on X, f~1() is known as the
projection index of a point Z on curve f, and

£1(@) =sup {¢: 17 - €Ol = inf |7 - £} (D
t T

Operator || - || denotes [>-norm in R?. This projection index
takes a particular value of ¢, whose corresponding location on
the principal curve f has the shortest orthogonal distance (de-
noted by inf ||-||) to point Z. If there exists more than one of such
value, the maximum one is chosen to be the projection index
(denoted by sup{-}). The self-consistency property of principal
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curves guarantees that every point on the principal curve co-
incides with the “middle” or expected location of all the input
points that are closest to itself. To further elaborate this property,
we determine the principal curve location f(¢) by evaluating the
expected value of the random variable X that satisfies condition
f~1(X) = t. Suppose we know how to find the projection index
f~1(%); the expectation is computed as follows:

f(t) =E (X|f 1(X)=1)
= Y Tgx(%) 2)

FEXy

where X; = {7 : & € X,f (&) = t} isasetof input points that
are closest to f(¢) and gx () is the probability mass function
(pmf) of the discrete random variable X. Since we have no extra
knowledge of the input points (they are plain), we obtain the
following pmf:

(@) = { /P

where operator | - | returns the cardinality of the argument set.
Combining (2) and (3) leads to a conclusion that a point on a
principal curve is the average of its projected points. This asserts
the principal curves self-consistency property.

for Ze Xy
for 7 eR?/X, )

B. Extension to Grayscale Angiograms

Given an angiographic segmentation, the direct usage of prin-
cipal curves can give satisfactory extraction of lumen centers;
nonetheless, a correct segmentation is difficult to obtain. This
makes the straightforward application impractical in a clinical
environment. This section shows how to use principal curves to
extract lumen centers from a grayscale angiogram without the
need for segmentation. Without segmenting the vessels, all the
image pixels have to be processed. To make the smooth curve
sensitive to the lumens, the pmf in (2) should be proportional
to a lumen existence probability instead of being uniformly dis-
tributed among all the points in X;. A viable option to estimate
the existence probability is to exploit a lumen cross-sectional
intensity model. One can approximate this probability with the
correlation between the model and the observations. We there-
fore focus on the correlation-based approach. The object to be
detected in this case is the lumen cross-sectional intensity pro-
file. We define the intensity model as a function of || ||, where @
is the relative position vector of a point to the lumen center. The
position giving the maximum correlation between this model
and the observations is therefore at the lumen center. The pmf
is given as follows:

a

1
ox(@) = /I(ax Fondhe (Jiel)dv ()

—a
where constant Z is for normalization, constant a defines the
model span, I(-) gives the intensity of the argument position,
and h.(-) and 7, are the intensity model and the normal vector
at f(¢), respectively. This equation expresses the pmf of a 2-D
problem; the model span is a finite line segment between f(¢) +
any. In case of the 3-D problem, the span is a normal disc at
f(t) of radius a. In other words, we consider a pencil of normal
vectors rather than one particular normal vector at f(¢) in a
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3-D space. However, the computation of such a pmf is expen-
sive. It involves evaluation of a definite integral, which leads
to numerous image interpolations. Furthermore, pmf precom-
putation at every pixel location is not possible because the inte-
grand depends on the normal of the smooth curve. We show in
Appendix A that this pmf gx () is expected to give a maximum
value at the lumen center under Rician and Gaussian noise.

We also find that gx (%) is symmetric with respect to the
lumen center along the curve’s normal direction. In other words,
the random variable X has a mean value equal to the lumen
center. By the central limit theorem, the combination of (2) and
(4) suggests that the principal curve is located at the lumen-
center position. This is identical to the solution of the following
sum of squared difference (SSD) metric-based optimization that
minimizes the discrepancy between the observations and the in-
tensity model centered at f(t), i.e.,

(1@ —ne (|7 - f'(t)H))z )

This solution requires much less computational effort to cal-
culate. Thus, hereafter, we use (5) to find a principal curve from
a grayscale image.

III. ALGORITHM FOR FINDING PRINCIPAL CURVES

The algorithm to find a principal curve from a grayscale
image volume is summarized in a flow diagram (see Fig. 1).
It is based on an efficient algorithm proposed in [18] known
as the polygonal line algorithm. The algorithm output is a set
of k polygonal lines that minimizes the squared difference
between the observed and model intensities at input data points
(image voxels in our case). The output complexity is only
O(k), contrary to the other two algorithms [17], [19] that give
output with equal complexity to the number of image voxels.
A typical image volume usually consists of millions of voxels.
Nonetheless, less than a hundred points is sufficient to model
a smooth vessel centerline. Therefore, k is much less than the
number of voxels. This makes the polygonal line algorithm an
appropriate method to extract lumen centers.

A. Initialization

The user gives an initial principal curve. This curve coarsely
depicts a vessel of interest with two end vertices. The vertices
are selected on planar reformatted images of an image volume.
They have to be selected at the lumen center and are fixed (not
optimized) throughout the algorithm execution to avoid unde-
sired shortening or lengthening of the estimated vessel center-
line. This also permits the user to gain a certain control over the
output. If the end vertices are difficult to accurately locate from
the reformatted images, a plausible position can be computed, as
suggested in [20], by finding the zero crossing of two functions
defined by the image gradients and the eigenvectors of the Hes-
sian matrices, which denote the basis of a vessel cross-sectional
plane, in a local neighborhood. Additional vertices inserted in
between may be required if the vessel course significantly de-
viates from a straight line. The precise locating of these ver-
tices is however not necessary unless they are anchors, i.e., lo-
cations where the principal curve must pass through. As such,
the amount of user interaction is in proportion with the vascular
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Fig. 1. Flow diagram of the polygonal line algorithm to find a principal curve.

complexity. In the given sequence of vertices, every adjacent
pair defines a line. Each line has an associated intensity model
that imitates the lumen-center peripheral image intensity. Pa-
rameters of the model are set to their initial values in this step.

B. Data Point Projection

Following the initialization is a step that projects input data
points onto the current principal curve f. Theoretically, this is
to determine the projection index f~(Z), VZ € X. However,
knowing the exact index is not necessary, as we are going to
update the principal curve in a discrete manner and the curve is
nonparametrically represented as k polygonal lines. As such,
finding the curve location is equivalent to determining the end
vertex locations of these lines. It is sufficient to project the
data points onto these lines for evaluation of (5). Only points
close to the current polygonal lines are considered. Other data
points are too distant to have significant effect on determining
the vertex locations. This prevents adjacent irrelevant struc-
tures from dictating the lumen-center extraction process. We
thus project points that lay within the proximity to the curve
[defined by parameter a in (4)]. This volume, swept by the
finite intensity model along a polygonal line, is cylindrical. We
thus transform the projection step into finding the enclosure
of input points in cylinders. There are k cylinders of interest
whose axes are the polygonal lines. Points inside a cylinder
are projected onto the cylinder axis. If a point is covered by
more than one cylinder, we project it onto the one with the
shortest distance to the axis. The cylinder axes are oriented in
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a 3-D space depending on the principal curve vertex locations;
computing the enclosure of points in an arbitrary oriented
cylinder is not a trivial task. A computationally efficient option
is to find an axis-aligned bounding box of the cylinder followed
by an orthogonal range query with the uniform-level octree
subdivision technique and, finally, an exhaustive search into the
query result. This involves a series of range-searching problem.
In this context, it is related to finding all the input points that
lay inside the arbitrary oriented cylinders swept by the finite
intensity model along the polygonal lines, which is known as
range reporting. A state-of-the-art algorithm was developed
in [21], namely, semialgebraic range searching. An arbitrary
cylindrical range can be queried in near-linear time with linear
range-searching data structure size. Notwithstanding the small
data structure size, the way to resolve the query is not effective
in this application. Our usual number of input points is of tens
of millions; a million-order-of-magnitude query time is too
much to report a few thousand or even hundred points. As such,
we relax the problem to orthogonal range searching. Instead
of resolving the difficult query in its tight range, we enlarge
the query range to the cylinder’s axis-aligned bounding box.
Such a box range can be answered in polylogarithmic time
with near-linear space-partitioning data structure (e.g., kd tree,
range tree, and octree [22]). This range relaxation saves up to
five-orders-of-magnitude querying and reporting time. Since
our input points are in latticed arrangement, we prefer the
uniform-level octree as the space-partitioning data structure.
Some reported points in this enlarged range are superfluous; we
perform an exhaustive search! in the query result to get rid of
them. This approach gives a good tradeoff between the space
and time complexity.

C. Vertex Optimization

Given the current principal curve, defined by a set of vertices,
and k sets of projected data points, we refine the curve by com-
puting new vertex locations such that SSD between the observed
and model intensities is further minimized. However, this refine-
ment step is computationally difficult [18]. A suboptimal solu-
tion is obtained with a gradient descent method by optimizing
SSD per vertex sequentially. The energy function to be mini-
mized is a discrete version of (5), i.e.,

EZjGN(W)\tﬂE:EGLj(I<f)__hj<5(f7Lj»)2
IN(V)

Edata(‘/i) =

(6)

where V; is the vertex of interest, N(-) returns indexes of the
argument vertex’s attached lines, L; denotes the jth line, L; is
the projected data point set of the jth line, h;(-) is the intensity
model of line L;, and 6(&, L;) returns the shortest Euclidean
distance of point & to the line segment L ;. The two denomina-
tors [N(V;)| and |L;| are for normalization. We use a Butter-
worth-shaped function as the intensity model, i.e.,

hi (I12]) = B + ©)

L+ (l/R)™"

IThe exhaustive search here means, for each returned point, discarding the
point if it is outside the corresponding cylinder. This can be achieved by deter-
mining the shortest distance between the point and the axis of the cylinder.
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where B, H, and R denote background intensity, intensity
amplitude at lumen center, and lumen half-width, respectively.
They are all in RT. The lumen half-width is depicted by
locations having intensity equal to half the center intensity am-
plitude over the background, i.e., B + H/2. Parameter n € Rt
defines the rate of intensity drop at the half-width location. A
large n gives an abrupt drop. The model reduces to a rectangle
function if n is very large (= 50). A small n (= 1.5) gives a
Gaussian-like function.

The principal curve is not parametric, and therefore, it may
not be smooth if we optimize only Fgata(-). An extra energy
term is needed to regularize the curve, i.e.,

)
(®)

(L3112 + 1E112) = (12917 + 128
2

strain\ V14

2
gl + [z

where L; and L;/ are the two attached lines of vertex V;, and
L denotes a line before the optimization. Note that the formula-
tion of (8) assumes that there are only two lines attached to any
movable vertex. This energy term accounts for the relative strain
induced by vertex dislocation due to an optimization. Strain,
expressed as the difference in placement of parts in a system,
is a measure of the degree of deformation. Fgtrain(-) returns a
value in R. It calculates the relative change in the attached lines’
length, e.g., 0 denotes no change, 1 denotes 100% lengthening,
and —0.2 means 20% shortening.
The overall energy function to be minimized becomes

E(‘/L) = Edata(‘/i) + )\Estrain(‘/i) (9)

where A € R is a variable to control the degree of regulariza-
tion. Analytic derivatives of the energy function are used to up-
date the vertex locations. Neighboring vertex locations from the
previous update are referred in the calculation. This is to mimic
simultaneous updating of the locations. Thus, the vertex pro-
cessing order is not important in this sequential gradient descent
method. The vertex locations are iteratively updated until con-
vergence, and a stopping criterion is implemented. Those ver-
tices with location changes less than a threshold after a certain
number of iterations are treated as inactive. The optimization
step terminates until no active vertex or the maximum number
of iterations is reached.

D. Intensity Model Optimization

Once we have updated the vertex locations, the optimal inten-
sity model parameters of each polygonal line that best describe
the projected data points’ intensities are determined. This is per-
formed by the following minimization:

> @) ~hi (82 L))"

Fel,;

{B*7 H*'/ R*7 n*} = a’rg

min
{B,H,Rn}

(10)

A gradient descent method is used to calculate the optimal
parameters. The parameters are optimized on a bounded space.
Prior knowledge of the lumen cross-sectional intensity profile
gives the parameters’ boundaries. For instance, suppose the
image intensity is normalized to [0,1]; we know that vessels
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are the brightest objects on a dark background having either a
Gaussian-like or rectangular cross-sectional intensity profile,
and we know the possible range of the lumen width and the
intensity of the dimmest vessel. Thus, we have 0 < B < Bpax,
Hyin < H <1, Ruin SR Riax, and 1.5 < n < 50, where
Brax is the maximum background intensity on a lumen pe-
riphery, H iy, is the dimmest lumen intensity, and [ Ryin, Rmax)
defines the possible lumen width range.

E. Vertex Insertion

After the two optimization steps, a midvertex is inserted into
a polygonal line that is long and has a large model intensity
discrepancy from the observed data. The candidate line is the
one that maximizes the following metric:

1t = argmax 3 1] 37 (@) = by (5(F L))" b (D)

Tel;

We bisect this line and copy its intensity model parameters to
the two new lines. The next iteration then commences with the
data point projection step. The algorithm keeps iterating until
the average line length is below a threshold. To speed up the ex-
ecution, one can bisect multiple lines. Since there are more than
one candidate lines, we use a priority queue on the metric to
find them. Further speedup is possible if the next-iteration op-
timization is restricted to the newly inserted vertices and their
immediate neighbors. The way we insert midvertices makes the
final principal curve adaptive to the vasculature complexity; less
vertices are used to depict a straight vessel segment, whereas
more vertices are placed in a strongly bended segment. Such a
principal curve is sufficient for a rough vessel delineation. How-
ever, a second stage of refinement is needed if a fine vessel cen-
terline is required. For example, a straight line joining two ver-
tices may be good enough to model a mildly zigzag segment. If
the modeling of the fine detail is desired, more vertices should
be used. To introduce more vertices, we re-execute the algo-
rithm by inserting midvertices to lines with length greater than
a threshold and optimizing only parameter R in the intensity
model optimization. To avoid sudden changes in the estimated
lumen width, R is optimized in between the minimum and max-
imum R values among the neighboring lines. The regularization
term weight ) in (9) is multiplied by factor m > 1 to compen-
sate for the exponentially increasing degrees of freedom and to
further constrain the principal curve smoothness in the second
stage of refinement.

IV. APPLICATION TO VASCULAR NETWORK WITH FURCATIONS

Up to this point, we have introduced a method to extract
lumen centers of a single vessel. However, it has a limited ap-
plication in a clinical environment where a whole vascular net-
work or a portion of it is of interest. Our nonparametric repre-
sentation can be extended with a slight modification to handle
lumen-center extraction of furcations because there is no need
to maintain the order of vertices in such a representation. A set
of vertices and an adjacency list allow representations of any
branching configuration, even vascular network with loops, e.g.,
Circle of Willis in the cerebral circulation. The modification
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Fig. 2. Numerical models: (a) a curved tube, (b) a straight tube, and (c) a
Y-shaped bifurcated tube. Visualization of these models is based upon a trun-
cated cone methodology [5]. A surface model is generated as a triangle mesh
from a sequence of tube centers and the associated radii.

is in the formulation of Ejtrain(-) given in (8). This formula-
tion assumes that there are only two lines attached to any mov-
able vertex. This assumption is violated in the case of furcation,
e.g., at a bifurcation, three lines are attached to the branching
vertex. To calculate the strain energy, we average the strain en-
ergies of all 2-combinations from the attached lines, e.g., there
are C = 6 strain energies to average in case of trifurcation; a
vessel divides into three branches.

V. VALIDATION AND DEMONSTRATION DESIGN

The validation was conducted on three data pools, i.e., numer-
ical phantoms, the BrainWeb [23], and the Rotterdam Coronary
Artery [24] databases. The evaluation metrics, the initialization,
and the setting of algorithm parameters for each data pool are
described in this section. The demonstration details on two pub-
licly available clinical data sets are also given.

A. Simulated Data

Three simulated data sets have been designed for studying
robustness to intensity nonuniformality (INU), i.e., changes in
image resolution, voxel anisotropy, and various levels of noise.
We have also investigated the sensitivity to location variation of
a user-given additional vertex in between the fixed end vertices.
The first two data sets are images of a curved tube and a straight
tube in a 3-D space of size 200 x 60 X 60 arbitrary units (au);
the last data set consists of a Y-shaped bifurcated tube image in
a volume of 200 x 80 x 80 au. All simulated data sets are of
1 x 1 x 1 au voxel size and have intensity values 0 and 1 for
voxels outside and inside the tubes, respectively. As shown in
Fig. 2(a), the curved tube has a fixed width of 6 au. The straight
tube [see Fig. 2(b)] starts with a width of 16 au, changes grad-
ually to 8 au, widens to 12 au at the volume center, and then
narrows back to 8 au before it ends with a width of 16 au. The
Y-shaped bifurcated tube, as presented in Fig. 2(c), aligns with
the z-axis having an 8-au-wide base, a 6.5-au-wide junction, and



1852

(b)

© n ()

Fig. 3. Slices from the straight (str.)- and curved-tube data sets under various
simulated imaging conditions.

two 4-au-wide branches. The lumen-center locations and widths
were determined by using our method from the simulated data
sets under various imaging conditions, i.e., three different levels
of INU (0%, 20%, and 40%), four different resolutions (original,
downsampled by a factor of 2 and 4 in all directions, and by a
factor of 4 in the z-axis direction), and three noise levels (10, 5,
and 2.5 dB). INU was implemented as a multiplicative field with
numbers ranging from (1 —y/200) to (1 +1y/200) for y% INU.
Fig. 3(a) shows a slice from a straight tube image with 40% INU.
The noise level in decibels is defined as 10 log;((A/0,), where
A is the maximum image intensity and oy is the zero-mean ad-
ditive Gaussian noise standard deviation, e.g., if A = 1,5 dB
implies o4 = 0.32 and 2.5 dB gives o, = 0.56.

1) Evaluation Metrics: The accuracy of lumen-center ex-
traction was quantified by the shortest Euclidean distances to
the truth lumen centers of the curved tube. The principal curve
was equidistantly sampled at a rate of 0.05 au. Then, we found
the closest line segment of the truth curve defined by two adja-
cent lumen centers to each sample. The shortest Euclidean dis-
tance between the sample and the line segment was calculated.
Lumen width estimation was quantitated using the straight tube.
Output sensitivity to the additional vertex’s location was studied
in the bifurcated tube. Ten user-selected junction vertices were
tested, giving ten sets of initial lumen centers. These vertices
were picked from the proximity of the Y-shaped junction having
the farthest one at a distance of four times the junction width.
The shortest Euclidean distances to one set of the centers from
those in the remaining nine sets were recorded. Our method was
evaluated with reference to a baseline condition, i.e., 20% INU,
downsampled by a factor of (DF) 2 and 10 dB. By altering a
single factor (either INU, DF, or decibels) in the baseline con-
dition, results under these different conditions were compared
with that of the baseline.

2) Initialization and Parameter Settings: Initial principal
curves were chosen to roughly follow the tube trajectories.
Two end vertices defined the initial straight tube centerline,
eight additional vertices along the course of the curved tube
were inserted in between the two fixed end vertices for the
initial curved centerline, and a single vertex was selected close
to the junction of the Y-shaped tube to initiate a bifurcated
centerline. The intensity model parameters were initialized
to the following values: B = 0, H = 1, R = 6 au, and
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(a) (b) (0) (d)
Fig. 4. (a) Spurious bulge at Circle of Willis in subject 06. (b) Merged abutting

ACA: left and right ACAs in subject 04. (c) Merged MCA branches in subject
05. (d) Merged PCA branches in subject 45.

n = 4. Settings of the algorithm parameters were B.x = 1,
Hpin = 0.25, Rpin = 2 au, Ryax = 9 au, the regularization
term weight A = 1073, its multiplier in the second stage of
refinement m = 5, and the intensity model span a = R + 3A,
where A is the largest voxel dimension.

B. BrainWeb Data

To test our method on real vasculature that consists of
varying-width vessels, bent vessels, and furcations, we gener-
ated 19 synthetic volumes based on the BrainWeb [23] vascular
models.2 The size of each volume is 362 x 434 x 362. The voxel
spacing along the z-, y-, and z-axes is 0.5 mm. The available
binary vessel volumes were convolved with a Gaussian kernel
of 3 x 3 x 3 voxels (¢ = 1) to mimic the point spread function
of an imaging system and introduce partial volume effect due
to a limited imaging resolution; the vessel boundaries were
thus blurred. INU was introduced to the convolved volumes
to simulate the variable Bl-field of a radio-frequency coil.
The inhomogeneity field A from the BrainWeb was employed.
Zero-mean Gaussian noise was added. Test images are at 20%
INU and 10 dB. We focused on arteries because of their clinical
relevance; although both arteries and veins are available, the
carotid and vertebrobasilar systems are the objects of interest.
The BrainWeb vascular volumes of normal subjects, however,
are not perfect; the vascular structures provided are, in general,
topologically or morphologically incorrect (i.e., with holes/cav-
ities, handles, and bulges). There are spurious bulges at the
Circle of Willis in several data sets. Very often, abutting vessels
of the anterior cerebral artery (ACA), the middle cerebral artery
(MCA), and the posterior cerebral artery (PCA) are merged.
Examples are given in Fig. 4. These problematic structures
were excluded in this paper.

1) Evaluation Metrics: We propose two ways of validation.
One way is to voxelize the vascular models obtained from our
algorithm (defined by lumen centers and widths) and quantify
the discrepancy between the truth segmentations and the vox-
elized models. Voxels with their center located inside the do-
main spanned by the extracted lumen centers and their associ-
ated widths are included in the voxelized model. The Dice sim-
ilarity coefficient (DSC) [25] was used to evaluate discrepancy.
DSC ranges from 0 to 1 with a value greater than 0.7 indicating
an excellent agreement between the two testing segmentations
[26]. The other way is to measure the perpendicular distances
from every vertex of the truth segmentation isosurface to our
vascular models’ circumference. We generated the isosurface
with the marching cubes [27].

2Subject 52 was excluded from the 20 available BrainWeb vascular models
due to the absence of major cerebral arteries.
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2) Initialization and Parameter Settings: End vertices of the
initial principal curves were selected, which were located at the
center of the lumens of interest. Typical locations are the root
of internal carotid arteries (ICAs) and basilar artery [BA; or
vertebral arteries (VAs), if any], the ends of distal MCA and
PCA branches, and arteries that are proximal to the problem-
atic structures. Furcation vertices were picked on an isosurface
that facilitated interactive vasculature inspection as suggested
in [16]. Those vertices were movable during the vertex opti-
mization step. The adjacency list was compiled according to
the observed vasculature or a vascular anatomical atlas. Since
the solution is suboptimal, the initial curves have to be in the
vicinity of the blood vessels. We adopted geodesic paths on the
isosurface between the adjacent user-defined vertices as in [16]
to refine the initialization. The end vertices were snapped to the
isosurface before the geodesic path was computed. In most of
the cases, there were too many vertices on the path and might
cause loops within the vessels or inside nearby irrelevant struc-
tures. A greedy algorithm was used to simplify the geodesic
path. Starting from a path end vertex, we walked through the
path on a vertex-by-vertex basis and checked if the traveled path
could be approximated by a straight line joining the end vertex
and the last visited vertex. The appropriateness of such approx-
imation was evaluated by the distance from all the intermediate
path vertices to this straight line. If it was found inappropriate
(if the maximum distance was greater than half of the associ-
ated width of the original polygonal line, i.e., the line defined
by the user-given vertices), the previously tested straight line
was used to approximate the transverse portion. The last trans-
verse vertex was then treated as an end vertex, and the afore-
mentioned process was reiterated until the other end vertex of
the geodesic path was reached. Settings of the algorithm param-
eters were identical to those for the synthetic data, except for the
following. R that denotes the lumen half-width was set to the
reference half-width of the target vessel segment, i.e., 3 mm for
ICA; 2 mm for ACA, MCA, BA, and VA; and 1 mm for distal
MCA branches, PCA, posterior communicating artery (PCoA),
superior cerebellar artery (SCA), and anterior inferior cerebellar
artery. Rnin = 0.5 mm, Ry,ax = 3.5 mm, and m = 10.

C. Rotterdam Coronary Artery Data

The third data pool is obtained from the Rotterdam Coro-
nary Artery Algorithm Evaluation Framework [24], which
provides a large set of real clinical data for validation and is
a standardized framework for the evaluation of the coronary
computed tomography angiography (CTA) lumen-center ex-
traction algorithms. This opens up opportunities for comparison
between our method and other state-of-the-art algorithms (cur-
rently, 13 methods have been evaluated within the framework).
Well-defined evaluation metrics are described, and reference
standards of the coronary lumen centers are available.3 This
data pool consists of 32 CTA data sets of various image quality
and levels of arterial calcification [28].

The vessels of interest are four coronary arteries, viz., the
right coronary artery (RCA), the left anterior descending artery

30nly the reference standards of the eight training data sets are publicly avail-
able; the other 24 sets are not provided to guarantee a unified evaluation and
comparable results.
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(LAD), the left circumflex artery (LCX), and one large side
branch (LSB) of the main coronary arteries. In total, there are
32x4 = 128 sets of lumen centers to be extracted and evaluated.
We followed the two preprocessing steps—in-plane downsam-
pling and intensity clamping—stated in [29] for efficient com-
puting, lower memory consumption, and exclusion of irrelevant
structures. The coordinates of the extracted centers were sub-
mitted to the organizer for evaluation; therefore, only the lumen
centers of our algorithmic outputs were validated.

1) Evaluation Metrics: The Rotterdam Coronary Artery
Algorithm Evaluation Framework provides three overlap mea-
sures, i.e., overlap (OV), overlap until first error (OF), and
overlap with the clinically relevant part of the vessel (OT), to
quantify the ability to extract lumen centers, and a distance
measure, i.e., average distance inside vessel (Al), to deter-
mine the extraction accuracy. A 0—100 score is calculated per
measure w.r.t. the performance of the observers; 50 points
implies a similar performance. The detailed description of the
measures can be found in [28]. In this paper, we are particularly
interested in the OT and Al measures because we want to study
our algorithm’s capability of extracting the clinically relevant
part of coronary arteries and its accuracy of those correctly
extracted portions.

2) Initialization and Parameter Settings: The end vertices of
the initial principal curves were the start point and the endpoint
provided by the evaluation framework. To reduce the time spent
on browsing an image volume for initialization, the Dijkstra al-
gorithm was employed to obtain a simple lumen-center extrac-
tion between the end vertices and any additional anchors in be-
tween. We used an algorithm similar to the one proposed in [13],
except that we used a single scale (= 0.75 mm) to find the cen-
terline from the image volume. The eight-neighborhood system
was used for fast processing. The obtained centerline was usu-
ally composed of many vertices (the number of vertices is equal
to the number of voxels that the centerline passes through). We
employed the Douglas—Peucker algorithm [30] to simplify the
centerline to the one that has tens of vertices. LAD, LCX, and
the chosen LSB of the main coronary arteries share a common
course proximal to the aortic ostium in most of the data sets.
We initialized the principal curves to reflect this without dupli-
cating the modeling of the common course [see Fig. 5(a)]. Fur-
cation vertices were therefore introduced. End vertices and an-
chor points are fixed, while furcation vertices and those left-out
vertices inserted by the Dijkstra algorithm are movable. This
can be automatically configured via investigating the number of
lines attached to a vertex of the initial principal curves prior to a
simple extraction step, i.e., the end vertex has one line attached,
the anchor has two, and the furcation vertex has > 3. Parameter
settings were identical to BrainWeb, except parameters, i.e., R
was set to 0.75 mm, H to 0.3, Ry, to 0.75 mm, and R, to
3 mm.

D. Clinical Data

We tested our algorithm on two publicly available# data sets,
i.e., a 3-D rotational angiography (3-D RA) of the right half
of a cerebral circulation (256 X 256 X 256 voxels) in isotropic

4The two data sets are available at http://www.gris.uni-tuebingen.de/edu/
areas/scivis/volren/datasets/datasets.html.
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Fig. 5. Initial principal curves to extract RCA, LAD, LCX, and LSB of the
coronary arteries from Data set 1 in the Rotterdam Coronary Artery database.
(a) The user-given initial principal curves. All six end vertices are from the
framework; three additional points are provided by the user, i.e., an anchor and
two furcation points. The common arterial courses shared by LAD, LCX, and
LSB are modeled by a single sets of line segments. End vertices and the anchor
points are in blue (dark gray) and are fixed. End vertices are the start point and
the endpoint provided by the Rotterdam Coronary Artery Algorithm Evaluation
Framework. The anchor is in the proximity of the LCA root. Furcation vertices
are in green (light gray) and are movable. They are the branching positions of
LAD and LCX from LCA and of LSB. (b) The initial curves after the execution
of the Dijkstra and Douglas—Peucker algorithms. Tens of vertices were inserted,
and the curves roughly follow the coronary artery courses.

voxels (1 x 1 x 1 mm?) and a computed tomography (CT) of the
abdomen and the pelvis (512 x 512 x 174 voxels) in anisotropic
voxels (0.8398 x 0.8398 x 3.2 mm?). An aneurysm is present in
the 3-D RA volume. The CT data set contains a stent graft in the
abdominal aorta (AA). Voxel intensities were linearly rescaled
to values between 0 and 1, such that blood vessel lumens have
intensity close to 1, whereas the background value is close to
0 in the rescaled volumes. An additional step is needed in the
CT scan to eliminate heterogeneous background and bright ir-
relevant structures, and the implementation is automatic. The
intensity of the bone and the stent was set to that of muscle
tissue. Any tissue having lower intensity than that of muscle
tissue was assigned to have muscle intensity. Numerically, we
linearly mapped CT intensity between 1000 and 1300 HU to
0 and 1. The intensity outside that range was clamped to 0.
We also downsampled the CT volume by a factor of 4 in the
in-plane dimensions for fast processing. Settings of the algo-
rithm parameters were identical to those for BrainWeb, except
that R was initialized to the reference half-width of the target
vessel segment and R,,;, and R,.x were set to numbers that
can cover a wider width range of the lumens of interest. For
3-D RA data set, R ranges from 1 to 5 mm, R, = 0.5 mm,
Rax = 6 mm, and m = 100. For the CT data set, we set R to
values between 3 to 15 mm, Ry, = 1.5 mm, R = 17 mm,
and m = 5.

VI. RESULTS

A. Simulated Data

Percentiles of the shortest Euclidean distances to the truth lo-
cations of the curved tube lumen centers are plotted in Fig. 6.
Our method outperformed the method proposed by Frangi et al.
(the Hessian filter scale was set to the lumen width of 6 au; a car-
dinal spline [31] was used to model the vessel axis) under the
baseline condition and gave results in subvoxel accuracy. Our
maximum error is less than one-third of the voxel diagonal. This
is in sharp contrast to the maximum error, which is 120% of the
voxel diagonal, obtained by using the method by Frangi et al.
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Fig. 6. Percentiles of the shortest Euclidean distances to the truth locations of
curved tube lumen centers. Tests were conducted under various imaging condi-
tions: three INU levels (0%, 20%, and 40%), four different resolutions (original,
downsampled by a factor of (DF) 2 and 4 in all directions, and by a factor of
4 in z-axis direction), and three noise levels (10, 5, and 2.5 dB). The baseline
(BL) condition is 20% INU, DF 2, and 10 dB. A single factor (INU, DF, or
decibels) in the baseline condition is altered and tested. Results were obtained
under individual tested condition and were compared with that of the baseline.
The method by Frangi etal was tested under the baseline condition.

Various imaging conditions do not adversely affect our subvoxel
accuracy. All our shortest Euclidean distances per voxel diag-
onal are well below 1.0 except under severe noise (2.5 dB). Our
method is particularly resistant to the intensity variation along
the tube course. The shortest Euclidean distances do not surge
under 40% INU (see the top plot of Fig. 6). Voxel anisotropy
poses no difficulty for our method. The curved lumen center-
line extracted is as good as the one obtained from the image at
the original resolution (see line DF 4 (z-axis) in the midplot of
Fig. 6).

Fig. 3(d) shows a slice from the 2.5-dB data set in which
our method fails to give subvoxel accuracy. It is indeed very
challenging for any algorithm to extract curved centerline from
such a noisy environment. Interestingly, our result is comparable
with the one obtained by the algorithm by Frangi et al. under a
less noisy condition [the baseline condition; see Fig. 3(e) for a
slice under that condition]. Further investigation suggested that
this was due to a shift in the maximum vesselness measure to-
ward the curvature center. The centerline that followed the tra-
jectory of the maximum measures thus drifted away from the
true lumen centers at high curvature regions. This problem is
prominent for a strongly bent lumen whose curvature radius is
of the lumen width order [16]. To get a satisfactory result from
curved tube data set, the initialization of the method by Frangi
et al. needed 18 additional vertices in between the two fixed
end vertices. Locations of these vertices are crucial; more ver-
tices have to be placed in the high curvature portion of the tube.
The centerline degree of freedom is insufficient for the model
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Fig. 7. Estimated width of the straight tube against the running distance along
the tube course. Tests were conducted under various imaging conditions, and
results were compared with the one obtained under the baseline condition. For
details of the baseline (BL) condition and other imaging conditions, see the cap-
tion of Fig. 6.

to depict the curvy vasculature otherwise. On the contrary, our
method is adaptive to vasculature complexity. More movable
vertices can be automatically added to model the curvy vessel
segment.

We obtained similar findings from the straight tube data
set. Our estimated lumen widths were subvoxel accurate
under various imaging conditions. Intensity variation and
voxel anisotropy do no harm our method performance. Lines
presented in Fig. 7, which shows the estimated widths under
conditions 40% INU, DF 4 (z-axis), and 5 dB, are aligned with
that of the baseline. Width estimation errors are less than 1 au
in all these cases. Although significant deviation is noted at the
line DF 4 of the midplot, the errors are well under the voxel
size 4 au. Fig. 3(b) shows a slice of the DF 4 data set with the
approximated tube outline overlaid. Subvoxel accuracy is not
hard to perceive. The 2.5-dB data set remains very challenging.
Conspicuous errors are shown in the bottom plot of Fig. 7. A
study examining the data set and the estimated tube (Fig. 3(c)
presents a slice and the tube outline) suggests that the results
are satisfactory.

Percentiles of distances between lumen centers extracted
from the Y -shaped bifurcated tube with different user-selected
junction vertices are presented in Fig. 8. The lumen centers
were extracted from a data set under the baseline condition.
Our method is fairly insensitive to the user-selected location.
The lumen centers obtained with different initial curves are
nearly identical. Lines in the plot are coincided. The maximum
difference and 95% of the differences are less than one third
and one twentieth of the voxel diagonal, i.e., 1.15 and 0.18 au,
respectively. Fig. 9 shows the initial and final principal curves
together with the Y-shaped bifurcated tube. Visual inspection
of the extracted bifurcated centerlines confirms our claim.
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Percentiles of Shortest Euclidean Distances to
Reference Locations of Bifurcated Tube Lumen Centers
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Fig. 8. Percentiles of the shortest Euclidean distances between lumen centers
extracted from the Y-shaped bifurcated tube with different user-selected junc-
tion vertices. Ten user-selected junction vertices were tested, and thus, ten sets
of lumen centers were extracted. The junction vertices were picked from the
proximity of the Y-shaped junction. We treated one set of the centers as the ref-
erence; distances from those in the rest nine sets were evaluated. The baseline
imaging condition (20% INU, DF 2, and 10 dB) was used.

(a) ' (b)

Fig. 9. Ten (a) initial and (b) final principal curves of the Y-shaped bifurcated
tube under the baseline condition (40% INU, DF 2, and 10 dB). The final curves
depict the tube lumen centers.

B. BrainWeb Data

Although our vascular model assumes a circular cross sec-
tion, its voxelized volume is in excellent agreement with the
truth segmentation. As plotted in Fig. 10(a), DSC values of the
19 tested BrainWeb subjects are all greater than 0.9, far above
the benchmark of 0.7. Furthermore, our models provide satis-
factory surface representation of the truth segmentations. The
vast majority of the perpendicular distances from the isosurface
vertices to the models’ circumference are at the subvoxel level.
As shown in the box-percentile plot [32] (displays perpendicular
distances up to 0.60 mm) in Fig. 10(b), all the 95 percentiles are
less than 0.60 mm, which is far smaller than the voxel diagonal
length (vd) of 0.87 mm. Average values of the 50, 95, and 99 (not
shown in the plot) percentiles are 0.14, 0.49, and 0.77 vd, respec-
tively. The average maximum deviation from the isosurfaces is
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Fig. 10. (a) DSC between the truth segmentations and our vascular models of the 19 tested BrainWeb vascular phantoms. (b) Box-percentile plot of the perpen-
dicular distances from the isosurface vertices to our vascular models’ circumference in the 19 test BrainWeb data sets. Distances are shown in both millimeter and
per voxel diagonal (vd) units. The width of the boxes is discretized with 5% increments. The perpendicular distance mean of each subject is highlighted by the
light (blue) dot. Four vertical marks across the boxes show 50, 75, 90, and 95 percentiles. The 90 and 95 percentiles’ marks of subject 38 are pointed at by the

arrows for better illustration.

=~ 2 vd (not shown in the plot); nonetheless, large deviations
occupy only less than 1% of the total models’ circumference.

C. Comparison With a State-of-the-Art Method

We have compared our method with the algorithm by Frangi
et al. [16] on two BrainWeb data sets. Our focus is to eval-
uate the performance of the lumen-center extraction. Therefore,
we only examined their central vessel axis model in the exper-
iments. Scales of the Hessian filter spanned the possible lumen
width in the data sets, i.e., 1-5 mm. Five scales were used and
selected according to a scale selection criterion [33]. We em-
ployed a cardinal spline [31] to model the vessel axis. In this
comparison, potential pitfalls of the algorithm by Frangi et al.
in extracting lumen centers at strongly bent vessel segments and
branching portion were revealed. If there are not enough control
points given, it can fail to track lumen centers at even a slightly
bent segment. These pitfalls are illustrated in Figs. 11 and 12.
Fig. 11(a) and (b) show the horizontal (M1) segment of MCA
in subject 54 together with the extracted lumen centers. Dark
(purple) lines are obtained from our method, and light (orange)
lines are from the method of Frangi et al. Three times more con-
trol points were used to get the light line in Fig. 11(b), as com-
pared with the one presented in Fig. 11(a). Both methods were
applied on the grayscale synthetic images with the same initial

curve as input. It is found that the number of control points has
a large effect on the parametric approach. Accuracy can dete-
riorate even in modeling slightly bent segments if there is an
insufficient number of control points. Due to the restricted de-
grees of freedom, the spline in Fig. 11(a) fails to track the M1
segment axis. Severe deviation is observable in the distal por-
tion. On the contrary, our lumen centers are satisfactory. They
fall in the middle of the segmentation isosurface silhouette in
the rendered image. Fig. 11(b) illustrates that, if more control
points are added to the spline, the accuracy can be improved in
this particular case.

Another example shown in Fig. 11(c) is the BA of subject
49. A large deviation is found in the proximal region because of
too few spline control points. As presented in Fig. 11(d), using
more control points can give excellent results. Nevertheless, the
parametric approach can become unstable when more iterations
are allowed in the energy optimization. The spline can develop
a loop within the vessel, as shown in Fig. 11(e). One possible
reason is that local sharp turns are not effectively inhibited with
the integration-based energy functional. Energy is increased due
to large first- and second-order derivatives at these turns if the
spline is long. In addition, the spline is allowed to go through
multiple times the region where the Hessian filter responses are
high. The gradient descent optimization method can easily get
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(©) (d) (e)

(2)

Fig. 11. Lumen centers extracted with our algorithm and the algorithm of
Frangi etal [16] on two BrainWeb data sets: subjects 49 and 54. The first row
shows the horizontal (M1) segment of MCA in subject 54, the BA of subject
49 is shown in the middle row, the last row shows the C5, C6, and C7 ICA
segments of subject 54. Dark (purple) lines are obtained from our algorithm,
and light (orange) lines are from the method of Frangi etal (a), (c), and (f)
show the algorithm outputs of Frangi etal with too few spline control points.
(b), (d), and (g) show the outputs with more control points. (e) presents the
output with more iterations in the energy optimization of algorithm of Frangi
etal. The transparent segmentation isosurfaces are for visualization only. They
were not the algorithm input. A few major vessels are highlighted and named
in the figures.

caught at a local minimum in such high-dimensional solution
space. Setting higher stretch and bending energy weights in this
case can help, but we have also noticed undesired effects on
other parts because these weights affect the results globally.

At the C5, C6, and C7 ICA segments of subject 54, more
spline control points do not give a satisfactory result, as demon-
strated in Fig. 11(g). Investigating the multiscale Hessian filter
responses suggests that it is a drawback to convolve images
with filters. Filter responses are biased to curvature center at
a strongly bent lumen with curvature radius comparable with
its width [16]. This explains the spline drift toward the inner
side of a curved segment as exemplified in Figs. 11(f) and (g).
A similar problem is also observed at branches as depicted in
Figs. 11(a), (b), and 12(b), as compared with our results shown
in the dark (purple) lines, and in Fig. 12(a), parametric splines
cannot track the lumen centers at furcations. The splines are bi-
ased toward the boundary facing the curvature center.

Furthermore, modeling branching vasculature with the
method by Frangi et al. is not as elegant as ours. Their method
tracks the incidence artery axis with multiple splines, and the
lumen centers of segment at the junction may not be well
modeled. In contrast with our results presented in Fig. 12(a),
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(b)

Fig. 12. Lumen centers extracted with our algorithm and algorithm of Frangi
etal [16] on a BrainWeb data set: subject 49. The furcation at the terminal of
BA is shown. The branches to left SCA and the PCAs are present. These vessel
segments are highlighted and named. Dark (purple) lines are obtained from our
algorithm, and light (orange) lines are from the method of Frangi efal The trans-
parent segmentation isosurfaces are for visualization only. They were not the
algorithm input.

the extracted lumen centers from the method of Frangi ef al
given in Fig. 12(b) start to diverge at the proximal part of the
BA terminal junction; the very short BA segment following the
branch to SCA is not appropriately modeled.

D. Rotterdam Coronary Artery Data

The evaluation results issued by the organizer are tabulated in
Tables I-VI. They are also available online for the performance
comparison against other evaluated state-of-the-art methods.
The average overlap measure OT (see Tables I and IV) among
all the data sets is >96% with a score >> 50. This indicates our
algorithm has a capability of providing a close-to-complete ex-
traction of the (clinically relevant) coronary arteries. Subvoxel
accuracy is also observable. The average distance inside vessel
Al (see Tables II and V) is < 0.31 mm; this is <30% of the
intrinsic voxel diagonal length® (VD). However, it is noted that
the minimum overlap measures, particularly OF, are low, and
the maximum average distance measure is high (see Tables III
and VI). An investigation into the available reference standards
(of the eight training data sets 0—7) suggests three reasons for
those statistics: 1) The observers were asked to trace lumen
centers of several arterial segments as a single artery. The
identified centers of the inlet segment near a junction are biased
toward the inner side of the curved course. On the contrary,
our method considers the arterial network (inlet segment and
its outlets) as a whole in the extraction process. This favors a
successful lumen-center extraction in the individual segment
(see Fig. 13). 2) In a few cases, our algorithm did not cor-
rectly extract the lumen centers of distal, low contrast, and
narrow coronary arteries. Slight deviations from the reference
standards are noticeable, but they are of relatively low clinical
relevance. A solution to this problem is to click more anchor
points along the course in the initialization. We intentionally
did this in a few data sets and found that the overlap measures
surge to 100%. 3) Some calcium voxels were left out in the

5The evaluation results are published at http://coronary.bigr.nl/results/results.
php.

6As pointed out in [29], there is no power in the frequencies > /2 of the
image spectra. This implies that the intrinsic resolution of the in-plane images
is 256 X 256 rather than 512 X 512. Thus the downsampling by a factor of 2
does not hurt the accuracy.
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TABLE I
AVERAGE OVERLAP AND NUMBER OF ANCHOR POINTS PER TESTING DATA SET. PLEASE REFER TO Section V-C-1 FOR THE MEANING
OF EVALUATION METRICS. THE COLUMN RANK LISTS THE RANKING (THE LEAST, 1.00, AND THE BETTER) OF OUR METHOD
AMONGST ALL THE 14 EVALUATED STATE-OF-THE-ART METHODS
D ov OF oT Avg. Anchor pts
nr. % | score | rank % | score | rank % | score | rank rank | RCA | LAD | LCX | LSB | Total
0 100.0 100.0 1.00 100.0 100.0 1.00 100.0 100.0 1.00 1.00 6 3 2 3 9
1 97.4 86.2 2.50 96.9 85.9 1.75 97.4 86.2 2.50 225 0 3 2 3 3
2 100.0 100.0 1.00 100.0 100.0 1.00 100.0 100.0 1.00 1.00 0 8 2 4 9
3 96.2 89.6 2.50 833 77.4 2.75 96.2 88.9 2.50 2.58 0 16 2 3 16
4 94.7 72.9 3.75 76.0 632 4.50 98.6 74.6 325 3.85 1 5 10 2 15
5 96.7 78.4 2.75 71.0 60.5 4.75 96.7 73.4 3.50 3.67 0 3 1 4 4
6 98.3 74.0 4.00 95.1 71.9 4.00 99.5 87.0 3.50 3.83 5 3 2 3 8
7 97.2 74.3 2.25 94.6 72.6 1.25 98.6 86.9 1.25 1.60 6 14 7 9 31
Avg. | 97.6 84.4 2.47 89.6 78.9 2.62 98.4 87.1 2.31 247 2.3 6.9 3.5 39 119
TABLE II way to reduce the number of anchors due to adjoining vessels
AVERAGE ACCURACY AND VOXEL DIAGONAL LENGTH has been mentioned in Section V-C2. The use of a curvilinear
PER TESTING DATA SET structure enhanced image can also eliminate the need to place
D Al Avg. [ VD anchors owing to the presence of the atrium or the ventricle.
nr.  |mm |score |rank | rank | mm
0 1037 39.6 3.75[3.75]1.10 E. Clinical Data
1 0.37 332 5.50]5.50(1.10 . .
> 1025 403 3750375 |1.03 Flg.s.. 14(a) and 15(a) show the major vessel.s extracted from
3 1033 407 52515250112 the clinical data. ICA, PCoA, ACA, MCA and its branches, and
4 (027 346 525(525(098 PCA and its branches of the right cerebral arterial tree were
5 (036 40.1 5.25)5.25|1.00 extracted from the 3-D RA data set. AA, CI, internal and ex-
6 0.28 334 4.50|4.50(0.99 t 1CL f | art FA dd FA in the CT
7 1027 362 425425001 ernal CI, femoral a e'ry( ), and deep FA in the scan were
Ave. |031 373 4.69] 4.69|1.03 delineated. The principal curves were initialized as those for
BrainWeb. Figs. 14(c) and 15(c) illustrate the initial curves. The
26 vertices composed the right cerebral arterial tree; 12 of them
TABLE III . . . .
SUMMARY OF THE TESTING SET (DATA SET 8-31) are end vertices. The AA and its branches to the thighs were built
from 12 vertices; seven of them are end vertices. A wide-neck
. % / mm . Score _ rank intracranial aneurysm is at the C7 ICA segment in the 3-D RA
min. | max. | avg |min.|max.|ave.|min.|max.|ave. scan. It is highlighted by the arrow in the direct volume ren-
OV | 833% 100.0%  97.6% |42.4 100.0 84.4| 1 9 247 . . .
OF | 99%  1000% 89.6% | 50 1000 789 1 10 2.62 .dere.d (D.VR). image shown in Fig. 14(b). Our Vascula.r model
OT | 87.7%  100.0% 98.4% |44.6 100.0 87.1| 1 7 231 is given in Fig. 14(a). A closeup of the aneurysm region [see
Al |0.17 mm 042 mm 0.31 mm|253 506 373] 2 8§ 4.69 Fig. 14(d) for the DVR image and Fig. 14(e) for the model] il-
Total 110 358  jystrates that our model can bypass the pathological structure

intensity clamping, and our algorithm confuses these bright
spots with lumen centers. An extra anchor point at the desired
centerline can correct this. Of those testing data sets in which
our method gave low minimum overlap measures and a high
maximum Al, we found that either their image quality is poor
or the calcification is severe.

We present the number of anchor points manually clicked per
artery and per data set in Tables [ and I'V. The total number of an-
chor points is less than the sum of the anchor number per artery
due to the common arterial course shared among LAD, LCX,
and the selected LSB. Data set 1 is the representative of such
a configuration [see Fig. 5(a)]. The start pont and the endpoint
from the evaluation framework are good enough to extract RCA.
An anchor point at the root of the left coronary artery (LCA) is
oftentimes needed because the given start point of the other three
vessels of interest is laid inside the aorta, and our method may
falsely extract lumen centers inside the aorta. In some cases, ad-
ditional anchors are necessary to constrain the algorithm not to
extract lumen centers of adjacent vessels and run into nearby
irrelevant structures, e.g., the atrium and the ventricle. On av-
erage, ~ 10 manually clicked points are needed per data set. A

and provide a good estimation of the postembolization vessel
lumen. Such a pathology-free lumen plays an important role in
studying the geometry of the attached aneurysmal sac, particu-
larly the aneurysmal neck [34]. This disease-free lumen approx-
imation is not possible if the circular cross-sectional assumption
is relaxed in our framework. Long ACA segment was extracted
and modeled faithfully. Studying the planar reformatted images
along its course suggested both the lumen-center locations and
the widths were well estimated. Nested MCA branches were
modeled without any difficulty. Due to the nonparametric repre-
sentation of the principal curves, modeling of n-way furcation
becomes possible; the MCA trifurcation shown in Fig. 14(f) is
an exemplar.

Fig. 15(a) shows lumens after endovascular stent grafting
extracted from the CT scan, and a DVR image is given in
Fig. 15(b). Lumen centers of the two parallel artificial CI
arteries were accurately localized. Jumping between abutting
lumens as in other state-of-the-art methods reported in [11]
will not happen in our framework because adjacent polygonal
lines that model the CI arteries compete nearby voxels in the
data point projection step. Voxels belonging to a CI artery are
rarely projected onto the polygonal lines that model the other
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TABLE 1V
AVERAGE OVERLAP AND NUMBER OF ANCHOR POINTS PER TRAINING DATA SET. PLEASE REFER TO Section V-C-1 FOR THE MEANING
OF EVALUATION METRICS. THE COLUMN RANK LISTS THE RANKING (THE LEAST, 1.00, AND THE BETTER) OF OUR METHOD
AMONGST ALL THE 14 EVALUATED STATE-OF-THE-ART METHODS

D ov OF oT Avg. Anchor pts
nr. % | score | rank % | score | rank % | score | rank rank | RCA | LAD | LCX | LSB | Total
8 922 65.4 3.00 62.0 413 5.25 934 63.3 3.50 3.92 2 19 4 3 25
9 97.9 70.0 4.00 80.5 62.6 6.25 99.0 822 325 4.50 4 3 2 0 8
10 96.0 74.2 4.75 93.6 72.7 3.50 96.3 86.2 3.50 3.92 0 2 7 2 8
11 95.8 50.5 4.00 48.6 37.7 6.00 95.8 50.5 4.75 492 0 6 1 3 6
12 95.1 73.1 3.25 67.4 483 3.75 97.5 73.5 425 3.75 1 3 3 3 6
13 96.0 73.4 4.00 76.3 63.9 4.75 95.9 73.2 5.00 4.58 0 5 3 3 6
14 99.8 89.8 1.50 83.9 82.6 225 99.8 89.8 1.75 1.82 4 2 1 3 7
15 100.0 100.0 1.00 100.0 100.0 1.00 100.0 100.0 1.00 1.00 2 3 3 3 6
16 98.8 81.9 225 92.4 71.5 2.00 99.9 87.5 2.00 2.08 2 3 1 8 10
17 85.6 68.4 5.00 75.7 63.0 3.00 85.6 68.1 5.25 4.40 1 0 0 1 2
18 99.3 72.6 3.00 76.7 59.0 4.00 99.3 72.5 3.50 3.50 0 2 4 3 6
19 98.4 92.6 2.50 89.0 833 3.75 98.4 90.5 2.50 2.92 0 2 1 2 2
20 95.3 53.1 6.00 52.1 28.7 4.75 953 48.0 6.00 5.60 0 2 4 2 5
21 98.4 81.2 4.00 97.4 86.2 3.75 98.4 80.3 425 4.00 0 2 4 2 5
22 100.0 100.0 1.00 100.0 100.0 1.00 100.0 100.0 1.00 1.00 0 1 1 0 1
23 99.4 85.1 3.25 95.3 73.2 4.25 994 81.8 3.25 3.58 3 3 4 5 11
24 97.7 74.4 2.25 71.9 64.6 2.50 98.8 74.4 2.00 2.25 0 4 7 7 17
25 97.5 61.5 2.25 65.1 47.7 3.50 99.2 74.6 1.50 242 5 6 4 3 13
26 83.6 55.8 3.75 373 347 6.25 832 55.6 3.75 4.58 0 0 1 0 1
27 88.2 50.6 5.75 51.5 29.5 5.75 88.1 49.6 6.00 5.85 7 9 1 2 16
28 95.0 72.9 4.50 61.2 458 7.75 954 70.9 5.00 5.75 0 12 7 3 17
29 953 72.8 3.75 73.1 622 3.00 97.1 73.6 3.75 3.50 0 6 3 8 12
30 91.6 59.2 6.75 86.5 573 5.25 94.0 72.5 6.00 6.00 0 9 3 4 12
31 92.5 59.9 8.00 90.7 58.4 7.25 96.6 73.4 4.75 6.65 0 9 1 2 9
Avg. | 954 72.4 3.73 76.2 61.4 4.19 96.1 74.7 3.65 3.85 1.3 4.7 2.9 3.0 8.8
TABLE V
AVERAGE ACCURACY AND VOXEL DIAGONAL LENGTH
PER TRAINING DATA SET
D Al Ave.[VD] D Al Avg.[ VD
nr. |mm |sc0re | rank |rank|mm| nr. [mm | score | rank | rank | mm
8 [0.38 38.0 850(850(1.02] 20 |0.38 354 6.75]|6.75|1.04
9 1023 369 525|525(095| 21 023 342 575575097 ® ©
10 {029 332 5.7515.7510.87| 22 1024 411 3.5013.5011.00 Fig. 13. Terminal bifurcation of the LCA of Data set 5 in the Rotterdam Coro-
I110.34 39.0 5.75]5.7510.91| 23 10.30 37.1 5.5015.5010.96 nary Artery database. The LCA is branched into the LAD and the LCX. (a) DVR
12:10.3230.9 7.0017.00]1.07) 24 1023 357 5.005.000.84 image of the bifurcation. Lumen centers extracted with (b) our algorithm and (c)
1311032 324 825|825]1.05) 25 1027 372 4.00|4.000.93 algorithm of Frangi etal [16]. There are two separate paths from the algorithm
14 1030 39.6 5.75|5.75(1.03] 26 |0.42 482 5.00|5.00]0.97 of Frangi etal, one is from LCA to LCX and the other is from LCA to LAD. On
151027 36.6 5.75|5.75|1.05| 27 (034 36.8 525|525(1.22 the other hand, our method produced a single arterial network. The edge image
16 1027 34.7 6.25]6.25]095| 28 1029 29.5 5.50(5.50(0.97 of the DVR is overlaid on top for better illustration.
17 {040 43.0 5.75|5.75]1.08| 29 |0.27 329 5.50]|5.50|1.00
18 [0.28 342 6.50|6.50|1.00{ 30 |0.28 33.0 5.25]5.25|092
19 [0.28 43.8 4.75[4.75[1.01f 31 |0.25 284 6.00]6.00[0.93
Avg. [0.30 363 5.76 [ 5.76 [0.99 VII. CONCLUSION
(AlD) We have proposed a novel approach to extract arterial lumen
centers and estimate flow channel width in angiography. The
TABLE VI method is based upon a nonlinear principal curves and an al-
SUMMARY OF THE TRAINING SET (DATA SET 0-7) gorithm known as the polygonal line algorithm. We have de-
5 scribed the theory of principal curves and elucidated its exten-
% / mm score rank X . K A X
min. | max. | avg. |min.|max.|avg.|min.|max.|avg. sion to grayscale images, proposed a practical implementation
OV | 56.1%  1000% 954% 1294 1000 724] 1 12 3.73 to find principal curves, and demonstrated ways to perform ini-
OF | 105%  100.0% 76.2% | 8.1 100.0 614 1 13 4.19 tialization with geodesic and minimum cost paths for reducing
OT | 56.1%  100.0% 96.1% |28.5 100.0 747/ 1 12 3.65|  the amount of user interaction. A nonparametric model is used to
Tﬁtlal 0.16 mm_0.54 mm 0.30 mm]218 540 36.3 i g 547861 represent lumen centers, making the modeling of a complex vas-

Cl artery. Fig. 15(d)—(f) shows a few image slices overlaid with
model outlines. Model contours adequately delineate the lumen
cross sections in these slices.

cular network possible. Combining such representation and the
polygonal line algorithm, we are, to the best of our knowledge,
the first to develop an energy-minimization-based framework to
locate the centerline and estimate the width of tubelike objects
from their structural network with a nonparametric model. Our
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)

Fig. 14. Major vessels extracted from a 3-D RA of the right half of a cerebral
circulation are shown. ICA, PCoA, ACA, MCA and its branches, and PCA and
its branches are present. (a) Vascular model. Truncated cones [5] are used to
visualize the model. (b) DVR image. (c) Initial principal curves. End vertices
are in blue (dark gray); they are either inlets or outlets of the arterial network.
Additional vertices are in green (light gray); they are at branching. A closeup of
the aneurysmal sac is given in (d); the corresponding vascular model is present
in (e) providing a good estimation of the postembolization vessel lumen. The
MCA trifurcation of the vascular model is shown in (f).

(d

Fig. 15. Major vessels extracted from a CT scan of the abdomen and the pelvis
are shown. AA, CI, internal and external CI, FA, and deep FA are present. The
vascular model is given in (a); the direct volume rendered image of the intensity-
rescaled volume is in (b). The stent graft and bone structures are suppressed in
the intensity-rescaled volume. The initial principal curves are given in (c). End
vertices are in blue (dark gray) and are the inlet and outlets of the AA network.
Additional vertices are in green (light gray) and are at branching. A few image
slices overlaid with model outlines (in cyan/gray closed curves) are present in
(d)—(f). Elliptical outlines are shown because the model penetrates the image
slices at an oblique angle to the vessel axis.

vascular model is capable of depicting nested tubular branches
and n-way furcations that are commonly found in an arterial
system, particularly the cerebral vasculature. The nonparametric
representation also opens an opportunity to extract arterial net-
works with an anatomical atlas.

We have validated the proposed method on three numerical
phantoms, 19 vascular models from the BrainWeb database, and
32 clinical data sets from the Rotterdam Coronary Artery data-
base. Rigorous validation has been conducted on the BrainWeb
data sets to demonstrate the applicability of our novel method
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to realistic vasculatures. This is the first attempt in the litera-
ture at validating a lumen-center extraction algorithm with the
BrainWeb data. Evaluation on the Rotterdam data has been per-
formed by the organizer according to their own measures. We
have also tested the method on two publicly available clinical
data sets, i.e., 3-D RA and CT. Experimental results show that
the lumen-center location and the flow channel width estimation
accuracy is at subvoxel level. Our algorithm has high robustness
to noise, INU, voxel anisotropy, and variation in image resolu-
tion. Furthermore, it provides a satisfactory estimation of the
postembolization vessel lumen, which plays an important role
in a geometric study of aneurysmal neck. Comparison with the
closest work [16] has been performed. Potential pitfalls of that
work have been revealed and discussed in this paper. Testing on
two BrainWeb data sets suggests that our method outperforms
its counterpart in various aspects. The proposed method can
adapt to the vasculature complexity and is robust to a strongly
bended lumen and branching vasculature.

APPENDIX A
CORRELATION-BASED PMF

Our intensity model h;(-) as stated in (4) is defined w.r.t.
a lumen center because it takes the Euclidean distance from
a point to the center as argument. Maximum correlation and,
hence, probability mass are at the lumen center if the model has
a finite span and the image is absent of noise. We study the be-
havior of the pmf gx (Z) under two noise models in medical
imaging. We consider a 2-D problem in this paper for simplicity.
We begin with a commonly assumed image noise zero-mean
Gaussian with variance 2. Suppose Y is the noise random

o
variable, f (¢) denotes the lumen-center position, and 7 is the
[e]
normal vector at f (¢). We have the intensity at the position along

o
normal direction to f (), i.e.,

I(f-‘r’U’th) :ht<

F+vig— £ (t)H) LY (2

[e]
where v is a parametric variable and & =f (¢) + un,, Ju, ie.,
o

f (%) =t and gx (&) can be rewritten as follows. Let H; =
he(||Z + vig— £ (t)|]) and Hy = he(]|vne]]), then

1

—a

1 [ 1 i

Approximating the second integral in gx numerically with
Riemann sum, gx follows a Gaussian distribution with mean,
ie.,

ﬁ@=%jm(

because the sum of weighted zero-mean Gaussian random vari-
ables is a zero-mean Gaussian random variable [35]. This mean
value is the pmf value in the absence of noise, and hence, noisy

T+ viy— £ (t)H> he (|Joiee]) dv - (14)
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gx is expected to give a maximum value at the lumen center.
Another property of gx (%) is symmetry. Consider the pmf value
o

atf (t) — uf, Ju, we find that the mean pmf is symmetric with

respect to the lumen center along the normal direction, i.e.,

o . 1 . R R
Ix (f (t) — un) = / hi (J|vivy — ung||) Hadv

—a

-1 i R R
= /ht (I| = wny — uny||) Hodw

1 a
- / he (e + wie)) Hadw

Zg_x<(f)' (t) +uﬁ> .

15)

Since hi(]| - ||) is symmetric, h:(||Z]|) = he(]] — #]). We at-

tempted to replicate the derivation for the Rician noise (a ¢

om-

monly used noise model in magnetic resonance imaging). How-

ever, there is no closed-form expression of the Rician sum

dis-

tribution [36]; we have to study the pmf behavior under the Ri-
cian noise condition experimentally. We investigated various in-
tensity models ranging from rectangle, triangle, Gaussian, para-
bolic, and Butterworth-shaped functions. Results show that the
expected pmf’s all have a shape similar to their noiseless coun-
terparts but with the values offset. Nonetheless, their maximal

and symmetric properties are well maintained.
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