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Vascular Segmentation of Phase Contrast Magnetic
Resonance Angiograms Based on Statistical Mixture
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Abstract—In this paper, we present an approach to seg-
menting the brain vasculature in phase contrast magnetic
resonance angiography (PC-MRA). According to our prior work,
we can describe the overall probability density function of a
PC-MRA speed image as either a Maxwell-uniform (MU) or
Maxwell-Gaussian-uniform (MGU) mixture model. An automatic
mechanism based on Kullback–Leibler divergence is proposed for
selecting between the MGU and MU models given a speed image
volume. A coherence measure, namely local phase coherence
(LPC), which incorporates information about the spatial relation-
ships between neighboring flow vectors, is defined and shown to
be more robust to noise than previously described coherence mea-
sures. A statistical measure from the speed images and the LPC
measure from the phase images are combined in a probabilistic
framework, based on the maximum a posteriori method and
Markov random fields, to estimate the posterior probabilities of
vessel and background for classification. It is shown that segmen-
tation based on both measures gives a more accurate segmentation
than using either speed or flow coherence information alone. The
proposed method is tested on synthetic, flow phantom and clinical
datasets. The results show that the method can segment normal
vessels and vascular regions with relatively low flow rate and low
signal-to-noise ratio, e.g., aneurysms and veins.

Index Terms—Image segmentation, Kullback–Leibler di-
vergence (KLD), local phase coherence, magnetic resonance
angiography (MRA), Markov random fields (MRF).

I. INTRODUCTION

MAGNETIC RESONANCE angiography (MRA) is a col-
lection of noninvasive and flow-dependent methods for

three-dimensional (3-D) vessel delineation that has the advan-
tage of not relying on ionizing radiation. In this paper, we pro-
pose an automatic statistical method for segmenting brain ves-
sels in phase contrast (PC) MRA images. Three-dimensional
vascular segmentation is extremely useful for diagnosis and en-
dovascular treatments of arterial diseases because it provides in-
terventional radiologists with 3-D shape and structural informa-
tion of the vessels of interest.
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Statistical mixture models have been employed in segmen-
tation of magnetic resonance and computed tomographic im-
ages, e.g., [1]–[7]. In Wilson and Noble [8] a statistical mixture
model in segmenting time-of-flight (TOF) MRA images for the
visualization of brain vessels. Similarly, we propose a statistical
mixture model to describe background and vascular signals in
PC-MRA speed images. Based on the formation of PC-MRA
speed images and the physical properties of blood flow, we as-
sume that the probability density functions (pdfs) of background
and vascular signals can be modeled by the Maxwell distribu-
tion and uniform distribution, respectively [9], [10].

As will be discussed in Section II, in some cases, the mixture
distribution may not perfectly fit the observed speed image
histogram. To accommodate this, the modeling of an observed
speed image pdf can be improved by adding a Gaussian
component [11] and, thus, approximated by a linear mixture
of a Maxwell, Gaussian, and uniform distribution, namely a
Maxwell-Gaussian-uniform (MGU) mixture model. In this
paper, given a speed image histogram and the fitted MGU
and MU mixture models, we propose an information theoretic
mechanism for automatically selecting between these models.

A variety of approaches have been proposed for the segmen-
tation of intracranial vasculature in speed images. For instance,
Mclnerney et al. proposed topologically adaptable surfaces
(T-surfaces), a variant of the classical deformable models with
an efficient topologically adaptable property [12]. Another
variant, geodesic active contours, was proposed by Lorigo et
al. [13]. A fast vessel delineation method was introduced by
Wink et al. to iteratively reconstruct a vessel segment defined
by two user-specified starting and end points [14]. Krissian
et al. [15] proposed a multiscale method to detect the vessel
centerline and estimate vessel width based on eigenvalue and
eigenvector analysis of the Hessian matrix, which relies on
the partial differentiation in the speed images. In all of these
methods, an intensity-based gradient function was employed to
give information about the boundaries of vessels. A drawback
in using a gradient-based method is that, in practice, gradient
values are often not sufficiently high in the low flow regions for
satisfactory segmentation. While most of the arterial anatomy
can be seen clearly in speed images, gradient-based methods are
generally not applicable to the segmentation of aneurysms and
veins. These can contain low or complex flow leading to low
signal-to-noise ratio (SNR) in speed images through the small
resulting phase shifts, or cancellation of signals on summation of
the contributing vectors [16], [17]. Where the resulting vascular
signal approximates that of the background, these inhomoge-
neous subregions make vascular segmentation difficult.
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PC-MRA images, which give high contrast between back-
ground and vascular regions [18], are often used for the
visualization of brain vessels and related malformations, e.g.,
aneurysms. The main advantage of PC-MRA over other MRA
methods is that, in addition to a speed-dependent image, it mea-
sures the , , and velocity components of the flow vectors on
a voxel-by-voxel basis, and provides velocity field information
about the motion of blood in the brain. Each component of the
flow vector is directly mapped onto the phase shift induced
by the dephasing and partial rephasing of moving spins under
the influence of a bipolar gradient used to encode velocity in
phase contrast sequences [18]. Four data volumes, including
three phase shift values (representing the velocity components)
and speed (or flow magnitude) image, are obtained after the
scanning. The focus of this work is to demonstrate that flow co-
herence information, which is extracted from the flow velocity
field in a PC-MRA dataset, can be combined with the speed
information to detect and segment both normal brain vessels,
and regions with relatively low signal-to-noise and low flow
rate, e.g., aneurysms and veins.

The rest of the paper is organized in the following way: Sec-
tion II describes the statistical modeling of PC-MRA speed im-
ages and presents a new model selection mechanism. Section III
gives the background of related coherence measures and for-
mally defines the local phase coherence (LPC) measure. Sec-
tion IV derives a probabilistic framework for combining speed
information and flow coherence measures. Section V describes
the experiments and results. Section VI concludes the paper.

II. STATISTICAL MODELLING OF PC-MRA SPEED IMAGES AND

MODEL SELECTION MECHANISM

Following the formalism laid out in our prior work [9], we
describe the overall pdf of a PC-MRA speed image as either a
Maxwell-uniform (MU) or MGU mixture model. With repre-
senting the image intensity value, the pdfs for these models
are given by

MU model:

(1)
and

MGU model:

(2)

respectively. They are also called finite mixture models [11]. In
these expressions, the constituent Maxwell distribution has the
form

(3)

where represents the distribution standard deviation, ,
and when . While the Gaussian distribution is
given by

(4)

where and are the mean and variance of the Gaussian
distribution, respectively, the uniform distribution is expressed
as

(5)

where is the maximum intensity in the observed frequency
histogram. The combination of these distributions in (1) and (2)
is subject to the weights , , and , where ,

, , and weights sum to one in each equation. The
expectation-maximization (EM) algorithm is employed to es-
timate the parameters by maximizing the log-likelihood of the
mixture distribution [19]. The update equations of the EM algo-
rithm and implementation details can be found in [9] and [10].

Fig. 1 shows a maximum intensity projection (MIP) of a
PC-MRA volume, an intensity histogram of the volume (solid
line), and the fitted MU mixture distribution (dotted line) by
using the EM-based parameter estimation algorithm. As shown
in Fig. 1(b), the MU mixture distribution provides a good ap-
proximation of the observed intensity histogram. According to
the maximum a posteriori (MAP) criterion, the image threshold

is defined as the intersection of the Maxwell and uniform
distributions, i.e., , as indicated
in the figure. One of the speed images in the volume is shown
in Fig. 1(c). Based on the estimated threshold , Fig. 1(d)
shows its corresponding binary segmented image.

In addition, we have found that, due to vessels of subvoxel
size, relatively low flow rates in some arteries and veins, slight
tissue motion and ghosting artefacts, the mixture distribution
may not perfectly fit the observed PC-MRA speed image his-
togram. To accommodate this, the modeling can be improved
by adding a Gaussian component [9], [10]. Therefore, we
approximate the observed image pdf by a linear mixture of a
Maxwell distribution, a Gaussian distribution and a uniform
distribution, as given in (2). The pdf becomes a MGU mixture
model .

For illustration, Fig. 2(a) shows a MIP of a second PC-MRA
volume. Fig. 2(b) and (c) plots the fitted MU and MGU mixture
distributions, respectively, and illustrate that the MGU mixture
distribution gives a better representation of the observed inten-
sity histogram than the MU mixture distribution in this situa-
tion, and that the added Gaussian component improves the de-
scription of the intensity histogram. Similarly, according to the
MAP criterion, the image threshold is defined as the in-
tersection of the Maxwell-Gaussian and uniform distributions,
i.e., , and is
indicated in Fig. 2(c). The estimated Maxwell and Gaussian dis-
tributions are plotted in Fig. 2(d). Note that the intersection be-
tween Maxwell and Gaussian distributions is not used as an
image threshold because, in general, the threshold is too low
and results in an excess of background pixels being identified
as vessels. A segmented image, as shown in Fig. 2(f), was ob-
tained from one of the speed images in the volume [Fig. 2(e)]
based on the estimated threshold . As compared with an-
other segmented image based on a threshold [Fig. 2(g)],
the use of the MGU model could lead to a better estimation of
image threshold because there are fewer noisy pixels.
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Fig. 1. Demonstration of the failure of the MGU mixture model to improve on the MU model when segmenting a PC-MRA image volume. (a) A MIP of a
PC-MRA speed image volume. (b) An intensity histogram of the volume (solid line), and the fitted MU mixture distribution (dotted line) by using the EM-based
parameter estimation algorithm (The vertical axis ranges from 0 to 6 � 10 ). The insert is an enlargement of the histogram (The vertical axis ranges from 0 to
1800). (c) One of speed images in the volume. (d) Segmented image of (c) based on a threshold, I = 248, estimated by using the fitted MU model. (e) For
comparison, it shows a segmented image of (c) based on a threshold, I = 475, estimated by using the fitted MGU model which gives an excessively high
estimate for the image threshold and a suboptimal segmentation.

We have noted, however, that when the MU mixture distri-
bution approximates the observed intensity histogram well, the
Gaussian component of the MGU mixture model has a relatively
large variance. This flattened Gaussian component may lead to
an excessively high estimate for the image threshold , and
a suboptimal segmentation, as shown in Fig. 1(e). In this paper,
we propose a new information theoretic procedure to choose be-
tween the MGU and MU models for each PC-MRA speed image
volume. Given an observed histogram, let the fitted MGU and
MU models be

and , respectively. We de-
fine two measures and based on the Kullback–Leibler
divergence (KLD) , which is a symmetric version of the Kull-
back–Leibler distance and is widely used for measuring the dif-
ference between two distributions [20]. They are given by

(6)
where , for any distri-
butions and , and when .
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Fig. 2. An example of improvement on the MU model by using the MGU model to achieve improved segmentation, in particular, note the reduction in the number
of false-positive vessel identifications (small points). (a) A MIP of a PC-MRA speed image volume. (b) An intensity histogram (solid line), and the fitted MU
mixture distribution (dotted line). The vertical axis ranges from 0 to 6� 10 . (c) The fitted MGU mixture distribution. The inserts are the histogram enlargements
(The vertical axes range from 0 to 1800). (d) The fitted individual distributions: f and f (dotted lines). (e) One of speed images in the volume. (f) Segmented
image of (e) based on a threshold, I = 241. (g) Segmented image of (e) based on a threshold, I = 201.
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When the MU model fits well to the observed in-
tensity histogram [see Fig. 1(b)], the added Gaussian
component in the MGU model tends to have
relatively large variance and shift to the high intensity
range in the histogram. This causes the estimated threshold

to become relatively high, as shown in Fig. 1(e).
The image can then be under-segmented. The Maxwell
distributions in the MGU and MU models, and

, respectively, should be roughly the same. As such,
.

Conversely, when the MU model does not fit well to
the observed intensity histogram [see Fig. 2(b)], the added
Gaussian component in the fitted MGU model
is likely to have relatively small variance, and be shifted to
the low intensity region in the histogram [see Fig. 2(c) and
(d)]. As such, there should be a relatively small discrepancy
between the Maxwell-Gaussian distribution in the MGU
model and Maxwell distribution in the MU model. Therefore,

.
These observations lead to a procedure for choosing between

MGU and MU models whereby the MU model will be selected
if is larger than , and the MGU model will be selected if

is smaller than . Either of the MGU or MU models may be
selected when .

III. LOCAL PHASE COHERENCE (LPC) MEASURE

In this section, we formally introduce a coherence measure to
quantify locally coherent flow patterns. This coherence measure
is named the local phase coherence (LPC), and is very helpful in
distinguishing locally coherent flow fields from (noncoherent)
random flow fields. Conceptually, LPC treats the coherence and
random flow patterns as regions of texture, and is similar to a
texture-based approach [21], [22] emphasizing the spatial re-
lationships (or inter-relationships) between adjacent voxels. A
coherent flow texture corresponds to slight changes in the flow
directions between the adjacent flow vectors in a window ,
whereas a random flow texture corresponds to large differences
in the flow directions between adjacent flow vectors in . The
flow direction changes can be calculated using the dot product
operation between the two neighboring flow vectors. Given the
normalized velocity vector indicating the
flow direction in a voxel, the relationship between pairs of ad-
jacent vectors can be expressed in a number of ways.

The LPC measure at is defined as the sum of dot prod-
ucts of these adjacent vector pairs. In this paper, we loosely
follow the notations used by Geman and Geman [23] in let-
ting represent a regular lattice structure of

voxels (or pixels), and , the number of voxels in an image.
Let be a set of voxels, and

be the corresponding set of normalized flow vectors, and
be a neighborhood system for . Let be

a window at voxel containing a subset of voxels of , i.e.,
. The neighborhood system at is given by

(7)

Note that specifies the order of the neighborhood system or
the maximum distance between two sites and in a

Fig. 3. The neighborhood system N . (a) First-order neighborhood system.
(b) Second-order neighborhood system.

window . For example, when , it is a first-order neigh-
borhood system because every voxel inside forms a pair with
its nearest neighbor, as shown in Fig. 3(a) for a 3 3 window
mask in a slice. A second-order neighborhood system, gener-
ated by having , is shown in Fig. 3(b). The LPC measure
is defined as

(8)

In a slice, the number of adjacent vector pairs for and
are 12 and 20, respectively. is bounded by the

size of the set , i.e., . Thus, the value
range of is between 12 and 12 when , and 20
and 20 when . The LPC measure is inherently a general
measure that can be applied in any dimension. The extension to
3-D is naturally done by applying a window cube in an
image volume. The size of the neighborhood system, as defined
in (7), is then increased. The numbers of adjacent vector pairs

for and are 54 and 126, respectively. In this
paper, a window mask (or 3 3 in two dimensions)
is used for reasonable localization of the measure and for speed
of computation.

In addition to the LPC-based coherence measures introduced
in (8), we review two previously defined coherence measures
based on: 1) the deviation of vector directions and 2)
the ratio of the length of the net flow vector to the total vector
length . Given a group of flow vectors , Rao and Jain
[24] suggested projecting the flow vectors onto the mean vector
using the dot-product operation, and measured the deviation (or
the “spread”) of vector directions from the mean vector. This
leads to the coherence measure defined as

(9)

where represents any vector inside a window and rep-
resents the mean vector, which is given by ,
where is the number of flow vectors inside the window W. It is
noted that is a normalized vector, i.e., , because it is
intended to measure the directional information alone [24]. An-
other reason for normalizing the vectors is to avoid any vector
with relatively large magnitude dominating the local coherence
measurement. Consequently, the coherence measure is
bounded by a range between 0 and 1, i.e., .
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The second approach to measuring flow coherence we con-
sider is that proposed by Summers et al. [25]. The coherence
measure is defined as

(10)

where represents a normalized vector inside a window .
The coherence measure represents the ratio of the
length of the net flow vectors to the total vector length. Since
vectors are normalized, the coherence measure can be
rewritten as

(11)

which is bounded between 0 and 1. We introduce the coherence
measures in this section as preparation for a comparison of their
utility detailed later in this paper.

IV. A PROBABILISTIC FRAMEWORK FOR COMBINING SPEED

AND FLOW COHERENCE INFORMATION

To increase segmentation quality, this section introduces a
probabilistic framework for combining the speed (or flow mag-
nitude) and flow coherence information, which have been de-
scribed in Sections II and III, respectively, for segmentation of
brain vessels in PC-MRA datasets.

A. The MAP-MRF Framework

Let , where represent
a regular lattice structure with sites. Let
and be the true image and the observed
image, respectively, where can be equal to one of the labels
in , represents one of the observed
values, e.g., intensity values used in Section II,
and is equal to the number of possible classes. Let

be the sample space of , , and
be the observation space, .

MAP estimation maximizes the posterior probability
of the true image given the observed image . The posterior
probability can be estimated according to the Bayes’ theorem,

, where represents the prior be-
liefs about the image (prior probability), and embodies
the knowledge of image formation and noise properties (likeli-
hood function). The MAP decision rule for the optimal solution
(final estimated image) is given by

(12)

Markov random field (MRF) theory was introduced to the
image processing community by Geman and Geman [23] for
modeling the local relationships between image voxels so that
the optimal solution of the MAP estimation could be obtained
in a more robust and efficient manner. We assume that the local
relationships between sites in are described by a neighbor-
hood system , which is defined as , where

represents a set of sites adjacent to the site . Ac-
cording to the Hammersley-Clifford theorem, is a MRF with

respect to if and only if is a Gibbs distribution with re-
spect to . A Gibbs distribution of is given by

(13)

where is a temperature parameter, is the en-
ergy function and is a normalizing constant given by

, i.e., the normalizing constant is
the summation of all the values of possible configurations.
Suppose that the likelihood function can be expressed
in Gibbs distribution form. From (12) and (13), the MAP
decision rule becomes

(14)

where is a normalizing constant, and where and
denote the prior and likelihood energies, respectively.

This in turn leads to a minimization problem, and the MAP
decision rule (12) can then be re-expressed as

(15)

B. Fusing Speed and Flow Coherence Information

A priori knowledge is very important for solving statistical
decision problems, like the MAP estimation in (12), because it
influences the determination of the posterior probability and in
turn affects the decision certainty [26]. We propose a new flow
coherence term to represent the prior energy [ in (15)],
based on the coherence measure introduced in Section III, such
that the information about speed (or flow magnitude) and flow
coherence can be incorporated as a priori knowledge, and a
better quality segmentation can be obtained.

The goal is to partition an image into two separate and dis-
tinct regions: 1) the object and 2) the background based on the
speed and flow coherence. The process may be summarized as
follows. Assume that there exists a flow field in an image, in
which flow vectors with different speeds and directions are sit-
uated at the center of the sites. Each site variable will
be classified as one of the labels {0, 1}, where if the
site belongs to the object having locally coherent flow and rel-
atively high flow (i.e., vessel), and if the site belongs to
the background with random and relatively low flow. The MRF

can be initialized based on the estimated statistical mixture
model, as described in Section II, and global thresholding in the
speed images. Assume that the flow coherence is a constant
field, represented at each site by the variable , rather than an
MRF because the observed flow field is fixed during the energy
minimization process. And further assume that and are lo-
cated at the same site. Based on the coherence measure, a label

is set to 1 if the flow vectors are locally coherent at , and to
0 if the vectors are locally noncoherent. (See Section IV-C for
classification of coherent pixels in a LPC map.)

The a priori knowledge is derived from the observation that
a site is likely to belong to the object class, , only if
its neighboring object sites and itself are locally coherent, i.e.,

, and . The interactions between the
sites are described as follows. If , then the site belongs
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Fig. 4. Local coherence map and its histogram. (a) LPC map. (b) Histogram of the LPC map, which consists of background (B), brain tissue (T) and vessel (V)
histograms.

to background, . If , then the site belongs to
the object only if its adjacent sites belong to object and
are locally coherent ; otherwise, . Conceptually,
these interactions can be similar to boundary or optical flow es-
timation problems [27], [28]. For example, in boundary estima-
tion, an edge element is commonly estimated in a window, and
then neighboring object and edge elements interact in the MRF
framework.

The new flow coherence prior energy is defined as

(16)

where and are positive weights, which need not sum to
one, and is the Ising first-order neighborhood system. The
parameter controls the influence of the object sites in the
interactions between the adjacent sites, while governs the
weight of the background or noncoherent sites. For instance,
setting to a higher value than will enhance the interaction
between the object-and-coherent sites. As such, from (15), the
MAP-MRF decision rule becomes

(17)

where is the new flow coherence prior energy defined
in (16) and is the likelihood energy.

The derived objective function in (17) can be optimized by
the iterated conditional modes (ICM) method [29]. ICM persis-
tently seeks a lower energy configuration and never allows in-
creases in energy, which guarantees a faster convergence rate
[5], [29]. ICM assumes that 1) the observed variables

are conditionally independent, and 2) the state of a

site depends only on the states of its adjacent sites (Mar-
kovian property). These two assumptions allow the minimiza-
tion of its local energy terms

(18)

at site in each iteration step such that the overall energy terms
in (17) can be minimized. It should be noted

that we fixed the temperature throughout the entire searching
process, e.g., .

C. Application to PC-MRA Images

In this section, we apply the MAP-MRF approach to the seg-
mentation of PC-MRA images. A typical LPC map and its his-
togram are shown and plotted in Fig. 4(a) and (b), respectively.
The second-order LPC , , is used. Fig. 4(b) shows
that the histogram is right-shifted and skewed.

In fact, the LPC histogram can be described by three classes:
background with low LPC, brain tissue with slightly higher
LPC, and vessel with extremely high LPC, as illustrated in
Fig. 4(b). The vessel (V) and brain tissue (T) histograms overlap
because of the nonstationary, but slightly coherent motion of
the nonvessel brain tissue, and systematic imaging artefacts
[30]. As in Section II, where we modeled the background and
vascular signals in speed images, we model the background and
brain tissue regions in LPC maps with two separate Gaussian
distributions. It is worth noting that theoretical modeling of
the LPC histogram is extremely difficult. This is because of
the high correlation between the velocity random variables,
and normalization and dot product operations of the correlated
variables when the coherence measure is calculated. We again
use the EM algorithm to fit the LPC histogram by a mixture
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Fig. 5. LPC histogram and the double Gaussian model, with a second-order neighborhood system. (a) Histogram of LPC map and fitting of the double Gaussian
model. (b) Individual histograms of the Gaussian distributions.

Fig. 6. Coherent voxels.

of the two Gaussian distributions. Fig. 5(a) shows the fitting
of the double Gaussian model (dashed line). The individual
histograms of the Gaussian distributions are shown in Fig. 5(b).

We define the mean and standard deviation of the brain tissue
distribution as and , respectively, and use as
the nonvessel threshold (we set equal to 2 in this paper), which
is a variant of the background thresholding approach [31], [32].
A voxel with LPC above the nonvessel threshold is labeled as a
coherent voxel. Otherwise, it is labeled as a noncoherent voxel.
As shown in Fig. 6, the coherent voxels form a number of vessel
“clusters,” thoughtherearesomerandomlydistributedvoxelsdue
to random coherent noise, small coherent motion of the nonvessel
tissue during scanning and ghosting artefacts. These “outliers”
can be ignored if they are far away and disconnected from the
vasculature, and their intensity values in a speed image are low.

The proposed segmentation algorithm, based on the
MAP-MRF model and using the flow coherence prior en-
ergy, is summarized as follows.

1) Use mixture model and global thresh-
olding to obtain a) a segmented PC-MRA
speed image , in which and

represent object and background
sites, respectively; and b) the local
likelihood energy . (see Sec-
tion II)
For the background sites, ,

if the MGU mixture model is used,
then

or
if the MU mixture model is used,
then .

For the object sites, ,

2) Compute the coherence measure
at each site. (see Section III)

3) Segment the image based on
, where and represent

coherent and noncoherent sites, re-
spectively, and and are located
at the same site position. (see Sec-
tion IV-C)

4) Iterate for : (see Sec-
tion IV-B)
Iterate for :

where

Terminate if or .
5) Final estimate .

(Note: .
.) The final estimate be-

comes the output of the segmentation method.
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V. EXPERIMENTS AND RESULTS

To assess the performance of the proposed segmentation
method, our approach has been applied to clinical, synthetic
and flow phantom datasets. These studies were conducted in
collaboration with the University Hospital of Zurich, Switzer-
land, who performed the data acquisition. All the datasets were
acquired using a Philips 3T ACS Gyroscan MR scanner. The
segmentation process was implemented in Visual C++ 6.0 with
the use of MATLAB 6.0 Release 12 as an interface, and was
run on a 1.8-GHz PC in the MS Windows NT environment with
512–MB RAM.

A. Model Selection Mechanism

For validation, both the MGU and MU models were fitted
to the observed intensity histograms of 12 PC-MRA speed
image volumes. We have noted that, when the MU mixture
distribution approximates the observed intensity histogram
well, the Gaussian component of the MGU mixture model has
a relatively large variance and small weight . This flattened
Gaussian component may lead to an excessively high estimate
for the image threshold , and a suboptimal segmentation.
As shown in Table I, this occurred in 7 out of the 12 test cases
(Volumes: 1,2,4,5,6,10,11) (One example is shown in Fig. 1).

The mixture model selection procedure described in Sec-
tion II was used in each case. For comparison, a consultant
radiologist was asked to choose between the MU and MGU
models on the basis of which of the above detailed segmenta-
tions more closely matched his evaluation of the speed images.
For each case, a PC-MRA speed volume and its two globally
segmented volumes were presented (one based on the MU
model and the other on the MGU model). Table I gives the
values of and , together with the selection of mixture
model made by the automated KLD-based method and by the
expert reader for each of the 12 clinical PC-MRA datasets.
From the table, the results show that models selected by the
KLD-based method and models selected manually by a radi-
ologist are well matched. On average, the computational time
was around 2 s for the relatively large volume matrix size of

.

B. Synthetic Image Volumes

In this study, the synthetic image volumes consist of two flow
patterns: 1) vertical straight tubes and 2) circular tubes with di-
ameters of 8 and 4 voxels, as shown in Fig. 7(a) and (b), re-
spectively (middle slices of the volumes). The typical vessel di-
mensions encountered in vivo are on average 8 voxels for large
vessels down to 4 (or fewer) voxels for the smaller vessels. The
simulated parameters were, therefore, chosen to mimic the clin-
ical case. The image volume sizes were and

, respectively (The extra two image slices
are the top and bottom background slices). The white strips in
Fig. 7(a) and (b) represent the positions and regions of the sim-
ulated flow, while the black strips represent the background re-
gions. In Fig. 7(a), the simulated “flow” runs from top to bottom
direction, while in Fig. 7(b), it is in the clockwise direction.

For the purpose of image synthesis, we corrupt each velocity
component with Gaussian noise having zero mean and the same

TABLE I
IMAGE THRESHOLDS I AND I ESTIMATED BY THE MGU AND MU
MIXTURE MODELS, RESPECTIVELY. (MAXIMUM INTENSITY VALUE OF THE

OBSERVED HISTOGRAMS IS 2048 FOR ALL VOLS.) IT ALSO GIVES THE VALUES

OF J AND J , AND THE SELECTED MIXTURE MODELS (BY THE KLD-BASED

METHOD AND MANUAL SELECTION) FOR THE 12 PC-MRA SPEED IMAGE

VOLUMES. IT SHOWS THAT MODELS SELECTED BY THE KLD-BASED METHOD

AND MODELS SELECTED MANUALLY BY A RADIOLOGIST ARE WELL MATCHED

standard deviation [33]. In Fig. 7(a), the flow vector inside the
tubes is given by , , and , where

represents the true flow magnitude, the axis is parallel to the
tube direction, and the terms , and are the zero-mean
Gaussian noise components with the same standard deviation

. The flow vector in the background is given by the same set
of equations, except that is set to zero. SNR is then given
by . Similarly, the tube flow vector in Fig. 7(b)
is given by , ,
and , where . As with clinical prac-
tice, voxels with high flow rates are assigned intensity values
higher than those assigned to the voxels with low flow rates.
The magnitude (or the speed) of the flow at each voxel is given
by . In our datasets, the SNR of typical
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Fig. 7. True patterns of the synthetic images (tubes are 8 pixel width). (a) Vertical straight tubes. (b) Circular tubes. (c) Speed image of the synthetic flow patterns
(SNR = 3). (d) Speed image histogram of (c). (e) Segmented image using speed information alone. Segmentation error = 13:75%�0:0320%. (f) Segmented
image using CM (c = 2). Segmentation error = 0:95%� 0:0140%.

major arteries in the brain can range from 4 (near the boundary)
to 40 or more (vessel center), which mainly depends on the
flow magnitude. For veins, the SNR can range from 3 to 20.
For aneurysms, the SNR can range from 3 (sac) to 20 (near the
aneurysmal wall).

Fig. 7(c) shows the speed images of the synthetic flow pat-
terns . The histogram corresponding to the sim-
ulated image is plotted in Fig. 7(d). The background distribu-
tions overlap heavily with those of the tubes because of the
low SNR . Segmentation was then performed using
the MAP method on the histograms of vessel and background
voxels in the speed images to choose the intersections of the his-
tograms as the threshold. Fig. 7(e) shows that, when the SNR is
low, segmentation result based on the speed information alone
is not very encouraging. Coherence maps of
(8) were then calculated on a voxel-by-voxel basis. We gener-
ated histograms of the background and tube regions from the
corresponding coherence maps. The background and tube his-
tograms were then used for thresholding the coherence maps
using the MAP classification method. An example of the thresh-
olded image for is shown in Fig. 7(f). It is ob-
served that the thresholded image matches the true flow patterns
[Fig. 7(a)] better than the segmented image obtained using speed
information alone [Fig. 7(e)].

TABLE II
SEGMENTATION ERRORS BASED ON CM (c = 2), CM (c = 1), CM ,
CM AND SPEED INFORMATION ALONE. (TUBE SIZE = 8 PIXELS, SNR = 3.)

Given that the true pattern is known, the segmentation error
can be accurately calculated by counting the number of misclas-
sified pixels, which is given by

(19)

Tables II and III list the segmentation errors based on ,
(11), (9) and speed information alone, and also

provide relative performance of when and .
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Fig. 8. Errors of segmentation using three-dimensional (3-D) flow coherence information from the synthetic images (vertical and circular tubes). (a) Vertical
straight tubes (8-voxel width). (b) Circular tubes (8-voxel width). (c) Vertical straight tubes (4-voxel width). (d) Circular tubes (4-voxel width).

TABLE III
SEGMENTATION ERRORS BASED ON CM (c = 2), CM (c = 1), CM ,

AND CM . (TUBE SIZE = 4 PIXELS, SNR = 3.)

The simulations were repeated for 12 different noise contribu-
tions at each of the six SNR levels between 2 and 7. The ta-
bles reveal that, when , consistently gives
a smaller segmentation error than and . Com-
pared to the segmentation errors using speed information alone,
it is clear that segmentation using flow coherence information
gives higher segmentation accuracy when the SNR is low.

The segmentation errors of the four different coherence mea-
sures are plotted in Fig. 8 across a range of different SNRs for the
synthetic images. It is interesting to see that the segmentation er-
rors change significantly as the SNR increases (from to

). Most notably, there is a performance transition from
[Fig.8(a)] lowSNR(i.e., lessthan4),wherethequalityofsegmen-
tation using flow coherence information is better than that using
speed information alone; to [Fig. 8(b)] high SNR (i.e., larger than
4), where segmentation using speed information alone is better
than that using flow coherence information.

The two major behaviors seen in segmenting these images
can be understood in the following way. First, speed histograms
overlap heavily when the SNR is low, making the MAP segmen-
tation based on speed information problematic and increasing
the segmentation error. In this situation, the spatial correlation
of flow vectors provides more robust information than the speed
information for segmentation with a noisy background. Sec-
ondly, speed histograms become well separated when the SNR
is high. As such, the segmentation error using speed information
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Fig. 9. Segmentation errors on the 3-D synthetic images (vertical and circular tubes). Different values of � = 1, 2, 3 and fixed value of � = 1. (a) Vertical
straight tubes (8 voxel width). (b) Circular tubes (8 voxel width). (c) Vertical straight tubes (4 voxel width). (d) Circular tubes (4 voxel width).

is greatly reduced. The reduction in segmentation error using
flow coherence information, however, is limited by inevitable
errors due to the tube boundaries (flow discontinuities) and the
inherent random coherence patterns in the background.

Fig. 8 also shows that, among the four different coherence
measures, and give better overall
segmentation results than and in the two syn-
thetic image volumes with the tube diameter set to 8 and 4
voxels. Moreover, gives a smaller segmentation
error than .

Although only tube widths of 8 and 4 were tested, it can be ex-
pected that the segmentation error decreases as the tube width in-
creases for both straight and circular tubes. For example, the seg-
mentationerrorsdropwhenthewidthincreasesfrom4voxels[see
Fig. 8(c) and (d)] to 8 voxels [see Fig. 8(a) and (b)]. The errors of
the wider tubes are smaller than those of the narrower tubes. The
reason is described as follows. As the width increases, the cur-
vature on the tube surface decreases. For estimating local coher-
ence on the tube surface, the decrease in curvature can lead to an

increase in the number of flow vectors within a window (7).
Therefore, more evidence is included to give a more reliable de-
cision on the local coherence. Similarly, because of the decrease
in the curvature of surfaces, it is observed that the segmentation
errors of the vertical tubes [see Fig.8 (a) and (c)] are smaller than
those of the circular tubes [see Fig. 8(b) and (d)].

Based on the proposed MAP-MRF method using both speed
and flow coherence information, we further segmented the four
synthetic 3-D image volumes using different values of and a
fixed value of ( was set to 1 throughout this paper), and com-
pared the differences in segmentation when was varied from 1
to 3. The segmentation performance was measured based on the
ratio of the number of misclassified pixels to the total number of
voxels,which isdefined in (19).FromFig.9, it isobserved that the
segmentation performance is sensitive to the value of when the
SNR is low. This is because, in the low SNR regions, the segmen-
tation performance mainly depends on the interactions between
adjacent sites based on the flow coherence information, and the
interaction is enhanced by setting a higher value of .
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Fig. 10. Comparison on the results based on 1) segmentation using speed information alone, 2) segmentation using flow coherence information alone, and 3)
segmentation using both speed and flow coherence information. All segmentations were done on the 3-D synthetic images (vertical and circular tubes). � = 2 and
� = 1. (a) Vertical straight tubes (8 voxel width). (b) Circular tubes (8 voxel width). (c) Vertical straight tubes (4 voxel width). (d) Circular tubes (4 voxel width).

Fig. 9 also shows that when , segmentation errors are
smaller than the other two values, and 3, over the whole
range of SNRs (from 2 to 7). As such, we set in this
implementation. From the figure, it can be predicted that the
segmentation errors are small when the SNR is large, and also
the difference between , 2 and 3 becomes very small.

Fig. 10 shows the results of the three different segmentation
methods, based on 1) speed information alone, 2) flow coher-
ence information alone using the second-order local flow co-
herence measure , and 3) the MAP-MRF model
using both speed and flow coherence information. As shown in
Fig. 10, the combination of speed and flow coherence informa-
tion in the MAP-MRF model substantially reduced the overall
segmentation errors at all SNR levels tested.

C. Flow Phantom and Measurement of Error

A geometrically accurate straight tube flow phantom was
made using MR compatible materials (silicone elastomer,

Sylgard 184, Dow Corning Corp, Midland, MI). The phantom
was constructed using a lost metal technique based on a nu-
merically controlled, milled mould [34]. The phantom provides
accurately defined lumen dimensions, which are 8 mm in
diameter running the length of the silicon block (block dimen-
sions: ). The phantom was filled with
a water glycerol mixture having a viscosity comparable to
that of human blood flowing at a constant rate of 300 .
The phantom was scanned using the PC-MRA protocol on
a 1.5T MR scanner (Signa, GE Healthcare, Milaukee WI)
at the Department of Neuroscience, King’s College London,
London, U.K. The image size was and
dimensions were . The scan details
were as follows: axial scan, , flip angle
18 , 1 signal average, FOV: , VENCS: 400
and acquisition matrix: 256 160 pixels.

Fig. 11 shows a MIP of the straight tube. The image has
been cropped for the purpose of illustration. The left- and
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Fig. 11. Maximum intensity projection of the straight tube phantom. The left–
and right-hand sides are the inflow and outflow regions, respectively.

Fig. 12. This figure shows that the errors of area estimation (underestimation)
are �5:83% � 2:64% and �21:19% � 3:76% for the MAP-MRF-based
approach and method using speed information alone, respectively. The
difference between two methods is 15.36%.

right-hand sides are the inflow and outflow regions, respectively.
Although the speed inside the tube remained constant during
the experiments, the SNR decreases from the inflow region to
the outflow region due to progressive saturation of the fluid
signal. Also, it is recognized that imperfections in velocity
encoding due to nonlinearities in the gradient systems can cause
a position-dependent deviation in the velocity images [30].
These two factors may influence the behavior of the surface
extraction method but were not taken into consideration in
the experiments below.

We define the measurement error in a slice as the percentage
difference between the estimated area and the true area of the
straight tube

(20)

where and represent the estimated and true
areas, respectively. For validation, we invited a consultant ra-
diologist to segment each slice manually. The manual segmen-
tations were used for estimating the true area by counting the
number of pixels inside the tube and multiplying the voxel size

in a slice. The estimated area is equal
to the number of vessel voxels multiplied by the voxel size. As
such, the error is negative when underestimates the
true area.

Fig. 12 shows the results of applying segmentation based on
speed information alone, and based on the MAP-MRF method
described in Section IV-C to the straight tube phantom using the

Fig. 13. Segmentation results and comparison. (a) Original speed image. (b)
Segmented image using speed information alone. (c) Segmented image using
speed and flow coherence information. (d) The differences between (b) and (c)
are white in color, and the overlapping vessel region is grey in color.

area error defined in (20) as the measure of comparison. This
figure shows that the MAP-MRF-based approach using both
speed and flow coherence information gives higher segmenta-
tion accuracy (on average, of the true area,
underestimated) than the segmentation method using speed in-
formation alone (on average, of the true area,
underestimated). The underestimation can be caused by the fluid
viscosity. The frictional force can slow down the flow near the
wall [35]. As such, the intensity is relatively low at the boundary
in the angiograms. This can make segmentation inaccurate near
the tube wall.

Fig. 13(a) shows an example speed image of the flow phantom
data, in which the cross-section of the phantom is located at
the center. Fig. 13(b) and (c) shows the segmentation results
of using speed information alone and the MAP-MRF method.
The differences between these two images are shown as white,
and the overlapping vessel region as grey in Fig. 13(d), which
reveals the advantage of incorporating flow coherence informa-
tion for segmenting the low SNR regions near the boundary of
the tube.

If we assume that the cross-sectional areas are in circular
shape, then the underestimations of areas, 5.83% for MAP-MRF
and 21.19% for speed information only based segmentations,
can be seen against the pixel resolution of the images. For this
phantom, the typical tube diameters are around 11 and 12 pixels,
and so a single pixel represents between 5% and 6% of the vessel
lumen. Thus, the results of the MAP-MRF method and segmen-
tation using speed information alone correspond to underesti-
mations representing less than 1 and approximately 4 pixels
underestimation, respectively. Because the underestimation is
not a focal effect but is smoothly dependent on position in the
phantom, the erroneous pixel excluded from the cross-section
will not result in specific stenosis, but rather irregularity of the
segmented surface. The impact of this error, however, is likely
to increase as the vessel size is reduced.
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D. Clinical Studies

We have applied our approach to 12 clinical datasets. Some
representative segmentation results are shown in Fig. 14. For the
sake of comparison, the clinical PC-MRA images [as shown in
Fig. 14(a)] were first processed using speed information alone
[see Fig. 14(b)], as described in Section II. The overall segmen-
tations are good except for the regions of low or complex flow
indicated by the arrows. The resulting loss in contrast makes the
vessel voxels hard to distinguish from the background voxels.
The results of applying the MAP-MRF segmentation algorithm
combining speed and flow coherence information are shown in
Fig. 14(c). It can be seen that there are improvements in segmen-
tation, especially within aneurysms, and other low flow regions,
e.g., veins. In Fig. 14(d), the differences between Fig. 14(b) and
(c) are highlighted in white, while the vessel regions identified in
both 14(b) and 14(c) are depicted in grey. To visualise the shape
of reconstructed vasculatures, MIPs of two PC-MRA volumes
are shown in Fig. 15(a) and (d). The three dimensional surfaces
of the segmented results based on speed information alone are
shown in Fig. 15(b) and (e). Fig. 15(c) and (f) shows the im-
proved surfaces based on the segmentation method using speed
and flow coherence information. Aneurysms and veins are indi-
cated in these figures by solid and dashed arrows, respectively.

We note that, in some cases, there remain a few false-nega-
tive voxels (two or three voxels) in the middle of the indicated
regions. We have found two main reasons for this. First, the flow
rate was extremely low in the middle, which may lead to serious
corruption of the velocity field by noise. Second, a circular (or
deformed circular) flow pattern in the aneurysm will give rise to
an associated singularity in the flow field. These factors can ad-
versely affect the LPC measure. The average computation time,
on average for all cases, is about 20 min for the relatively large
volume matrix size of .

VI. SUMMARY AND DISCUSSION

In this paper, we have introduced the use of statistical mix-
ture models for modeling the background and vascular signals in
clinical PC-MRA images. One of the main contributions of this
paper is that we have proposed a way of selecting between the
MGU and MU mixture models based on the KLD measure. Ex-
periments carried out on 12 clinical images illustrated the appli-
cability of the MGU and MU mixture models, and showed that
the KLD measure can help in selecting the appropriate threshold
for the segmentation task.

Although the mixture model works satisfactorily in classi-
fying the background and vessel voxels, for relatively low flow
rate and low SNR vessel regions, e.g., aneurysms and veins, we
find that it is hard to distinguish vessel voxels from the back-
ground voxels because of their low intensity value. Rather than
relying on the speed information alone, the available but un-
used velocity information is used to overcome this problem. We
have formally introduced a flow coherence term into the image
segmentation process, and presented a local coherence measure,
namely the LPC measure, which effectively describes the spa-
tial correlations of the neighboring flow vectors. We have car-
ried out experiments on synthetic images to evaluate and com-
pare the performance of the LPC measure and two other related

coherence measures that have appeared in the literature. The ex-
perimental results show that 1) when the SNR is low, segmen-
tation using the flow coherence measure is more accurate than
that achieved using just the speed information, 2) the LPC mea-
sure outperforms the two other related coherence measures, and
3) the second-order LPC measure performs better than
the first-order LPC measure because it gives more evi-
dence of flow vector correlations. On the other hand, when the
SNR is high, segmentation simply using a threshold based on
the speed information outperforms that attained when only the
coherence measure information is incorporated.

In PC-MRA datasets, different vessel dimensions and con-
tained flow velocities create a range of SNRs for the vessels.
Those vessels with high SNRs can be readily segmented based
on the speed image alone. The use of the velocity information
alone through a measure of LPC is less error prone at low SNRs,
but is subject to errors in the presence of background bound-
aries or flow singularities. The combination of these method-
ologies in an automated framework is a promising step for-
ward. In this paper, we have presented a MAP-MRF framework
for combining speed and flow coherence information for seg-
mentation. Experiments on synthetic images show that the new
method reduces segmentation errors across SNRs ranging from

to 7. Furthermore, experiments on a flow phantom
(straight tube) show that the MAP-MRF method is more ac-
curate than the method using speed information alone. Finally,
the performance of the MAP-MRF method was evaluated on 12
clinical datasets. Testing on the datasets showed that the com-
bined approach performs better than the approach using speed
information alone in segmenting vasculature and low flow re-
gions, e.g., aneurysms and veins.

The MU and MGU models were adapted to fit the physics and
mathematics underlying the generation of PC-MRA images. Fu-
ture work will include detection of flow singularities which may
indicate the presence of vorticity (to be expected in large sac-
cular aneurysms), perhaps by using knowledge of flow topology.

When the level of SNR goes down to about 2, the velocity
field obtained from the PC-MRA images can be seriously cor-
rupted by noise. It can be described as the “velocity estimates
corrupted by noise” domain, which is likely to be found in the
background regions. For a better estimation of LPC, other forms
of preprocessing or further knowledge of flow topology [36]
(e.g., lack of field divergence) can be incorporated. Using those
preprocessing techniques one should also consider the fact that
there may be systematic errors in the velocity field estimates due
to misalignment of spatial encoding for moving spins, or non-
steady velocities (always present to some degree due to cardiac
pulsation).
We will also investigate the improvements on the inclusion of
flow coherence information in the segmentation method, espe-
cially on the possibilities of eliminating the necessity for thresh-
olding the LPC map. While flow coherence is relevant to the an-
giographic application to hand, other sources of secondary in-
formation could be used as in multispectral analysis of different
MR images. Closely akin to the present work is high resolution
MR venography where the low oxygenation of the veins per-
turbs the magnetic field giving rise to localized phase shifts in
a background of smoothly varying phase. Adapting the mixture
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Fig. 14. Segmentation results and comparisons. (a) Original speed images. (b) Segmented images using speed information alone. (c) Segmented images using
speed and flow coherence information. (d) The differences between (b) and (c) are white in color and the overlapping vessel regions are grey in color. The relatively
low SNR and low flow rate regions, e.g., aneurysms and veins, are indicated by the arrows in the figures.
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Fig. 15. Three-dimensional surfaces reconstructed based on the segmentation results. (a),(d) MIP. (b),(e) Three-dimensional surfaces of the segmentation results
based on speed information alone. (c),(f) Three-dimensional surfaces of the segmentation results based on speed and flow coherence information. The relatively
low SNR and low flow rate regions, e.g., aneurysms (solid) and veins (dashed), are indicated by the arrows in the figures.

model and perhaps reversing the phase coherence criteria may
be of use in automatically and efficiently segmenting the veins
in such images.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for the
constructive comments. They are grateful to Dr. S. Yu at the De-
partment of Diagnostic Radiology and Organ Imaging, Prince of
Wales Hospital, Hong Kong, for his help in validation. A. C. S.
Chung would like to thank Prof. M. Brady for his constructive
comments throughout this work.

REFERENCES

[1] T. Lei and W. Sewchand, “Statistical approach to X-ray CT imaging
and its applications in image analysis—I: A new stochastic model-based
image segmentation technique for X-ray CT image,” IEEE Trans. Med.
Imag., vol. 11, pp. 53–61, Mar. 1992.

[2] P. Santago and H. D. Gage, “Quantification of MR brain images by mix-
ture density and partial volume modeling,” IEEE Trans. Med. Imag., vol.
12, pp. 566–574, Sept. 1993.

[3] Z. Liang, J. R. MaxFall, and D. P. Harrington, “Parameter estimation and
tissue segmentation from multispectral MR images,” IEEE Trans. Med.
Imag., vol. 13, pp. 441–449, Sept. 1994.

[4] J. C. Rajapakse, J. N. Giedd, and J. L. Rapoport, “Statistical approach to
segmentation of single-channel cerebral MR images,” IEEE Trans. Med.
Imag., vol. 16, pp. 176–186, Apr. 1997.

[5] K. Held, E. R. Kops, B. J. Krause, W. M. Wells III, R. Kikinis, and H. W.
M. Gartner, “Markov random field segmentation of brain MR images,”
IEEE Trans. Med. Imag., vol. 16, pp. 878–886, Dec. 1997.

[6] T. Kapur, “Model-based three-dimensional medical image segmenta-
tion,” Ph.D. thesis, Artif. Intell. Lab., Massachusetts Inst. Technol.,
Cambridge, 1999.

[7] Y. Zhang, M. Brady, and S. Smith, “Segmentation of brain MR images
through a hidden Markov random field model and the expectation-max-
imization algorithm,” IEEE Trans. Med. Imag., vol. 20, pp. 45–57, Jan.
2001.

[8] D. L. Wilson and J. A. Noble, “An adaptive segmentation algorithm
for time-of-flight MRA data,” IEEE Trans. Med. Imag., vol. 18, pp.
938–945, Oct. 1999.



CHUNG et al.: VASCULAR SEGMENTATION OF PC-MRA 1507

[9] A. C. S. Chung, J. A. Noble, and P. Summers, “Fusing speed and
phase information for vascular segmentation of phase contrast MR
angiograms,” Med. Image Anal., vol. 6, no. 2, pp. 109–128, 2002.

[10] A. C. S. Chung, “Vessel and aneurysm reconstruction using speed and
flow coherence information in phase contrast magnetic resonance an-
giograms,” D.Phil. thesis, Univ. Oxford, Oxford, U.K., 2001.

[11] J. McLachlan and D. Peel, Finite Mixture Models. New York: Wiley,
2000.

[12] T. McInerney and D. Terzopoulos, “Medical image segmentation using
topologically adaptable surfaces,” Comput. Vis., Virtual Reality, Robot.
Med., pp. 92–101, 1995.

[13] L. M. Lorigo, O. Faugeras, W. E. L. Grimson, R. Keriven, R. Kikinis,
and C. F. Westin, “Co-dimension 2 geodesic active contours for MRA
segmentation,” in Proc. Int. Conf. Information Processing in Medical
Imaging, 1999, pp. 126–139.

[14] O. Wink, W. J. Niessen, and M. A. Viergever, “Fast delineation and vi-
sualization of vessels in 3-D angiographic images,” IEEE Trans. Med.
Imag., vol. 19, pp. 337–346, Apr. 2000.

[15] K. Krissian, G. Malandain, and N. Ayache, “Model-Based Detection of
Tubular Structures in 3D Images,” INRIA, Sophia Antipolis, France,
Tech. Rep. 3736, 1999.

[16] H. J. Steiger Jr., J. N. Oshinski, R. I. Pettigrew, and D. N. Ku, “Compu-
tational simulation of turbulent signal loss in 2D time-of-flight magnetic
resonance angiograms,” Magn. Reson. Med., vol. 37, pp. 609–614, 1997.

[17] D. J. Wilcock, T. Jaspan, and B. S. Worthington, “Problems and pitfalls
of 3-D TOF magnetic resonance angiography of the intracranial circu-
lation,” Clin. Radiol., vol. 50, pp. 526–532, 1995.

[18] P. A. Rinck, Magnetic Resonance in Medicine. Oxford, U.K.: Black-
well Scientific, 1993.

[19] C. Bishop, Neural Networks for Pattern Recognition. Oxford, U.K.:
Clarendon, 1995.

[20] S. Kullback, Information Theory and Statistics. New York: Dover,
1997.

[21] R. M. Haralick, “Statistical and structural approaches to texture,” Proc.
IEEE, vol. 67, pp. 786–804, May 1979.

[22] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for
image classification,” IEEE Trans. Syst., Man, Cybern., vol. SMC-3, pp.
610–621, 1973.

[23] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images,” IEEE Trans. Pattern Anal. Ma-
chine Intell., vol. PAMI-6, pp. 721–741, June 1984.

[24] A. R. Rao and R. C. Jain, “Computerized flow field analysis: oriented
texture fields,” IEEE Trans. Pattern Anal. Machine Intell., vol. 14, pp.
693–709, July 1992.

[25] P. Summers, A. Bhalerao, and D. Hawkes, “Multi-resolution, model-
based segmentation of MR angiograms,” J. Magn. Reson. Med., vol. 7,
no. 6, pp. 950–957, 1997.

[26] G. E. P. Box and G. C. Tiao, Bayesian Inference in Statistical Anal-
ysis. New York: Wiley, 1973.

[27] D. Geiger and F. Girosi, “Parallel and deterministic algorithms from
MRFs: surface reconstruction,” IEEE Trans. Pattern Anal. Machine In-
tell., vol. 13, pp. 401–412, May 1991.

[28] F. Heitz and P. Bouthemy, “Multimodal estimation of discontinuous op-
tical flow using Markov random fields,” IEEE Trans. Pattern Anal. Ma-
chine Intell., vol. 15, pp. 1217–1232, Dec. 1993.

[29] J. Besag, “On the statistical analysis of dirty pictures,” J. Roy. Statist.
Soc., Series B (Methodological), vol. 48, no. 3, pp. 259–302, 1986.

[30] M. A. Bernstein, X. J. Zhou, J. A. Polzin, K. F. King, A. Ganin, N. J.
Pelc, and G. H. Glover, “Concomitant gradient terms in phase contrast
MR: analysis and correction,” Magn. Reson. Med., vol. 39, no. 2, pp.
300–308, 1998.

[31] M. E. Brummer, R. M. Mersereau, R. L. Eisner, and R. R. J. Lewine,
“Automatic detection of brain contours in MRI data sets,” IEEE Trans.
Med. Imag., vol. 12, pp. 152–166, June 1993.

[32] M. S. Atkins and B. T. Mackiewich, “Fully automatic segmentation of
the brain in MRI,” IEEE Trans. Med. Imag., vol. 17, pp. 98–107, Feb.
1998.

[33] R. M. Henkelman, “Measurement of signal intensities in the presence of
noise in MR images,” Med. Phys., vol. 12, no. 2, pp. 232–233, 1985.

[34] P. Summers, D. W. Holdsworth, H. Nikolov, Y. Papaharilou, and B. K.
Rutt, “Design and construction of a robust flow phantom for the ISMRM
flow and motion group multi-centre trial,” in Proc. Conf. Int. Soc. Magn.
Reson. Med., 2000, p. 458.

[35] Y. C. Fung, Biomechanics: Circulation, 2nd ed. New York: Springer-
Verlag, 1996.

[36] J. L. Helman and L. Hesselink, “Visualizing vector field topology in
fluid flows,” IEEE Comput. Graphics Applicat., vol. 11, pp. 36–46, May.
1991.


	toc
	Vascular Segmentation of Phase Contrast Magnetic Resonance Angio
	Albert C. S. Chung*, J. Alison Noble, Member, IEEE, and Paul Sum
	I. I NTRODUCTION
	II. S TATISTICAL M ODELLING OF PC-MRA S PEED I MAGES AND M ODEL 

	Fig.€1. Demonstration of the failure of the MGU mixture model to
	Fig.€2. An example of improvement on the MU model by using the M
	III. L OCAL P HASE C OHERENCE (LPC) M EASURE

	Fig. 3. The neighborhood system ${\cal N}_{s}$ . (a) First-order
	IV. A P ROBABILISTIC F RAMEWORK FOR C OMBINING S PEED AND F LOW 
	A. The MAP-MRF Framework
	B. Fusing Speed and Flow Coherence Information


	Fig.€4. Local coherence map and its histogram. (a) LPC map. (b) 
	C. Application to PC-MRA Images

	Fig.€5. LPC histogram and the double Gaussian model, with a seco
	Fig.€6. Coherent voxels.
	V. E XPERIMENTS AND R ESULTS
	A. Model Selection Mechanism
	B. Synthetic Image Volumes


	TABLE I I MAGE T HRESHOLDS $I_{\rm MGU}$ AND $I_{\rm MU}$ E STIM
	Fig.€7. True patterns of the synthetic images (tubes are 8 pixel
	TABLE II S EGMENTATION E RRORS B ASED ON ${\rm CM}_{\rm lpc}(c=2
	Fig.€8. Errors of segmentation using three-dimensional (3-D) flo
	TABLE III S EGMENTATION E RRORS B ASED ON ${\rm CM}_{\rm lpc}(c=
	Fig.€9. Segmentation errors on the 3-D synthetic images (vertica
	Fig.€10. Comparison on the results based on 1) segmentation usin
	C. Flow Phantom and Measurement of Error

	Fig.€11. Maximum intensity projection of the straight tube phant
	Fig.€12. This figure shows that the errors of area estimation (u
	Fig.€13. Segmentation results and comparison. (a) Original speed
	D. Clinical Studies
	VI. S UMMARY AND D ISCUSSION
	Fig.€14. Segmentation results and comparisons. (a) Original spee
	Fig.€15. Three-dimensional surfaces reconstructed based on the s

	T. Lei and W. Sewchand, Statistical approach to X-ray CT imaging
	P. Santago and H. D. Gage, Quantification of MR brain images by 
	Z. Liang, J. R. MaxFall, and D. P. Harrington, Parameter estimat
	J. C. Rajapakse, J. N. Giedd, and J. L. Rapoport, Statistical ap
	K. Held, E. R. Kops, B. J. Krause, W. M. Wells III, R. Kikinis, 
	T. Kapur, Model-based three-dimensional medical image segmentati
	Y. Zhang, M. Brady, and S. Smith, Segmentation of brain MR image
	D. L. Wilson and J. A. Noble, An adaptive segmentation algorithm
	A. C. S. Chung, J. A. Noble, and P. Summers, Fusing speed and ph
	A. C. S. Chung, Vessel and aneurysm reconstruction using speed a
	J. McLachlan and D. Peel, Finite Mixture Models . New York: Wile
	T. McInerney and D. Terzopoulos, Medical image segmentation usin
	L. M. Lorigo, O. Faugeras, W. E. L. Grimson, R. Keriven, R. Kiki
	O. Wink, W. J. Niessen, and M. A. Viergever, Fast delineation an
	K. Krissian, G. Malandain, and N. Ayache, Model-Based Detection 
	H. J. Steiger Jr., J. N. Oshinski, R. I. Pettigrew, and D. N. Ku
	D. J. Wilcock, T. Jaspan, and B. S. Worthington, Problems and pi
	P. A. Rinck, Magnetic Resonance in Medicine . Oxford, U.K.: Blac
	C. Bishop, Neural Networks for Pattern Recognition . Oxford, U.K
	S. Kullback, Information Theory and Statistics . New York: Dover
	R. M. Haralick, Statistical and structural approaches to texture
	R. M. Haralick, K. Shanmugam, and I. Dinstein, Textural features
	S. Geman and D. Geman, Stochastic relaxation, Gibbs distribution
	A. R. Rao and R. C. Jain, Computerized flow field analysis: orie
	P. Summers, A. Bhalerao, and D. Hawkes, Multi-resolution, model-
	G. E. P. Box and G. C. Tiao, Bayesian Inference in Statistical A
	D. Geiger and F. Girosi, Parallel and deterministic algorithms f
	F. Heitz and P. Bouthemy, Multimodal estimation of discontinuous
	J. Besag, On the statistical analysis of dirty pictures, J. Roy.
	M. A. Bernstein, X. J. Zhou, J. A. Polzin, K. F. King, A. Ganin,
	M. E. Brummer, R. M. Mersereau, R. L. Eisner, and R. R. J. Lewin
	M. S. Atkins and B. T. Mackiewich, Fully automatic segmentation 
	R. M. Henkelman, Measurement of signal intensities in the presen
	P. Summers, D. W. Holdsworth, H. Nikolov, Y. Papaharilou, and B.
	Y. C. Fung, Biomechanics: Circulation, 2nd ed. New York: Springe
	J. L. Helman and L. Hesselink, Visualizing vector field topology



