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Augmented Vessels for Quantitative Analysis of
Vascular Abnormalities and Endovascular Treatment

Planning
Wilbur C. K. Wong* and Albert C. S. Chung

Abstract—Endovascular treatment plays an important role
in the minimally invasive treatment of patients with vascular
diseases, a major cause of morbidity and mortality worldwide.
Given a segmentation of an angiography, quantitative analysis of
abnormal structures can aid radiologists in choosing appropriate
treatments and apparatuses. However, effective quantitation
is only attainable if the abnormalities are identified from the
vasculature. To achieve this, a novel method is developed, which
works on the simpler shape of normal vessels to identify different
vascular abnormalities (viz. stenotic atherosclerotic plaque, and
saccular and fusiform aneurysmal lumens) in an indirect fashion,
instead of directly manipulating the complex-shaped abnormal-
ities. The proposed method has been tested on three synthetic
and 17 clinical data sets. Comparisons with two related works
are also conducted. Experimental results show that our method
can produce satisfactory identification of the abnormalities and
approximations of the ideal post-treatment vessel lumens. In
addition, it can help increase the repeatability of the measurement
of clinical parameters significantly.

Index Terms—Angiography, augmented vessel, endovascular
treatment planning, quantitative analysis, vessel tracking.

I. INTRODUCTION

ENDOVASCULAR treatment is a therapy performed inside
vessels with the assistance of two-dimensional (2-D)

angiography and micro-catheters. It plays an important role
in minimally invasive treatments of patients with vascular
diseases [1]. Vascular disease is one of the major causes of mor-
bidity and mortality worldwide, particularly cerebrovascular
diseases, such as intracranial aneurysms, carotid stenoses and
arteriovenous malformations. In a clinical review [2], it was
found that approximately 3.6%–6% of the general population
are suffering from intracranial aneurysms. As such, diagnostic
imaging scientists are seeking new technologies aimed at pro-
viding a more reliable diagnostic evaluation for endovascular
treatments and therapeutic assessment of vascular diseases
with three-dimensional (3-D) angiographic information. Mag-
netic resonance angiography (MRA), computed tomography
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angiography (CTA), and 3-D rotational angiography (RA) are
examples of these technologies.

Vascular segmentation of 3-D angiographies can provide pa-
tient-specific 3-D vascular models. This is very useful in en-
dovascular treatment planning [3]. Nevertheless, even if a vas-
cular model is obtained, measuring the clinical parameters of
interest still remains a problem. In particular, measuring the
neck width and dome height of a cerebral aneurysm1 are the
most difficult tasks. These measurements, however, would be
easier to take if the aneurysmal sac is demarcated from its parent
arteries. Interactive or automatic quantitative analyzes on the
lesion would then become feasible, because the pathological
structures could be processed exclusively. The estimation of
Guglielmi detachable coil’s (GDC) size and shape could be
obtained from simple morphological operations (opening and
closing) or complex algorithms like deformable models [6] that
are applied to the detached sac volume. In the case of arterial
coarctation, if the volume of atherosclerotic plaque that causes
the stenosis is estimated, a best-fitting stent for an endovascular
recanalization can then be deduced from the plaque dimensions.

The identification of abnormal vascular structures would also
help angle selection for optimal working projections.2 With
the knowledge of the shape and orientation of an aneurysmal
neck, the method proposed by van der Weide et al. [8], which
is based upon minimizing the area of the aneurysmal neck in
projected images, could be used for the angle selection. Once
the aneurysmal lumen is demarcated, another more advanced
choice would be the one developed by Wilson et al. [9] in which
the optimal working angle is determined via a minimization
of the area of overlaps between adjoining vessels and the sac.
Similar techniques could be developed for selecting the optimal
working angle in an endovascular recanalization if the volume
of atherosclerotic plaque is estimated.

Nonetheless, little work has been done on the identifi-
cation of abnormal vascular structures in angiographies. In
the literature, only a few authors have suggested methods to
detach aneurysmal lumens from vasculatures. Wilson et al.
[9] suggested using the distance map of an aneurysmal sac
center to determine the aneurysmal volume. They identified
and excluded high-intensity regions in the distance map, and

1An aneurysm is a localized abnormal dilation of a blood vessel. The neck
width and the dome height of a cerebral aneurysm are important information
for selecting proper apparatus (such as micro-balloons [4]) and can help predict
immediate outcomes of an occlusion with Guglielmi detachable coils (GDC)
[5].

2The aim of optimal working angle selection is to seek a clear view of a
stenotic lumen or an aneurysmal sac and its neck so as to avoid foreshortening of
the lesions and overlapping with other objects in their 2-D angiograms [7]–[9].
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inpainted the resultant empty regions by interpolation between
neighboring low-intensity regions. Then all voxels that lie
within the distances in the inpainted map from the sac center
are classified into the aneurysmal volume. McLaughlin and
Noble [10] determined aneurysmal voxels as the voxels that
are closest to an aneurysmal mesh identified by a user with the
seed and cull algorithm. These two algorithms, however, have
difficulty giving satisfactory results on wide-neck3 saccular
aneurysms and fusiform aneurysms, as is shown in Section IV.

In this paper, we develop a novel approach to identifying a
variety of vascular abnormalities, viz. stenotic atherosclerotic
plaque, and saccular and fusiform aneurysmal lumens from vas-
culatures on a unified framework. We take a very different ap-
proach as compared with other published methods. Instead of
manipulating the pathological structures with sophisticated al-
gorithms, we identify the abnormalities by explicitly modeling
their opposite, i.e., normal vessels. As compared with the com-
plex shape of the abnormal lumens, our method works on the rel-
atively simpler shape of normal vessels. The abnormal vascular
structures are then determined as the complement of the approx-
imated normal vessels. For instance, an aneurysmal lumen is
seen as the surplus volume in the vasculature in respect to the
normal vessel model, whereas the absent volume in a stenotic
lumen is an estimate of the atherosclerotic plaque volume.

We refer to this normal vessel model as the “augmented
vessel.” The term “augmented” is borrowed from the termi-
nology “augmented reality,” which refers to the technology that
integrates computer-generated objects into real-world environ-
ments [11]. Our augmented vessels are computer-generated
vessels aimed at estimating a portion of post-treatment vessel
lumens under conditions that either 1) a stent successfully re-
stores the width of a stenotic lumen which is comparable to the
widths of normal lumen segments that are proximal and distal
to the coarctation, 2) an aneurysmal sac is completely packed
with GDC, or 3) an aneurysmal lumen is occluded perfectly by
stent grafts [12]. Those conditions are regarded as clinically
ideal, since the post-treatment vessel lumens approximated
are very similar to normal lumens. It is perceived that such
approximation does not take hemodynamics of vasculature
into account. We are neither aiming at producing accurate
modelings of post-treatment lumens that are hemodynamically
stable nor approximating actual lumens after endovascular
treatments. Instead, our goal is to identify the volumes of
abnormal vascular structures (based on normal counterparts)
so as to ease measurement of clinical parameters, make the
measurements more consistent yet less subjective and, as a
result, allow endovascular treatment planning to be facilitated.

The rest of the paper is organized as follows. The proposed
method is described in Section II, followed by several imple-
mentation issues in Section III. Experimental results on syn-
thetic and clinical data sets are presented in Section IV. An in
vivo study and its findings are given in Section V. Finally, dis-

3Sanders et al. suggested using a sac-to-neck ratio to access the success rate
of a Guglielmi detachable coil (GDC) occlusion of an aneurysm [4]. This ratio
is defined as the diameter of an aneurysmal sac divided by the diameter of the
sac opening. An aneurysm with a sac-to-neck ratio of 2.0 or more is optimal
for GDC occlusion, whereas a sac-to-neck ratio nearing 1.0 suggested that the
lesion is a wide-neck aneurysm which is more difficult or may be impossible to
treat with GDC occlusion.

cussions and the conclusion are presented in Sections VI and
VII, respectively.

II. DESCRIPTION OF THE METHOD

For the purpose of this study, we assume that a topologically
and morphologically correct vascular segmentation (i.e., with
no holes and cavities) is available. Without loss of generality,
the segmentation is represented in a binary image volume with
voxel label equals one for the vessel lumen class and zero for the
background class. Throughout this paper, augmented vessels are
constructed with reference to this vascular segmentation.

In this section, we begin by describing the construction of
augmented vessels, which consists of two major phases: 1) de-
termination of vessel widths and centerlines (Section II-A); 2)
production of an explicit vascular surface model (Section II-B).
We then present demarcation of aneurysmal sacs and volume es-
timation of stenosis atherosclerotic plaque in terms of a simple
set operation in Section II-C.

A. Vessel Widths and Centerlines

In this paper, we focus on images that contain arteries. In
order to model all possible vasculatures found in clinical data
sets, a generic-enough model is required such that the model
can be molded into the imaged vessels ranging from simple
lumen segments to complex n-way branching junctions. As
such, we employ the most intuitive and commonly used vessel
model found in the literature—circular cross-sectional tube
[13]–[18]—to initiate the construction of augmented vessels:
a tube is used to model a single lumen segment; and multiple
tubes are required in the case of an n-way branching vascular
junction.

1) Determination of Vessel Widths and Centerline
End-Points: In this simple initialization model, the widths
( of local circular cross sections) of a tube and the
location of the tube centerline are the only attributes subject
to change. A user is requested to select two points in a 3-D
space to define the end-points per tube centerline which is used
to initiate the construction of augmented vessels. They should
be selected at disease-free portions of vessels of interest such
that the tube centerline either passes by a saccular aneurysmal
lumen or passes through a fusiform aneurysmal or a stenotic
lumens. The circles in Fig. 1 are possible centerline end-points
selected by a user in disease-free regions of two aneurysmal
cases and a stenotic case.

The widths of the tube along the centerline are then deter-
mined by using the linear interpolation between the local vessel
widths at the two selected points. The reason for imposing such
a hard constraint on the tube widths is that we need a strong
shape prior to restrict the morphology of the augmented ves-
sels in a pathological region. Otherwise, we may have an overfit
initialization model that is molded to a complicated patholog-
ical lumen (e.g., a poststenotic dilated lumen [19], an asym-
metrically dilated aneurysmal lumen and a coarctation), if the
tube widths are allowed to vary out of the range bounded by the
end-points’ local vessel widths.

2) Representation of Vessel Centerline: The tube centerline
is modeled using an open parametric zero-tension cardinal
spline. Compared with the conventional open B-splines [9],
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Fig. 1. Possible end-points selected by a user, their corresponding estimated
centerlines and ridges in Euclidean distance (ED) maps of (a) a saccular
aneurysmal lumen, (b) a fusiform aneurysmal lumen and (c) a stenotic lumen.
The portion toward the far end of the lumen from the dotted straight line
denotes the disease-free region. The components are labeled: 1, a blood vessel
wall; 2, an arterial lumen; 3, a ridge in an ED map; 4, an estimated centerline;
5, a user selected end-point. Also, notice the differences between the estimated
centerlines and the ridges in the ED map.

[13], cardinal splines have the advantage of being able to
pass through the knots, which makes the representation more
intuitive in subsequent approximation of the vessel centerlines.
A cardinal spline fragment between the th and th knots
is defined as follows:

(1)

(2)

where , is a parametric variable. and
denote the th and th knots, respectively. is the

total number of knots. The notation denotes the tangent at
point and is approximated using (2). In this paper, we set

to ensure that the spline fragments are joined smoothly at each
corresponding knot. The complete cardinal spline composed by
the individual fragments is, therefore, described as

(3)

where , and .

3) Approximation of Vessel Centerline: The approximation
of the vessel centerline is treated as a spline registration problem
under a fixed end boundary condition [20]. We solve the regis-
tration problem using the active contour models, Snakes [21].
Our cardinal splines have two types of parameters, intrinsic and
extrinsic parameters. The intrinsic parameters include the model
constraint functionals and image functional, whereas the ex-
trinsic parameters define the search space of the registration.

The model constraint functionals are length penalty, tensile
and flexural strengths. The length penalty acts as a soft con-
straint to avoid redundant tortuousness. The tensile and flexural
strengths control the resistance of the spline to stretching and
bending deformations, respectively. The image functional, pri-
marily for anatomy penalty, poses a strong constraint on the
registration such that the tube centerline at the final equilib-
rium state follows the trajectory of vessels of interest. Unlike
the commonly used image functionals, such as those based on
intensity gradient magnitude [13], [16]–[18], [22], [23], ours is
distinctive. It takes volumetric information into account, instead
of lumen boundaries, to encourage large volumetric overlap be-
tween the tube and the vascular structures. This allows the es-
timated centerline outside the confines of a narrowed lumen
which can help identification of stenotic asymmetry (a useful in-
formation in a clinical diagnosis [24]), as depicted in Fig. 1(c).

Our energy functional to be minimized is defined as follows:

(4)
where

(5)

(6)

(7)

(8)

The weights control the inferences of the individual energy
functionals , is the abbreviation for the spline ,

is the -norm operator and denotes a scalar
function which returns the areas of the circular cross section of
the tube at that are occupied by the vascular structures in
the percentage. The solid lines labeled as 4 in Fig. 1 are possible
vessel centerlines estimated using our method.

The search space of this minimization problem is the Carte-
sian coordinates of all movable knots (i.e., all the knots, except

and ). Unlike the works done by Wilson et al. [9]
and Frangi et al. [13], we do not assume the number of knots
(also known as order) in the spline is fixed (i.e., single-order).
A multi-order (MO) approach similar to the multi-resolution
B-spline mesh illustrated in [25] for free-form MRI registra-
tion is adopted. The order of cardinal splines is automatically
determined in a coarse to fine fashion. Instead of doubling the
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number of knots at the next higher order (finer) level as proposed
in [25], we increase one knot at each higher level. Therefore,
comparing with the previous works (i.e., [9] and [13]) done, our
approach is more generic and novel. One might suggest to take
the single-order approach so as not to overcomplicate the vessel
centerline approximation. Later in experiments on a clinical data
set, we demonstrate that such approach can easily get trapped
at local optimum, especially when the order of splines is high
( 2 movable knots). However, if the order is low ( 2 movable
knots), splines may suffer from low degree of freedom (DOF)
and, hence, are unable to model portions that exhibit relatively
high curvature. The implementation of this minimization proce-
dure is presented in Section III-B.

B. Explicit Vascular Surface Model

To construct the augmented vessels, determining the widths
and the centerlines of the vessels are necessary but not sufficient.
We also need to define an explicit closed surface to represent
the augmented vessel lumen boundaries. This explicit surface
plays an important role in identification of the abnormal vascular
structures.

In the demarcation of an aneurysmal lumen, for instance, the
augmented vascular surface acts like a 3-D “cookie cutter” that
crops the vascular structure, analogous to dough, into two parts,
“cookie dough” and “wasted dough” (see Fig. 2(a) and the small
figure on the lower right corner of Fig. 2(b), the partitions la-
beled 2a and 2b are contributed to the “wasted dough” and the
partition labeled 3 is the “cookie dough”). The “cookie dough”
is an estimate of a portion of the vessel lumen in the region of
interest after a perfect endovascular embolization. The “wasted
dough,” on the other hand, consists of the suspected aneurysmal
lumen labeled 2a and the regions of no interest labeled 2b. After
this partitioning, the suspected aneurysmal lumen can be easily
selected in the “wasted dough.”

In the case of the volume estimation of stenotic atheroscle-
rotic plaque, the explicit surface has its intuitive physical
meaning. It represents an inflated balloon catheter in balloon
angioplasty, as shown in Fig. 2(c). The spaces that are not
occupied by the vascular structures inside the explicit closed
surface may correspond to the atherosclerotic plaque [i.e.,
the partitions labeled 5 in the small figure on the lower left
corner of Fig. 2(c)]. The suspected plaque volume can then be
identified and selected manually with ease. Thus, estimation of
the atherosclerotic plaque volume becomes feasible.

1) Surface Representation and Initialization: The aug-
mented vascular surface is represented as a vector-valued
parametric function

(9)

where and are parametric variables. It is initialized as a
closed surface that represents the augmented vessels’ mor-
phological shape (i.e., composition of circular cross-sectional
tubes) explicitly. Details of the initialization are presented in
Section III-C.

2) Surface Matching: Although, arteries have thicker walls
that help retain the lumen boundaries more-or-less circle around
the vessel centerlines [26], the cross-sectional shape can still
deviate from that being perfectly circular. Hence, the circular

Fig. 2. Explicit vascular surface models. An analogy between cookie cutter/
doughs and explicit vascular surface model/vessel lumens in the demarcation
of an aneurysmal lumen: (a) cookie cutter labeled 1, waste dough labeled 2,
and cookie dough labeled 3; and (b) explicit vascular surface model labeled 1,
aneurysmal lumen labeled 2a (a part of the “wasted dough”), regions of no in-
terest labeled 2b (parts of the “wasted dough”) and augmented vessels labeled
3 (“cookie dough”). (c) Intuitive physical meaning of an explicit vascular sur-
face model in the volume estimation of stenotic atherosclerotic plaque, an in-
flated balloon catheter in balloon angioplasty. Label 4, vascular structures in the
pretreatment vascular segmentation; and label 5, approximated atherosclerotic
plaque (absent vascular structures). (d) Cross-sectional shapes of an aneurysmal
lumen and its parent vessel lumen. The shape of the parent vessel lumen deviates
from a circular cross-sectional tube. The estimated aneurysmal lumen labeled
2a is overestimated if the initial surface model S labeled 6 is used to “cut” the
vascular structure.

cross-sectional tube representation is too primitive to approx-
imate the arterial lumens in clinical data sets. As depicted in
Fig. 2(d), it is very likely that the obtained aneurysmal lumen is
overestimated (label 2a), if the initial surface model (label
6) is used to “cut” the vascular structure.

To avoid such overestimation, we need to make fine adjust-
ments on by matching it to the nearby lumen boundaries in
the vascular segmentation. The surface matching is performed in
an energy minimization based nonrigid registration framework.
The augmented vascular surface is a floating surface, which
freely deforms (in a global sense) into a reference surface ,
the lumen boundaries in the segmentation. In order to homoge-
nize the representation of the two surfaces (i.e., the deformation
medium), the lumen boundaries are explicitly represented by the
iso-surface obtained from the Marching Cubes algorithm [27].

Although the deformation is globally free-form, we do im-
pose local constraints. These constraints dictate the evolution
of such that it has an affinity with the nearby lumen bound-
aries (boundaries of the parent vessel lumen) but not the distant
counterparts (e.g., the aneurysmal and stenotic lumen bound-
aries). We propose two novel external energy functionals to im-
pose those constraints. They are snap functional and anti-col-
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Fig. 3. Energy values of the snap and the anti-collapse functionals. Left
column: the snap energy (at z = 0) of a point whose nearest point onM is
[8; 14; 0] when R = 12 in different values of p, (a) p = 0:1 and (c) p = 10.
Right column: the anti-collapse energy (at z = 0) of a point whose initial
position is [8; 14;0] when n̂ = [�1=

p
2; 1=

p
2; 0] in different values of

r, (b) r = 10 and (d) r = 0:1.

lapse functional. These two functionals are very different from
the classical functionals proposed in the literature on deforma-
tion models [21], [28]–[31], such as the functionals built upon
negative intensity, negative intensity gradient magnitude, inten-
sity gradient vector and contour/surface curvature. Our snap and
anti-collapse functionals are defined on geometric displacement
fields of to and , respectively. This allows embedding
shape priors into the deformation regardless of the represen-
tation of the deformable model (see Section VI-A for the dis-
cussion on model representation). Classical tensile and flexural
functionals are also employed for surface regularization.

3) Snap Functional: The snap functional favors to stick to
. This alleviates the unrealistic shape of and gives a better

modeling of the lumen boundaries in the vascular segmentation.
It is defined as

(10)

where

for
otherwise

(11)
The symbol in the integrand is shorthand for ,

returns the shortest Euclidean distance (ED) from
to , is a positive nonzero constant that controls the

energy drop rate around the minimum (i.e., ). A
smaller gives a more abrupt decrease in the snap energy as

approaches zero and, hence, increases the strength
of the snap constraint. is a positive constant that defines a
circular snap range, outside which the energy vanishes. In other
words, it controls the sensitivity of toward (the sensitivity
is proportional to the value of ) and plays an important role
in discouraging to stick to the distant lumen boundaries. The
left column of Fig. 3 shows the snap energy (at ) of a
point whose nearest point on is when in
different values of .

4) Anti-Collapse Functional: Though the snap functional
can avoid marching toward aneurysmal lumen boundaries that
are relatively far away from , distant diseased lumen bound-
aries seldom exist in the cases of stenosis where lumens narrow
gradually. The snap functional may drive to the stenotic lumen
boundaries and make the augmented vascular surface collapsed.
The anti-collapse functional is, therefore, proposed as a remedy
for this problem. The form of this functional is similar to the
snap counterpart. Instead of favoring a deformation that mini-
mizes the shortest geometric distances between and , the
anti-collapse functional encourages the magnitude of the neg-
ative displacement (displacement is negative if its direction is
opposite to the outward surface normal) of from to be min-
imized. In other words, it favors to restore its initial position
(i.e., maintain its prior shape) only when it is collapsed/shrunk.
This functional is given as

(12)

where

for
otherwise

(13)
The vector equals . is the -norm oper-
ator and the positive nonzero parameter controls the rate of the
initial position restoration. The vector denotes the outward
normal vector at . It helps define the null energy posi-
tive displacement half-space. Thus, the anti-collapse forces do
not drive the surface ahead of its initial position or in other words
they do not help inflate/expand the surface. The right column of
Fig. 3 shows the anti-collapse energy (at ) of a point whose
initial position is when in
different values of .

5) Regularization Functionals: Standard regularization
functionals, tensile and flexural, are also employed. Similar to
the spline registration presented in Section II-A-3, these two
functionals make act like a membrane and a thin-plate to
avoid development of surface singularities. The tensile and
flexural functionals are written as

(14)

(15)

6) Optimization Procedure: The overall energy functional to
be minimized is, therefore, given as follows (similar to in
(4)

(16)
Due to the high dimensionality (dimension equals , where
is the number of sample points on whose order of magnitude
is at least hundreds) of , we take a deterministic approach to
searching for a local minimum. It is a standard approach to free-
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form deformation problems [32]. The Lagrangian mechanics
is applied to construct a dynamical system that is dictated by
the Lagrangian in (16). Hence, the equilibrium state (the
matched ) is obtained as the solution to the Euler-Lagrange
equations. The motion equations for each sample points on
are then derived using the gradient-descent method. The mo-
tion equations and their discrete representations are presented
in Section III-D.

C. Identification of Abnormalities

Once theaugmentedvascularsurfacemodel isconstructed, it is
transformed into a binary volume in the same resolution as in the
pre-treatment vascular segmentation. Voxels enclosed by the sur-
face model are labeled as ones and the background is labeled with
zeros. Details of the transformation are outlined in Section III-E.
In this paper, we consider the two most commonly found abnor-
malities in the human arterial network: aneurysm and stenosis.
An aneurysm is a local abnormal dilation of a blood vessel, while
a stenosis is a coarctation of an arterial lumen. Although these
vascular abnormalities are very different (opposite) in terms of
their morphology, we can identify them using a simple set opera-
tion on the two binary image volumes: the pre-treatment vascular
volume and the augmented vessel volume.

These two binary volumes are referred to as sets and , re-
spectively, which contain only voxels in unity label. As depicted
in the small figure of Fig. 2(b), the approximated aneurysmal
volume (partition labeled as 2a) can be selected by the user from
the set , i.e., the surplus volume (partitions labeled as 2a
and 2b) in the pre-treatment vascular volume with respect to the
augmented vessel volume. Whereas the atherosclerotic plaque
volume can be approximated from the set , i.e., the ab-
sent vascular volume (partitions labeled as 5).

III. IMPLEMENTATION ISSUES

The proposed methodology is implemented using three cross-
platform open source C++ software libraries, the Insight Seg-
mentation and Registration Toolkit (ITK) [33], the Visualiza-
tion ToolKit (VTK) [34], and the wxWidgets (formerly known
as wxWindows) [35], for algorithmic computing, visualization
and graphical user interface programming, respectively.

A. Centerline Point Selection

As discussed in Section II-A-1, two points should be selected
from the centerline of the disease-free portion of the vessel of
interest. To assist the user in selecting those points, we present

to the user and request the user to select two points on the sur-
face. Then two centerline points can be located by searching the
local maxima in the ED map around the two chosen points [36].
We employ the ED transformation [37] available in the VTK
[34] and a gradient-ascent strategy to find those local maxima
(i.e., the centerline points).

B. Optimization Procedure for Spline Registration

In a typical optimization procedure, the Cartesian coordinates
of all the movable spline knots (henceforth referred to as set )
are enumerated to form a parameter vector . The opti-
mization algorithm then varies to find an energy minimum in a
search domain. Nonetheless, is not fixed in our case, thereby

the dimensionality of is one of the parameters to be optimized.
To solve this atypical optimization problem, we propose a novel
strategy to cope with this iteration-varying dimensionality of the
parameter vector.

Algorithm 1 Optimization with Iteration-Varying Dimension

1: ,

2:

3: repeat

4:

5: , s.t.

6: , s.t.

7: , s.t.

8: , s.t.

9:

10: until

11: Return

1) Optimization With Iteration-Varying Dimension: Our
strategy is given in Algorithm 1. The variable is an iteration
counter, stores the energy obtained at the th iteration,
is the spline obtained after the th optimization, and are
the two points selected by the user and returns a
spline generated using the knots in the argument list. is the
set of movable knots before the th optimization, these knots
are sampled evenly from the spline obtained in the previous
iteration. returns a vector which
is the enumeration of the Cartesian coordinates of the points in
the given set. performs the optimization based
on the parameter vector and returns a tuple which consists of
the minimum energy value obtained at the th iteration and the
corresponding parameter vector .
reverses the operation of . This produces a
set of knots from after the th optimization.

In summary, the algorithm deforms the spline beginning with
a single movable knot and performs the optimization iteratively
with increasing the number of knots until the minimum energy
stops decreasing.

2) Stochastic Optimizer: In this paper, we use the (1
1)-Evolution Strategy (ES) for the optimization. It is a special
type of the Evolutionary Algorithms, kinds of stochastic opti-
mizers, with both the population size and number of children
generated equal one [38]. The (1 1)-ES has an automatic
step size and provides search direction adaptation. It supports
parameters with different scaling and has the ability to step
out of nonoptimal minima. Therefore, this strategy can give
the spline registration problem with a long capture range. One
might suggest to use a deterministic optimizer, for instance,
gradient descent method, to register the splines because of its
absolute repeatability and computational cheapness. We show
later experimentally that a gradient descent method gets easily
trapped at local minima and, even worse, if the step size is not
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carefully set, it jumps to a nearby local minimum whose energy
value is higher than the initial one. Due to these potential prob-
lems, we prefer to use (1 1)-ES in this paper. Nonetheless,
if absolute repeatability is an important issue, a deterministic
optimizer could be applied and if it fails, resort to (1 1)-ES.

3) Energy Functional Calculation: The weights in (4)
are assumed to be independent of the spline , i.e., they are kept
constant throughout the registration . The derivatives
in (5)–(7) can be calculated analytically since we have a closed
form of [see (1) and (2)]. The first- and second-order deriva-
tives are expressed as

(17)

and

(18)

respectively, where and are the second 4 4 matrix and
third column vector on the right-hand side of (1).

The function in (8) is approximated with a circular
neighborhood (CN) system [39] [see Fig. 4(a)]. The CN system
is composed of concentric circles with the outermost circle’s
radius equals the local tube radius. The area between two con-
secutive circles is known as a layer. To be more precise, the ra-
dius of the th circle equals , where defines
number of layers, , , denotes the tube
radius at and the first layer is defined by innermost circle.
These concentric circles are aligned on a plane with its normal
vector parallel to the tangent of . We sample each concentric
circle with evenly distributed samples. Since the vessel voxels
are labeled as ones while the background voxels are labeled as
zeros, we determine the vascular structure occupied area in per-
centage by computing the weighted average label value (a value

) at the sample points within the CN system as follows:

(19)

Weights account for the area difference between samples
at different layers. They are calculated from the area ratios of
each pair of consecutive layers. The area of the th layer equals

. Therefore, the area ratio of the th layer
to the th layer is expressed as follows:

for
for

(20)
The weights are then calculated as follows:

(21)

In other words, denotes the area ratio of the th layer to the
outer layer (i.e., th layer whose ). Label value of the

Fig. 4. Circular neighborhood (CN) system. (a) CN system is composed of
concentric circles (label 1 is the center) with the outermost circle’s (labeled as
2) radius equals the local tube radius. The area between two consecutive circles
is known as layer (layers labeled 3 and 4 are the outermost and innermost layers,
respectively). (b) Sample points’ locations in a CN system with L = 3 and
S = 8. A sample point on the second layer is labeled as 5.

th sample point at the th layer is denoted by . The label
values are evaluated by the linear interpolation in a continuous
space of each layer, or mathematically, on a circle with radius

at the sample points of the th layer.
Fig. 4(b) shows sample points’ locations in a CN system with

and for better illustration. For instance, a unity
average label value represents a 100% vessel occupied area.

Finally, the energy functionals in (5)–(8) are calculated from
the derivatives and the function with the numerical inte-
gration method, two point trapezoidal rule [40]. The series of
abscissas used is ,
where denotes the number of (both fixed and movable) spline
knots and is the step size in the parametric space. The step
size should be small enough to produce good approximation
of the integration. It is worth noting that the tensile and flexural
energy functionals in (5) and (6) can be calculated analytically.
This is because the integrands are basically polynomials in de-
gree of 4 and 2, respectively. However, in order to have a consis-
tent way to calculate the overall energy functional for the spline
registration, we choose to compute them numerically together
with the other analytically nonintegrable functional integrands
in (7) and (8).

C. Initialization of Explicit Vascular Surface Model

We construct the initial augmented vascular surface
from a binary volume using the Marching Cubes algorithm,
with reference to the vessel widths and centerlines determined
as described in Section II-A. The binary volume is built by
labeling voxels that are laid inside the morphological shape of
the augmented vessels with the unity label. It is accomplished
by placing solid spheres (filled up with the unity label) with
radii equal to one-half of the estimated vessel widths along each
centerline. This approach has the advantage of constructing
the augmented vessels in a complex vasculature, such as an
n-way branching junction. This is because each individual
vessel defined by the centerline and the interpolated widths
can be easily aggregated together in terms of binary volumes
by logical OR operator (treating the unity label as true and the
label zero as false).
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D. Optimization Strategy for Nonrigid Surface Registration

To minimize the energy functional in (16), a dynamical
system governed by the functional is constructed using the La-
grangian mechanics. To achieve this, the functional is refor-
mulated to a notation that is invariant to the surface parameteri-
zation. Thus, the derivation of the Euler-Lagrange equations of
motion is also independent from the representation of .

1) The Lagrangian: After the reformulation (see Ap-
pendix I), the Lagrangian is written as follows:

(22)

where
(23)

(24)

(25)

The variable is the dimensionality index, the symbol in
the integrand is shorthand for and represents the

th component of the vector . The symbols , , and
denote the gradient operator, the Laplacian operator,

and the determinant of the Hessian matrix of on the para-
metric space, respectively.

2) Euler-Lagrange Equations of Motion: The Euler-La-
grange equations are then obtained using calculus of variations

(26)

where denotes the biharmonic operator, square of the Lapla-
cian operator. The matched is, therefore, characterized by the
equilibrium state of this dynamical system. Through using a gra-
dient-descent method, we can obtain the motion equations for
each sample points on

(27)

where is a time step and is a damping coefficient. Assuming
the weights in are constants, i.e., and

, the gradient is given as follows (see Appendix II
for the derivations):

(28)

(29)

(30)

where returns (which gives the nearest point
on from ) if , otherwise the argument

is returned. The constant denotes a very small posi-
tive real number, is defined as and

equals if , otherwise it equals .
3) Discrete Representations: In this paper, we assume the

weights and . The Laplacian and biharmonic
terms in (27) are approximated by the umbrella operator [30] at
each sample point on , i.e., each vertex on the triangle mesh,
as follows:

(31)

(32)

where represents the th vertex of the mesh and is the set
of neighbors of the vertex . We define the function
as . The nearest point on is located using a
point locator implemented upon an octree-based spatial search
available in the VTK [34].

4) Freezing Mechanism: Theoretically, should be kept de-
forming until it converges in a global sense. Nonetheless, it is
1) inefficient to keep moving every mesh vertex at each iteration
even when some of them have reached their equilibrium loca-
tions and 2) impractical to define a global convergent state since
the mesh vertices may jitter around their local minima. There-
fore, we propose a freezing mechanism such that the free-form
deformation can be speeded up and a convergent state can be
defined.

Algorithm 2 Optimization with the Freezing Mechanism

1: ,

2: , , , is a vertex of

3: repeat

4:

5: for all in the set

6:

7: if then

8:

9: if then

10:

11: end if

12: else

13:

14: end if

15: end for

16:

17: until

The mechanism is outlined in Algorithm 2. is a time vari-
able, denotes a set of indices of active vertices, the vector
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TABLE I
PARAMETER SETTINGS OF THE PROPOSED METHOD USED IN ALL CONDUCTED EXPERIMENTS

represents the net displacement vector of the th vertex in ,
is a freezing countdown variable, is the initial value for the
countdown variables and denotes the deformed surface at
time . The function moves the vertices of

whose indices exist in according to the motion equations
defined in (27). The constant defines a threshold for the net
displacement. This threshold together with the constant de-
fines the rate of freezing. The optimization procedure terminates
if the set of active vertices is empty. In case it does not happen,
the user can preempt it. A more elegant solution to guarantee
termination, along the same research line as in [30], is to pro-
gressively lower the weights and of the external force.

Further speeding up of Algorithm 2 is possible if one reduces
the number of vertices in , because the worst case time com-
plexity of the algorithm is , where is the total number
of vertices in . We employ the implementation of the decima-
tion algorithm [41] available in the VTK [34] to simplify the
mesh before the deformation.

E. Transformation of Surface Model Into Binary Volume

The augmented vascular surface model is represented as a
closed triangle mesh. The goal of the transformation is to gen-
erate a binary volume for the augmented vessels such that the
abnormalities can be identified with a simple set operation (cf.
Section II-C). We employ the VTK to convert the triangle mesh
into a stencil volume [34]. The stencil is then used to create the
desired binary volume with the voxels enclosed by the mesh la-
beled as ones and the outside voxels labeled as zeros.

It should be noted that if there exists singularities (e.g., two
points coincide and a triangle is collapsed into a line) or self-in-
tersecting patches on the surface mesh (usually developed at the
boundary of an aneurysmal sac opening), the aforementioned
procedure is very prone to unity label leakage. This is because
the stencil is built with reference to the surface normals and the

surface normals calculated at those problematic regions may not
be locally consistent.

To alleviate the possible leakage, the decimation technique
based on a quadric error metric [42] is employed to simplify
the mesh prior to the transformation. Nonetheless, the new ver-
tices introduced in the decimation algorithm may not be in close
proximity to [42]. Therefore, we modify the algorithm so as
to force the newly introduced vertices to snap to their corre-
sponding nearest points on that lay within the range half the
voxel diagonal length.

IV. ILLUSTRATIONS OF THE METHOD

A. Synthetic Data

We have tested the proposed method on three synthetic data
sets. The parameter settings are listed in Table I, which are
found empirically. The design of the synthetic data takes several
typical pathologies into consideration: a cerebral aneurysm at
the bifurcation of a communicating artery, an abdominal aortic
aneurysm (AAA) and a stenosis at the middle cerebral artery
(MCA). The synthetic data sets are created as follows. First,
circular cross-sectional tubes are employed to model disease-
free lumens geometrically. Then, an ellipsoid is introduced to
simulate an aneurysmal sac. In the cases of AAA and arterial
stenosis, the tube cross sections are modified to mimic an ab-
normal localized dilation along an abdominal aorta and a coarc-
tation of an artery, respectively. As a final step, the geometric
models are voxelized into binary volumes. The data sets are cre-
ated to emulate the field of view of the region of interest (6–150
mm) and the image volume of typical
3-D angiographies at those anatomical sites. The voxelized syn-
thetic normal lumens (i.e., without introduction of the patholog-
ical structures) are treated as the ground truths for evaluation of
the proposed method.
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Fig. 5. Synthetic cerebral aneurysm at the bifurcation of a communicating artery. (a) The ground truth. The solid structures labeled 1 are the synthetic normal lumens.
The semi-transparent counterparts labeled 2 are the abnormal volumes corresponding to the aneurysmal lumen. (b) The estimated centerlines of the augmented
vessels. They show a high degree of agreement with the synthetic normal lumens [label 1 in (a)]. (c) Posttreatment vessel lumens approximated (solid) and volume
of the aneurysmal lumen (semi-transparent) obtained with our method under the condition of a perfect embolization. (d) Results of the methods proposed by (d)
Wilson et al. [9], and (e) McLaughlin and Noble [10].

Fig. 6. Synthetic AAA. (a) The ground truth. The solid structures labeled 1 are the synthetic normal lumens. The semi-transparent counterparts labeled 2 are the
abnormal volumes corresponding to the aneurysmal lumen. (b) The centerlines of the augmented vessels estimated. They show a high degree of agreement with
the synthetic normal lumens [label 1 in (a)] and can be used to approximate the trajectory of a stent graft in an endovascular treatment. (c) Posttreatment vessel
lumens approximated (solid) and volume of the aneurysmal lumen (semi-transparent) obtained with our method under the condition of a perfect occlusion. Results
of the methods proposed by (d) Wilson et al. [9] and (e) McLaughlin and Noble [10].

Figs. 5(a), 6(a), and 7(a) and (b) present the synthetic vessel lu-
mens with the ground truths. The solid structures labeled 1 are the
normal lumens. The semi-transparent counterparts labeled 2 are
the abnormal volumes corresponding to the aneurysmal lumens
and the atherosclerotic plaque (that causes a coarctation) of the
synthetic lesions. The centerlines of the augmented vessels esti-
mated are depicted in Figs. 5(b), 6(b), and 7(c). They show a high
degree of agreement with the synthetic normal lumens. It is noted
that the centerlines as shown in Fig. 6(b) canbe used to approxi-
mate the trajectory of a stent graft in an endovascular treatment.
Moreover, the centerline presented in Fig. 7(c) is not within the
confines of the coarctation (highlighted by the arrow). This ef-
fectively helps identify the stenosis asymmetry which is a useful
clinical parameter in a diagnosis [24]. Volumes of the patholog-
ical structures obtained with our method are shown in Figs. 5(c),
6(c), and 7(d) semi-transparently together with the estimates of
the vessel lumens after a perfect embolization/occlusion (solid
structures inFigs.5(c)and6(c)only).Visualcomparisonsuggests
that the augmented vessels are capable of modeling the normal
lumens and can help identify the pathological volumes.

We have also applied the algorithms proposed by Wilson et
al. [9] and McLaughlin and Noble [10] to the two synthetic
aneurysms.4 The results are shown in Figs. 5(d) and (e) and 6(d)
and (e). It is observed that the saccular aneurysmal lumens

4We have employed the image inpainting technique proposed in [43] to fill the
high-intensity regions in the distance map of the aneurysmal sac center, and use
the open mesh of the aneurysmal lumen (the portion of the mesh that does not
contact with the augmented vessels) obtained from our method to determine the
aneurysmal voxels as suggested in [10] instead of the seed and cull algorithm
(since we do not have the implementation).

Fig 7. Synthetic stenosis at the MCA. (a) Synthetic coarctation of MCA (solid
structure) and volume of the atherosclerotic plaque of the synthetic lesions la-
beled 2 (the semi-transparent structure). (b) The ground truth. The solid struc-
ture labeled 1 is the synthetic normal lumen. (c) The centerline of the aug-
mented vessel estimated. It shows a high degree of agreement with the synthetic
normal lumen [label 1 in (b)] and is not within the confines of the coarctation
(highlighted by the arrow). This effectively helps identify the stenosis asym-
metry which is a useful clinical parameter in a diagnosis [24]. (d) Volume of the
atherosclerotic plaque (semi-transparent) obtained with our method under the
condition of a perfect recanalization.
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Fig. 8. (a) Our result on the first clinical data set that contains a wide-neck aneurysm at the bifurcation of ACA labeled 1 and ACoA labeled 2. (b) The centerlines
of the augmented vessels estimated. Demarcation of the aneurysmal sac with the methods proposed by (c) Wilson et al. [9] and (d) McLaughlin and Noble [10].
(e) Manually delineated approximation of post-treatment lumens under the condition of a perfect embolization. High similarity between the augmented vessel
centerlines and the trajectories of the approximated post-treatment lumens is noticeable. (f) Manually drawn cardinal splines. They are created by inserting ad-
ditional knots between the two selected end-points for each augmented vessel. The semi-opaque structures in the middle of the aneurysmal sac adjacent to the
U-turned portion of ACA are the results of rendering semi-transparent surfaces that occlude other semi-transparent surfaces in the current viewing angle (those
semi-transparent surfaces are parts of the aneurysmal sac surface).

Fig. 9. (a) Our result on the second clinical data set that contains a more complex lesion (consists of two cerebral aneurysms) at the bifurcation of the ICA labeled
1 and the PCoA labeled 2. (b) The centerlines of the augmented vessels estimated. Demarcation of the aneurysmal sacs with the methods proposed by (c) Wilson
et al. [9] and (d) McLaughlin and Noble [10]. (e) Manually delineated approximation of post-treatment lumens under the condition of perfect embolizations. High
similarity between the augmented vessel centerlines and the trajectories of the approximated post-treatment lumens is noticeable.

TABLE II
VOLUMETRIC ERRORS IN PERCENTAGE WITH RESPECT TO THE TRUTH

PATHOLOGICAL (SYNTHETIC DATA SETS) OR THE MANUALLY DELINEATED

ABNORMALITIES (CLINICAL DATA SETS) VOLUMES

are likely to be either overestimated or underestimated as com-
pared with the ground truth given in Fig. 5(a). In the case of
the fusiform aneurysm, the two methods, by their nature, have
difficulties in determining the morphology of the aneurysmal
lumen (vascular structure with a cylindrical cavity along its
center axis). Volumetric errors in percentage with respect to the
truth pathological volumes are listed in Table II. It is evident
that the volumetric errors of the results obtained from our
method are lower than those from the others.

B. Clinical Data

Results of our method on three clinical data sets are presented
in Figs. 8(a), 9(a), and 10(a) (empirically found parameter set-
tings are listed in Table I). The lesions found in the data sets
include 3 cerebral aneurysms and an MCA stenosis. Fig. 8(a)
shows a wide-neck aneurysm at the bifurcation of the anterior
cerebral artery (ACA) and the anterior communicating artery
(ACoA). Figs. 9(a) and 10(a) present a more complex lesion
of the junction internal carotid artery (ICA)-posterior commu-

Fig. 10. (a) Our result on the third clinical data set that contains a coarctation
of the MCA, the estimated atherosclerotic plaque volumes are labeled as 1. (b)
The centerlines of the augmented vessels estimated. (c) Manual delineation of
a perfectly recanalized MCA lumen. (d) Volume of the atherosclerotic plaque
deduced from the manually delineated recanalized MCA. It can be noticed that
the estimated augmented vessel centerline demonstrated a similar trajectory of
the recanalized lumen as the one delineated on a voxel by voxel basis.

nicating artery (PCoA) and a coarctation of the MCA, respec-
tively. These data are 3-D rotational angiographies (RA) ac-
quired by the Philips Integris imager at the Department of Di-
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TABLE III
COMPARISON OF DIFFERENT SPLINE REGISTRATION SCHEMES: MO (1 + 1)-ES, SO RSGD AND MO RSGD ON THE SPLINE FROM THE UPSTREAM SIDE OF

ACA TO THE DOWNSTREAM SIDE

agnostic Radiology and Organ Imaging, Prince of Wales Hos-
pital, Hong Kong. The size of the image volume is

with the field of view 30–50 mm.
As depicted in Figs. 8 and 9, similar results are observed as

for the synthetic cerebral aneurysm. Our method is capable of
producing the aneurysmal volume and the estimated post-treat-
ment lumens [see Figs. 8(a) and 9(a)] that look very similar to
the manually delineated (on a voxel by voxel basis) counter-
parts as shown in Figs. 8(e) and 9(e). The centerlines of the
augmented vessels estimated are given in Figs.8(b) and 9(b)
for reference. High similarity between these centerlines and the
trajectories of the approximated post-treatment lumens that ob-
tained manually is noticeable. On the contrary, Wilson et al.
method [9] significantly overestimates the sac volume as a con-
sequence of narrowing/breaking the ACA and McLaughlin and
Noble’s algorithm [10] slightly underestimates the aneurysmal
volume near the sac opening, as highlighted by the arrows in
Figs. 8(c) and (d) and 9(c) and (d). For the arterial coarctation
data set, our estimated atherosclerotic plaque volume [label 1 in
Fig. 10(a)] is comparable to that obtained manually assuming
a perfect recanalization [see Fig. 10(d)]. Again the estimated
augmented vessel centerline demonstrates a similar trajectory of
the recanalized lumen as the one delineated on a voxel by voxel
basis shown in Fig. 10(c). Volumetric errors in percentage with
reference to the volume of the manually delineated abnormal-
ities are listed in Table II for quantitative comparison. Manual
delineation of the pathological structures were performed by an
experienced user under the supervision of a consultant radiolo-
gist. It is worth mentioning that the manual delineations are not
regarded as the ground truths for validation, because they may
be produced subjectively.

We have also evaluated our spline registration procedure (i.e.,
MO approach with (1 1)-ES optimization method) for the
estimation of augmented vessel centerlines on the first clinical
data set (the one shown in Fig. 8). The evaluation is conducted
based on the ED error to a manually drawn spline. Two splines
are needed for the data set. One fits from the upstream side of

ACA to the downstream side and the other is to ACoA. The
two manually drawn splines are shown in Fig. 8(f). They were
drawn by inserting additional knots between the two selected
end-points for each augmented vessel.

As a comparison, we have tested two other different registra-
tion schemes. They are single-order (i.e., fixed number of mov-
able knots) and MO approaches with a regular step gradient de-
scent (RSGD) optimization method. In RSGD method, as the
name implies, a regular step size is used in the optimization. The
step size is halved if the descending direction is changed more
than 90 . This effectively avoids jittering movements around a
local optimal. Convergence of RSGD method is denoted by the
value of the regular step size. Optimization halts when the step
size is below a pre-defined threshold. In the experiments, the
threshold was set to one-fourth of the voxel size and the initial
value of the step size was five times the size of the voxel size.

Results are listed in Tables III and IV where numbers of
movable knots used, values of the energy functional, the time
elapsed, means and standard deviations of errors are tabulated.
Errors were calculated with respect to the length of the voxel
diagonal. It is suggested that single-order (SO) RSGD got easily
trapped at local minimum even if the number of movable knots
equal to the number of knots inserted manually (3 knots). While
higher order ( 3 movable knots) spline would only worsen the
registration, splines with 2 movable knots produced the best
results with single-order RSGD. Nevertheless, these results are
with higher standard deviations of errors and higher energy
values than those from the MO counterpart. This is because of
the low degree of freedom (DOF) of the splines which makes
them unable to model portions of the vessel centerlines that
exhibit relatively high curvature. MO RSGD seem to be able
to alleviate the problem by adaptively increasing the DOF of
the cardinal spline. Comparing with the results obtained from
MO (1 1)-ES, however, those produced by RSGD are less
satisfactory. Our optimization scheme is capable of finding
less erroneous solutions with respect to the manually drawn
splines despite its stochastic nature. It gives spline settings
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TABLE IV
COMPARISON OF DIFFERENT SPLINE REGISTRATION SCHEMES: MO (1 + 1)-ES, SO RSGD, AND MO RSGD ON THE SPLINE FROM THE UPSTREAM SIDE OF

ACA TO ACOA

with lower energy values, smaller means and smaller standard
deviations of errors in all the 20 runs than those given by the
RSGD method. Indeed it is the stochastic property that offers
(1 1)-ES the ability to step out of nonoptimal minima.

Computational-wise, MO (1 1)-ES is believed to be more
expensive than RSGD owing to its nondeterministic nature.
However, in this application, it does not harm the performance
as the processing time is down to seconds. (1 1)-ES took

15 s to register the cardinal splines with variable number
of knots on a 2 GHz PC. In contrast, MO RSGD may waste
time in jumping to a nearby local minimum which has a higher
energy value due to the facts that the energy functional is highly
nonconvex with numerous local energy minima and the initial
regular step size is relatively too large. This is observed during
the registration of the cardinal spline onto ACA. RSGD took
61 s (8 times that (1 1)-ES had spent) to find a fair spline
setting. We found that it wasted 54 s to find a local minimum
whose energy value is higher than the initial one when the third
movable knot was inserted. On the other hand, (1 1)-ES did
not have this problem, thanks to the automatic step size and
search direction adaptation of the algorithm.

V. In Vivo EVALUATIONS

Validation of the proposed method is difficult. Even if we
have a physical lumen phantom of a lesion, not to mention pa-
tient data, we still cannot verify the correctness of the identified
abnormal volumes. This is because the diseases would have al-
ready changed the lumen appearance, making it deviated from
the disease-free lumen even though it is repaired by an endovas-
cular treatment. Manual delineation of the abnormal volumes
seems to be an option. Despite the fact that it is a very chal-
lenging task, as mentioned in Section IV-B, such operation may
be highly subjective. Therefore, it is not encouraged to define
correctness upon the manually delineated volumes. Because of
this, we propose a novel in vivo study to evaluate the abnormal-
ities obtained from our method in an indirect fashion, which ex-
ploits the fact that the abnormalities are complementary to the

augmented vessels. By verifying a high similarity between the
augmented vessels and several disease-free lumens at the same
anatomical location, the identified abnormal lumens are then be-
lieved to be satisfactory. In addition, we also assess the appli-
cability of the proposed method to the measurements of several
clinical parameters.

We have applied the method (see Table I for the parameter
settings) to 17 3-D RA data sets, including seven aneurysms at
the junction ACA-ACoA in six cases, ten ICA-PCoA aneurysms
in nine cases and two MCA stenoses. These data sets were all
acquired by the same protocol and machinery as described in
Section IV-B.

A. Comparisons to Disease-Free Lumens

Since arterial bifurcations are common sites of cerebral
aneurysms [44], we have chosen to compare the augmented
vessels to the corresponding disease-free lumens at the
ACA-ACoA and ICA-PCoA junctions. We quantify a bifurca-
tion vasculature with a distance function of its junction
center. The center is determined from the local maximum in the
ED map (of the augmented vessels or the disease-free lumens)
around the bifurcation. The function , along the same research
line as in [8], is built upon a spherical coordinate system, where

and are the polar and the azimuthal angles, respectively.
We match the south pole and the half-plane of
the system to the upstream and the downstream directions of
the cerebral arteries, respectively, as depicted in Fig. 11(a).

Two distance functions of disease-free ACA-ACoA bifurca-
tions (hereafter referred to as ) are shown in Fig. 11(b) and
(c). It is believed that they share high similarity, in which three
high-intensity regions characterize the upstream (region 1) and
two downstream (regions 2 and 3) arterial lumens. Fig. 11(d)
and (e) presents the distance maps of a disease bifurcation and
the corresponding augmented vessels (henceforth referred to as

and ). It is observed that there is a noticeable high-in-
tensity region (region 4) toward the north pole area (due to the
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Fig. 11. Spherical coordinate system and distance functions. (a) The south pole
(� = �) and the half-plane � = 0 labeled 1 of the system are matched to the
upstream labeled 2, and the downstream labeled 3 directions of the cerebral
arteries, respectively. Distance functions of ACA-ACoA bifurcations of (b)–(c)
disease-free lumens, (d) diseased lumens, and (e) augmented vessels. The origin
(� = 0; � = 0) of the distance function is at the upper-left corner of the
distance image. Region 1 corresponds to the upstream arterial lumen, regions
2 and 3 denote the downstream lumens, and region 4 is due to the existence of
an aneurymsal sac.

existence of an aneurysmal sac) in , and is very similar
to .

Thus, we exploit these properties to justify that our aug-
mented vessels are similar to the disease-free lumens and,
therefore, are good estimates of the post-treatment lumens. The
similarity is calculated based on the distance function. Given
a set of from a particular anatomical location (hereafter
referred as to ), we compute a subspace with principal
component analysis (PCA) that can represent generally
with several principal components. The absolute error of to
that disease-free subspace can then be defined. It is the absolute
ED from to its projection on the subspace. Such computation
is very typical in pattern classification [45]. Intuitively, the
similarity can be calculated as a zero-mean Gaussian function
of . However, due to there may have high variability amongst

and the size of is relatively small, we propose to
quantify the similarity with hypothesis tests on the distribution
of instead. By applying leave-one-out technique, we obtain a
set of , the absolute errors for . Then we compare if
the absolute errors calculated from and the corresponding

( and , respectively) are from the same distribution as
of . Distance functions that have with distribution which is

Fig. 12. Absolute errors � , � and � for the junctions (a) ACA-ACoA and
(b) ICA-PCoA.

TABLE V
RESULTS OF THE HYPOTHESIS TESTING (SIGNIFICANT LEVEL � = 0:02)

the same as that of are suggested to be similar to . The
following steps summarize the justification procedure:
Step 1) Suppose we have disease-free bifurcations and

disease bifurcations (or augmented vessels). Com-
pute all the values of , , and .

Step 2) Truncate to ignore the region
, limit the maximum values in to 5 mm, nor-

malize and smooth with a Gaussian kernel
. This helps eliminate the upstream and

downstream vessel width variations and the effect
of different vessel curvatures in the comparisons.

Step 3) Perform the leave-one-out PCA on to obtain
sets of principal components.

Step 4) For each set of the principal components, calculate
the absolute errors of the left-out , , and

(i.e., the absolute ED from to their projections
on the dimensional subspace). In total, we
have absolute errors and absolute
errors and .

Step 5) Study and check if and come from the distribu-
tion of .

Fig. 12 presents two box-and-whisker diagrams of the abso-
lute errors for the junctions ACA-ACoA and ICA-PCoA. It
appears that and come from the same population, whereas

is from a different one. We have performed two t-tests5 to jus-
tify our claim for each junction. The two null hypotheses are 1)

and 2) . The significance level is
and two-sided tests are used. The results are listed in

Table V. We found that there is insufficient evidence to reject the
first but not for the second one. Therefore, we believe that
our augmented vessels are good estimates of the post-treatment

5A t-test determines whether the two sets of measured values differ from each
other in a significant way under the assumptions that the underlying distributions
are normal and the their variances are about equal [46].
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Fig. 13. Measurements of a demarcated aneurysmal lumen. (a) Augmented
vessels labeled 1 help demarcate an aneurysmal lumen labeled 2 from the vas-
cular structures. (b) Measurements of the neck widthN labeled 3 and the dome
height D labeled 4 on the detached aneurysmal lumen.

lumens (obtained from perfect embolization/occlusion/recanal-
ization) at 98% confidence level.

B. Measurements of Clinical Parameters

Aneurysmal neck diameter (maximum width of the
opening of an aneurysm) and dome height (distance be-
tween the opening and the fundus, the farthest portion of the sac
boundary from its opening) are important clinical parameters
of an endovascular embolization [47]. In this study, we show
that measurements of those two parameters are more repeatable
in terms of intraoperator and interoperator variabilities if the
aneurysmal volume is identified. Fig. 13(a) shows a demarcated
aneurysmal lumen (label 2) with a well-defined neck surface
(the boundary between the lesion lumen and the augmented
vessels which are labeled as 1). The parameters and
can then be measured with ease if the measurements are taken
with reference to this neck surface, as illustrated in Fig. 13(b).

We have asked two experienced operators to perform the
measurements on the 17 aneurysmal sacs in the 15 cases with
and without the application of our method (demarcation of the
aneurysmal sacs). The lumens to be measured were presented
to the operators in random orders. One of the operators was
requested to perform the measurements twice with two days’
period time to disregard any bias toward the second measure-
ments.

Fig. 14 shows four Bland and Altman plots [48] (i.e., of the
differences between the two measurements against their means)
to assess the agreement between the intraoperator and interop-
erator measurements of the parameters and . The co-
efficients of repeatability (2 standard deviation of the mea-
surement differences) are listed in Table VI. It is evident that
1) the intraoperator and interoperator variabilities are roughly
the same regardless of the demarcation of abnormalities and 2)
the coefficients of repeatability are reduced by 10 times if the
measurements are taken with the demarcation of the sacs (see
also the decrease in the spread of the data points in the plots).
This implies that our method can help increase the repeatability
of the measurements significantly.

Another clinical parameter for an endovascular treatment
is the stenosis severity. It is commonly measured using the
NASCET index that is based on the minimal diameter of

Fig. 14. Bland and Altman plots [48] (axis unit is in mm, mean measurements
are in X-axis and measurement differences are in Y-axis) of the measurements
of (a) neck widths on the vascular lumens, (b) neck widths on the demarcated
aneurysmal lumens, (c) dome heights on the vascular lumens and (d) dome
heights on the demarcated aneurysmal lumens in the 15 3-D RA cases by the two
experienced operators. The crosses + and the dots � represent the data points
of the intraoperator and the interoperator measurements, respectively.

TABLE VI
COEFFICIENTS OF REPEATABILITY OF N ANDD IN MILLIMETERS

the stenotic lumen and the mean diameter of the nonstenotic
lumen (either proximal or distal to the coarctation) [49]. This
measurement, however, assumes circularity in the vascular
cross sections. Thus, the measurement based upon irregular
cross-sectional areas is developed [7] to suit the clinical sit-
uation. Nonetheless, possible bifurcations, prestenotic and
poststenotic dilations that are close to the lesion site may
further complicate the measurement of severity. With the ap-
proximation of the atherosclerotic plaque volumes, our method
allows in-site measurements at the severe regions (as depicted
in Fig. 15) which can increase the measurement repeatability.

VI. DISCUSSIONS

A. Representation of Deformable Model

Surface model is a commonly used deformable model rep-
resentation found in literature [6], [13]–[18], [23], [50]. As the
name implies, the deformable model is represented semantically
in terms of surface, though syntactically it may be defined by a
variety of primitive tuples, for instance, cores (medial loci) [23],
[50], m-reps [6], and medial axis-radius tuples [13]–[18].

Cores are considered as the medial loci of a 2-D/3-D object
[50]. They are invented to extract medial loci from gray-scale
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Fig. 15. Stenotic lumens, the estimated atherosclerotic plaque volumes and
the cross-sectional areas along the manually selected vessel centerlines labeled
1. (a)–(b) Two stenotic lumens labeled 2 proximal to the first bifurcation at the
MCA in two 3-D RA cases together with the estimated atherosclerotic plaque
volumes labeled 3. (c)–(d) The cross-sectional areas of the stenotic lumens
(dotted line) and the estimated recanalized lumens (solid line), i.e., the stenotic
lumen volume plus the estimated atherosclerotic plaque volume. The hollow
arrows highlight the bifurcations. The solid arrows highlight the prestenotic
and poststenotic dilations. These are the regions that may further complicate
the measurement of stenosis severity. The vertical straight lines in the middle
of the plots indicate the in-site measurements at the severe regions.

images, which are invariant to translation, rotation and zoom. As
such, cores are good for shape description and analysis in im-
ages. They can also help represent object surfaces by defining
boundary vertices that are protruded from the medial loci ex-
tracted. In a later publication, Pizer et al. [6] presented an ex-
tension of the core, namely m-rep, aiming at describing complex
shapes in 3-D that are capable of capturing prior geometric in-
formation primarily for segmentation with deformable models.
The m-rep defines shapes in a more precise fashion. Besides the
medial axis position, it uses three extra parameters: a width that
denotes the distance between the medial point and its boundary
vertices, a local coordinate frame and an “object angle” that de-
fines the local narrowing ratio of the shape [6]. In order to model
a 3-D object, a sheet of m-reps is needed.

Nevertheless, the vessels in human bodies are generally
tubular in shape. It is more intuitive to model them in terms
of the medial axis-radius tuples (i.e., circular cross-sectional
tubes) [13]–[18] rather than the medial sheet in the m-rep. The
medial axis-radius tuple representation does, however, suffer
from surface self intersections if the vessel curvature is high
[13]. As such, Yim et al. [14] proposed a modified cylindrical
coordinate system to solve this problem, which warps the radial
lines based on a merging mechanism to avoid surface self
intersections.

The pitfall of building a model upon the medial axis-radius
tuples is that it can neither represent complex vasculatures (e.g.,
vessel branches) nor support the deformation of multiple con-
nected vessels with a single deformable surface model. This is
because each vessel has to be represented by a separate set of
tuples and, hence, a different surface. As such, we use a triangle
mesh for the model representation and embed the shape priors in

the initialization and the energy functionals of the nonrigid sur-
face registration problem. This allows us to decouple the shape
priors from the model representation and keep the deformable
model as simple as possible.

B. Parametric Model of Vessel Centerlines

Tracking the center axes of body vessels is one of the
fundamental procedures in vascular image analysis [17]. It
is commonly resolved by tracing the medial axis iteratively
given a manually selected seed point from a vascular tree. The
medial axis are determined by either evaluating the intensity
gradient magnitudes [17], [22], the medialness measure [50],
[51], and the vesselness metric [13], [18] (up to a scaling factor
which characterizes the local vessel width), or finding the local
maxima in the ED map if the vascular segmentation is known.

However, as revealed in [22] and [52], such approach needs
special cares at bifurcations, joining vessels, locally wide and
asymmetric vessels (e.g., aneurysms) to avoid axis distortion or
making a turn in the tracking process. In addition, at a severe
stenotic lumen where the vessel is too narrow to be tracked,
there may be no trace of the medial axis at all. To get rid of all
these problems, we suggest to use a fixed end parametric curve
to model the augmented vessel centerline. Having taken into ac-
count the volumetric information and the curve regularity, we
propose a novel methodology (cf. Sections II-A-3 and III-B) to
track the augmented vessel centerlines that are deliberately dif-
ferent from the medial axes of the diseased lumens (for instance,
asymmetrical aneurysmal and stenotic lumens) obtained from
all the aforementioned algorithms (the differences between the
estimated centerlines and the ridges of the ED map are shown
in Fig. 1).

Relating the physical and the physiological properties of
blood vessels to the vessel centerline model is difficult, if not
impossible. Despite a thorough understanding of the blood
vessel wall composition [26], to the best of our knowledge,
there is no direct study of the relationship between those prop-
erties and the intrinsic properties (i.e., stiffness and rigidity)
of the vessel centerlines. Noted that the high level attributes of
blood vessels, for instance, tortuosity [53], might have been
studied. In all the experiments conducted, we experienced that
the chosen spline is indeed sufficient for the augmented vessel
axis modeling.

The choice of the zero-tension cardinal spline is, however,
an implementation preference. We choose the cardinal splines,
instead of the conventional open B-splines as used in [9], [13],
is that the cardinal splines have the advantage of being able to
pass through the knots, which makes the representation more
intuitive both in the estimation of the tube centerline as well as
the visualization of the tube and the knots.

C. Estimation of Local Vessel Widths at Centerline End-Points

Poor approximation of the local vessel widths at the center-
line end-points may be obtained if the lumen cross section devi-
ates far from that being circular. This may be the case in venous
lumens [26]. Veins have thinner walls which, compared to ar-
teries, may collapse under external tissue pressure. The valves
present in the veins change the shape of the lumens as well. Nev-
ertheless, it is rare in the disease-free arterial lumens found in
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the testing data sets. This is because arteries have thicker walls
which maintain their shape even when fluid pressure is reduced
and they have no internal structure that makes the lumen cross
sections deviated significantly from circles [26].

D. Selection of Parameters of Spline and Surface Registrations

The parameters of the spline and surface registrations listed
in Table I are found empirically. However, six of them are de-
rived from the voxel diagonal length , the spline length
and the number of knots in the spline . The voxel diagonal
length is the longest distance between neighboring voxels in the
26-neighborhood system. We initiate (1 1)-ES with an ini-
tial search range (the initial radius, ) that is as large as the
26-neighborhood system for each movable knot. Furthermore,
we terminate it if the change in magnitude of the parameter
vector is less than (the value of the epsilon of
(1 1)-ES). This implies the optimization halts when the dis-
placements of the movable knots are less than half of on av-
erage. In the numerical integration of the energy functional for
the spline registration, the step size in the parametric space is
set such that the spline is sampled along its length with distance
approximately apart, therefore, .
Values of the snap energy drop rate and anti-collapse rate
of the surface registration are also set on purpose. Their values
are determined such that the magnitudes of the corresponding
forces reach their maximum magnitudes when
and are greater than half of the circular snap range and the
voxel diagonal length, (i.e., and ), respectively.6

E. Limitations of the Method

Although the approximations of the augmented vessel cen-
terlines are dependent on the selections of their end-points (cf.
Section II-A-3), in all the experiments conducted, we noted that
this approximation is insensitive to the choice of those points as
long as this rule of thumb is satisfied: the end-points are selected
at the immediate disease-free proximal and distal regions of the
lesion site. The only exceptional cases are if 1) the end-point is
selected at a branching junction and 2) the initial spline defined
by the two chosen end-points passes through objects of no in-
terest. In these cases, the estimated augmented vessel centerline
may deviate from the desired centerline. It is because of the ef-
fect of the branches on the local maxima in the ED map [52] and
the (1 1)-ES may get trapped at a local minimum in the spline
registration. Users should avoid these cases when they select the
centerline end-points.

Moreover, the vessel width assumption (i.e., the vessel widths
change linearly along the vessel centerline) may not be valid in
cases where the lumen size of the vascular structures suddenly
decreases. An example of this is the segment originated from the
ICA toward the PCoA in the circle of Willis, where the size of
the PCoA could be quite variable [54]. One solution may be to
allow manual adjustment in the estimated width of the upstream
vessel (ICA) to compensate the sudden decrease in the vessel
size.

6The snap force rE in (29) does vanish if ndis (S) > R indeed.

Regarding the limitations in terms of pathology, amongst the
17 3-D RA data sets that we have tested, we encounter no dif-
ficulties in identifying the volumes of the pathological struc-
tures. However, our method may have problem in detaching: 1)
an aneurysmal sac which has a neck diameter much greater than
its dome height (i.e., ) and the dome height is less
than the circular snap range in (11) (i.e., two times voxel di-
agonal length , as listed in Table I. For the intracranial data
sets that we have tested, ); 2) a fusiform
aneurysm whose diameter is less than plus the normal di-
ameter of its parent vessel (e.g., in a typical CTA of an abdom-
inal aorta, , then .
The normal diameter of an abdominal aorta is approximately 2
cm [55]. In other words, our method may have problem with
an AAA whose diameter 2.58 cm, which is 1.29 times the
normal diameter of the abdominal aorta). This is because when
we deform the explicit vascular surface models to match the
boundaries in the segmentations, the algorithm may treat the
flat aneurysmal sac and the mild local abnormal arterial dila-
tion as nearby disease-free lumen boundaries and may drive the
surfaces marching toward the aneurysmal fundi. In fact these
kinds of pathology are not the immediate focus of the project.
Although they may not be common (for instance, as shown in
Fig. 14(c) and (d), all the dome heights of the intracranial sac-
cular aneurysms measured are 2 mm, and a segmental dilation
of an abdominal aorta with an increase in diameter of less than
1.5 times its normal diameter is not diagnosed as AAA at all
[55]), demarcation of such flat sac and mild segmental dilation
can be resorted to manual delineation or other methods (if any).

F. Further Possible Applications

As illustrated in Section V-B, identification of pathological
volumes can make the measurements of important clinical pa-
rameters become more repeatable. It also helps the angle se-
lection for optimal working projections, and allows interactive
or automatic quantitative analyzes on the lesions, which have
already been mentioned in Section I. Besides, we see several
other possible applications. Upon the pathological structures
are recognized from the normal counterparts, study [56], [57]
and visualization [58] of hemodynamics on patient specific data
sets with/without the pathology of interest prior to endovas-
cular treatments become feasible. Analysis of the normal and
abnormal vascular shapes [59], growth simulation of the patho-
logical structures [60], and synthesis of more realistic patholo-
gies with the identified pathological volumes in clinical data sets
[61] are also possible. These are all beneficial to endovascular
treatment/surgical planning and simulation. In addition, center-
lines of the augmented vessels estimated could be used to assist
endovascular stent grafting [62] and simulate stent pose [63] in
occlusion and recanalization treatments, respectively.

VII. CONCLUSION

Identification of abnormal vascular structures from a vas-
culature is beneficial to quantitative analysis of abnormalities,
endovascular treatment planning and simulation. It helps 1)
to make measurements of clinical parameters more repeatable
and effective to take, 2) to allow exclusive quantitative analysis
on the lesions, 3) the angle selection for optimal working
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projections, 4) to enable a variety of studies on the normal and
abnormal vascular structures, including hemodynamical study
and visualization, shape analysis, growth simulation, 5) to syn-
thesize more realistic pathologies for treatment simulation, and
6) to assist/simulate endovascular stent grafting/deployment.
Hence, in this paper, we develop a novel unified approach
to identifying different vascular abnormalities, for instance,
fusiform, narrow- and wide-neck saccular aneurysmal lumens,
and stenotic atherosclerotic plaque.

Our method, in contrast to the other algorithms, models the
opposite of the abnormalities (i.e., normal vessels) to identify
the lesion lumens in an indirect fashion. The normal vessel
models, namely augmented vessels, are much easier to manip-
ulate as compared with the model of complex shaped diseased
lumens. The abnormal lumens, therefore, can be obtained using
a simple set operation. We have tested the method on several
synthetic and clinical data sets, and illustrated that it is capable
of identifying different kinds of abnormalities as opposed to
the two related works, which are restricted to the demarcation
of narrow-neck saccular aneurysms only. Furthermore, in an
in vivo study with 17 3-D RA cases, we show that our method
can help increase the measurement repeatability of clinical
parameters by 10 times.

A possible improvement to the proposed method is to make it
directly applicable to gray-scale images instead of topologically
and morphologically correct vascular segmentations. Finally, in-
tensive tests of the method on a clinical environment and studies
of its impact on the planning of endovascular treatment, for in-
stance, coil embolization of intracranial aneurysms and recanal-
ization of cerebral arteries, are of interest for future research.

APPENDIX I
REFORMULATION OF THE LAGRANGIAN

The aim of the reformulation is to rewrite the first- and
second-order partial derivatives in and (see
(14) and (15) for the definitions) in terms of the gradient and the
Laplacian operators on the parametric space. Hence, the derived
motion equations are invariant to the surface parameterization
[64], [65]. These energies are reformulated as follows:

(33)

(34)

where represents the th component of the vector

(35)

is the determinant of the Hessian matrix of on the para-
metric space.

APPENDIX II
GRADIENT OF THE EXTERNAL FUNCTIONAL INTEGRAND

The integrand formulations of the snap and the anti-collapse
functionals are very similar. As such, we only derive the
gradient of the snap functional integrand. The anti-collapse
counterpart could be derived in the same fashion. Consider

and let denote the vector pointing to
from its corresponding nearest point on (i.e.,

, where gives the nearest point
on from ). Then we have the following equations:

(36)

(37)

(38)

therefore, the gradient of the integrand is given as

(39)

when . However, we also want this gradient van-
ishes if and is not undefined when . Thus,
we replace the numerator of the multiplicand in with
when its magnitude is greater than and set a nonzero lower
bound for the denominator such that the integrand gradient is
well-defined. The gradient is, therefore, expressed as

(40)

where

otherwise
(41)

and

(42)

is an abbreviation for and the constant denotes a very
small positive real number.
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